DIOPHANTINE APPROXIMATION IN A VECTOR SPACE

F. A. ROACH

1. Throughout this paper, we suppose that S is a real inner product space of dimension at least two and that e is a point of S with unit norm. We denote by S^{\prime} that subspace of S which has the property that if z belongs to it, then $((z, e))=0$, and let u denote a point of S^{\prime} which has unit norm. For each point z of S , we denote the point $2((z, u)) u-z$ by \bar{z} and the point $\bar{z} /\|z\|^{2}$ by $1 / z$. (We assume that there is adjoined to S a "point at infinity" with the usual conventions.) It should be noted that if S is one of E^{2}, E^{3}, E^{5}, and E^{9}, e is the unit vector with last coordinate 1 , and u is the unit vector with first coordinate 1 , then $1 / z$ restricted to S^{\prime} reduces to the ordinary reciprocal for real numbers, complex numbers, quaternions, and Cayley numbers, respectively.

Suppose that U is a subset of S^{\prime} having the following properties:
(i) each element of U is a point of S^{\prime} with unit norm,
(ii) u belongs to U,
(iii) if x belongs to U, then so do $-x$ and \bar{x},
(iv) if x and y belong to U, then $2((x, y))$ is integral, and
(v) if z is a point of S^{\prime}, there exists a finite sequence $x_{1}, x_{2}, \cdots, x_{k}$, with each term in U, and a finite sequence $n_{1}, n_{2}, \cdots, n_{k}$, with each term an integer, such that $\left\|z-\left(n_{1} x_{1}+n_{2} x_{2}+\cdots+n_{k} x_{k}\right)\right\|<1$. It is not difficult to see that such a set U exists even when S is infinite dimensional. Notice that when S is one of E^{2}, E^{3}, E^{5}, and E^{9} with e and u as above, we may take U to be the set of all units of an appropriate ring of integers.
2. We will now give some definitions which facilitate the statement of the diophantine approximation result below.

A point z of S^{\prime} is said to be integral with respect to U (or U-integral) if and only if there exists a finite sequence $x_{1}, x_{2}, \cdots, x_{k}$, with each term in U, and a finite sequence $n_{1}, n_{2}, \cdots, n_{k}$, with each term an integer, such that $z=n_{1} x_{1}+n_{2} x_{2}+\cdots+n_{k} x_{k}$. A point z of S^{\prime} is said to be rational with respect to U (or U-rational) if and only if there exists a finite sequence $b_{0}, b_{1}, b_{2}, \cdots, b_{k}$, with each term U-integral, such that z is the value of the continued fraction

$$
\begin{equation*}
b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{k}} . \tag{2.1}
\end{equation*}
$$

A point of S^{\prime} which is not U-rational is said to be irrational with respect to U (or U-irrational). If each one of $b_{0}, b_{1}, b_{2}, \cdots, b_{k}$ is U integral, we denote by $D\left(b_{0}, b_{1}, b_{2}, \cdots, b_{k}\right)$ the number

Copyright © 1974 Rocky Mountain Mathematics Consortium

$$
\left\|b_{k}\right\|\left\|b_{k-1}+1 / b_{k}\right\| \cdots \cdots\left\|b_{1}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{k}}\right\|
$$

and we say that $b_{0}, b_{1}, b_{2}, \cdots, b_{k}$ is primary whenever it is true that if each one of $a_{0}, a_{1}, a_{2}, \cdots, a_{n}$ is U-integral and

$$
b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{k}}=a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}},
$$

then $D\left(b_{0}, b_{1}, b_{2}, \cdots, b_{k}\right) \leqq D\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right)$. When b_{0}, b_{1}, b_{2}, \cdots, b_{k} is primary and z is the value of (2.1), then $D\left(b_{0}, b_{1}, b_{2}, \cdots, b_{k}\right)$ is denoted by $Q(z)$.
It should be noted that in the examples mentioned above (E^{2}, E^{3}, E^{5}, and E^{9}), that with a suitable choice of U, the definitions of U-integral, U-rational, and U-irrational are equivalent to the ordinary definitions of integral, rational, and irrational. The number $Q(z)$ corresponds to the modulus of the denominator of z "expressed in lowest terms". (It may be shown that for every point z which is U-rational, $Q(z)$ does exist.)
3. Let F denote the set of all points z of S such that $\|z\|<1$ and, for every point x of $U,\|z\| \leqq\|z-x\|$ and let m denote the greatest number t such that, for every point z of $F,((z, e)) \geqq t$.

Theorem. If $c \geqq 1 /(2 m)$, then for every point w of S^{\prime} which is irrational with respect to U, there exist infinitely many points z of S^{\prime} which are rational with respect to U such that

$$
\begin{equation*}
\|w-z\|<c / Q^{2}(z), \tag{3.1}
\end{equation*}
$$

while if $c<1 / 5^{1 / 2}$, there is a point w of S^{\prime} which is irrational with respect to U such that there are at most a finite number of points z of S^{\prime} which are rational with respect to U such that (3.1) holds true.

A proof of this theorem and some related results will appear elsewhere. The techniques used in the proof of this theorem resemble those used by Ford in [1]. We let M denote the set of all transformations T from S onto S having the property that there exists a finite sequence $b_{0}, b_{1}, b_{2}, \cdots, b_{2 k}$, with each term U-integral, such that for every point z of $S, T(z)$ is

$$
b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots+\frac{1}{b_{2 k}+z} .
$$

The set M forms a group under composition and corresponds to the group of Picard used by Ford. In fact, if S is E^{3} with $e=(0,0,1)$, $u=(1,0,0)$, and U is the set consisting of $u,-u,(0,1,0)$, and
$(0,-1,0)$, then it is the group of Picard extended to E^{3}. The set F corresponds to the fundamental region used by Ford and the collection of all of its images under elements of M to the subdivision of the upper half-space.

Reference

1. L. R. Ford, On the closeness of approach of complex rational fractions to a complex irrational number, Trans. Amer. Math. Soc., v. 27 (1925), pp. 146-154.

University of Houston, Houston, TX 77004

