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UNIQUENESS OF SOLUTIONS OF AN INFINITE SYSTEM
OF EQUATIONS

CHIN-HUNG CHING AND CHARLES K. CHUI

1. Introduction and Results. Let A= (a;;), i,j=1,2, -, be an
infinite non-zero matrix of complex numbers such that for each i, the
sequence {a;;} where j= 1,2, - - is in 22, the space of all square
summable sequences. In this note, we will discuss some uniqueness
theorems on the 22 solutions of the following system of linear equa-
tions:

(1) Nax=y, i=12, -
i=1
Let {e;} be an orthonormal basis of a Hilbert space H. Then the
uniqueness of the solutions of the system (1) is equivalent to the com-
pleteness of the system {Ae;},

0
Ae,'= 2 a; i€;, i= 1,2, ey,
j=1

in H. It is a rule of thumb that a perturbed basis is still a basis pro-
vided that the perturbation is sufficiently small. Thus, it is also a
purpose of this note to give some limit on the size of a perturbation A
so that {Ae;} is again a basis of H. We obtain the following results.

Tueorem 1. Let A, = (a;;), 1 = i, j = n, be the n X n matrices ob-
tained from A. Either one of the following conditions is sufficient for
the uniqueness of the solutions of the system (1):

ﬁ ( i I“i,jlz)

. . .opi=1 N =1
(i) ll'l"fllmnf idet AL < o
(23 ok )(1 [ 2] )
(ii) lim inf —=i=n+l oh il < o,
" |det A, |?
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There is a vast literature on estimating lower bounds of determin-
ants. We mention only Brenner [1, 2], Ostrowski [6], and Price
[7]. Using some of these bounds, we may get some other more work-
able sufficient conditions from (i) or (ii) for the uniqueness of £2 solu-
tions of the system (1). We also wish to mention that some similar, but
somewhat different, results can be found in Hilding [3] and Kato [4].
In the following section, we will compare our above result with theirs.

For upper triangular matrices, we have a better result:

THEOREM 2. Let a; ; = 0 whenever j < i. Then the condition

@) 2 gl = 1+ 8)lail # 0

j>i

with 8 =0 for all i =1, 2, - - - is sufficient for the uniqueness of the
solutions of the system (1). But for each & > 0, there exists an upper
triangular matrix satisfying (2) such that the solutions for the system
(1) are not unique. (We remark that Theorem 2 is well-known for
-1<8§<0).

2. Proof of Theorem 1. Let {b;} be an 22 solution of the system (1)
with all y; = 0. We have to prove that b; = 0 for all i. We write

c©

3) eni= 2 a;bj=— 3 ayb;

i=1 ji=N+1

Hence, if det Ay # 0, we have, from Cramer’s rule, that

€Ny Q12 " " QN
b = 1 €N Q2o " " AN
L=
det Ay
ENN ON2 " " ONN

If all but a finite number of the b; are zero, then it is clear that all the
b; are zero. Otherwise, we set

©

aN,,-=eN,,./( 3 Ibklz)llz,

k=N+1

which gives
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Oy, Q1o " "t AN

= v2 |Ong2 Gag * * - G2N
(S me)
k=N+1

bl = det AN

OnN aN2 * C GNN
By the Hadamard determinant theorem (cf. [5] ) we have

o0

S bl

(4) |b1|2§LT:1V_eJ;IXNITH (ISN,5|2 + 'ai,2'2 + 0t la;,le)
i=1

and

o

k—§+1 lbk|2 S
R w— Aot AP [H (, la; ;|2 )] [2’1 ISN,,-Iz].

Also, from (3) using the Schwarz inequality, we have

6) 2= —Emil < S e
2 |be2  i=N+1
k=N+1

Then (4) and (5) yield
S i, .

Y = 23 1T (3 sk

and

00

S bk,
ebes s [ (S ar)] [2 5 we]

j=2

> b

k=N+1 ﬁ 2 o 2 2 P
ldetANl-"-[ 2 lai |2 ] [;=1 ( Z )] [, Tl N+ ]

respectively.

lIA
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Now since

©

lim S [bf2=0

N> ®k=N+1

and since det Ay # 0 for infinitely many N, we have for all j,

E la,-,j|2 > 0.
i=1
Thus, by the hypothesis (i) or (ii), we have proved that b, = 0, and by
a similar proof, we can conclude that all the b; are zero. This com-
pletes the proof of Theorem 1.
As a consequence of this theorem, we have the following

CoroLLAry 1. Let {¢;},i= 1,2, - - -, be an orthonormal basis of a
Hilbert space H, and let A be a linear operator in H. Then {Ae;},
i=1,2, -, iscomplete in H if

) |Ae|| < .

m b 1

The following result can be found in [4], page 266:

TueoreM A. Let {e;} be a complete orthonormal family in a Hilbert
space H. Then a sequence {f;} of non-zero vectors of H is a basis of

H if

S (e epee M e f)l
w 3 (el )<t

We now compare (10) and our Corollary 1 for the sequence {f;}
such that

0
fJ = 2 a; €k >
k=j

where a;; are real and||f;| =1 for all j. By (10), we know that
{f;} is complete if

o

2 (1 - Iaf,jl) < 1’

but by (9), we can conclude that {f;} is complete if
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I1 la;51>0,

=1

which is equivalent to
> (1= faj) < ».
i=1

As another consequence of Theorem 1, we have the following results:

CoroLLARY 2. Let A, = (a;;), 1 =i, j= n, be n X n matrices of
complex numbers. Then the following conditions are sufficient for the
uniqueness of the solutions of the system (1):

(i) 2 laP=1,
j=1

foralli=1,2, - - - and

(ii) lim sup |det A,| > 0.

n—» ®

CoroLLARY 3. If {e;} is a complete orthonormal sequence and the
fi =3 ; aije; are orthonormal, then {f;} is complete if

L = lim sup |det A,| > 0,

or equivalently,
lim sup |det({f;, e;)), 1 = i,j = n| > 0.

n—

We remark that Theorem 1 shows that certain perturbed bases are
still bases even when the perturbation is large. For example, the rows
of

S O O = O
S © O O -
S = O O O
(= - -]
S O o O O
- O O O
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are complete. Also, Theorem 1 (i) and Corollary 3 are equivalent,
since the rows of A are complete if and only if their Gram-Schmidt
orthogonalizations are complete. But orthonormalization only im-

proves the hypothesis of Theorem 1 (i).

3. Proof of Theorem 2. For § = 0, let {b;} be an &2 solution of
the system (1) with all y; = 0. We have to show that all b; = 0. Since
b; = 0 asi — ®, we can find a k such that

|bx| = max(|b;| :i = 1,2,.- - ).
We assume, on the contrary, that by # 0. Then by the hypothesis, we

have

®©

ak,kbk= - 2 ak,sbs'

s=k+1

Since b, — 0, |b,| < |by| for large s, and hence, from (2) we have

®©

|ak,k| |bi| = 2 |ax,s| |bs|

s=k+1
< |ax x| |bl,
which is a contradiction. As for § >0, we leta;; =1, 4a;;,, =1+ 3

foralli= 1,2, - - -, and let g; ; = 0 otherwise. Then

@©

Y lal=1+ 8ais

j=it+1

foreachi = 1,2, - - -. However, the sequence

(1 -1 1 -1 )
(148 1+ 8)2 1+ 8%

is clearly an 22 solution of the system

2 ax=0i=12 -

The above example is an “analytic Toeplitz matrix”, that is,
a;; = 0ifi >], a;; = b,'_j if i é],
where

S b2 < .

n=0
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It is well-known that a necessary and sufficient condition for the
completeness of the rows of A is that

f@)= 3 by
n=0

is an outer function in H2. Although the proof of Theorem 2 is quite
simple, this theorem has some interesting consequences.

CoroLLARY 4. Let f(z) = Y, n_oa.2" be a function of the Hardy
class H2 on |z| < 1, such that

1) S Joul = Jarl # 0.
n=2

Then the space generated by the functions 1, f(z), f(z2), - - - is dense

in H2

By a similar proof, we can also conclude that Corollary 4 holds for
any Hardy space H? with 1 = p < . However, we remark that this
corollary does not hold for the Banach space A of functions continuous
on [z| = 1 and holomorphic in |z| < 1 with the supremum norm. This
can be seen from the following:

ExampLE. Let f(z) =z — z% Then f € A and (11) is satisfied.
But f(1) = f(—1) =0, so that any function g that can be approxi-
mated uniformly on [z| =1 by linear combinations of 1, f(z), f(z2),
-+ - must satisfy g(1) = g(—1).
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