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ANALYSIS OF TRUNCATION ERROR OF APPROXIMATIONS 
BASED ON THE PADÉ TABLE 
AND CONTINUED FRACTIONS 

WILLIAM B. JONESf 

1. Introduction. In the study and application of continued frac
tions 

a, / _ l w w _ a + a+... 
it is important to have realistic estimates of the truncation error 
\f~~fn\ when (1) is approximated by its nth approximant fn. Trun
cation error bounds are of two main types: (a) A priori bounds are 
expressed directly in terms of the elements an, bn or parameters 
associated with these elements, (b) A posteriori bounds are generally 
of the form 

(2) \f-fn\^Mn\fn-fn-l\ 

and are obtained only after calculating the approximants fu f2, • • •, fn. 
(There are also asymptotic estimates of the truncation error as given 
by [4, 15]; however, such estimates will not be dealt with here.) 
Bounds of a priori type can be found in [5, 6, 8, 9, 10, 12, 14, 17 and 
18] and of a posteriori type in [1, 2, 3, 6, 7, 9, 11, 13, 16]. Most of the 
known truncation error bounds for continued fractions have been 
obtained either by studying inclusion regions for the approximants 
(Section 2) or by showing that the approximants form simple sequences 
(Section 3). In some cases both of these approaches have been used 
(Section 2). This paper provides a brief summary of the two approaches 
and reviews some of the main results. Proofs are omitted; however, 
proofs, application, and numerical examples may be found in refer
ences cited. These results have a strong connection with Padé tables. 
As an illustration of this connection we note that in a normal Padé 
table the approximants of the corresponding continued fraction of the 
form 

a0 axz azz , 
y + — + — + ' * * (complex an f 0) 
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fill the stairlike sequence of squares [0,0], [1,0], [1,1] , [2,1] , 
[2,2], • • -([19], Theorem 96.1). 

The following definitions and terminology are used. An (infinite) 
continued fraction is a triple of sequences [{an}ì, {fon}?, {fn}ì] 
where ai9 a2, ' ' ', and bh b2, * * * are complex numbers, an ^ 0, and 
where fn is an element of the extended complex plane defined as 
follows: If sn denotes the linear fractional transformation (l.f.t.) 

(3a) sn(z) = aj(bn + z), n = 1,2, • • • 

and 

(3b) Sx(z) = Sl(z); Sn(z) = S^faiz)), n = 2,3, • • • 

then 

(3c) / n = S n ( 0 ) , n = l , 2 , ••• . 

The an and bn are called elements of the continued fraction and fn 

is called the nth approximant. An infinite continued fraction is said to 
converge if its sequence of approximants converges; f = lim fn is 
called its value. For convenience the infinite continued fraction 
[{an}, {bn}, {fn}] may also be denoted by each of the three expres
sions in (1); in addition the expressions in (1) are used to denote the 
value of the continued fraction when it exists. The nth approximant 
may also be represented by fn = Kk=i (ak/bk). A finite continued 
fraction is a triple of finite sequences [{an}Y, {bn}^, {/n}Y], where 
the approximants fn are defined as in (3). Its value is given by fN = 
K%=i (ajbn), which may also be used to denote the continued frac
tion itself. 

2. Inclusion Regions. Consider the problem: Given the first n 
pairs of elements (OX*, bx*), • • -, (an*, bn*) of a continued fraction 
K(an*lbn*) that belongs to a certain class K of continued fractions, 
what can be said about the truncation error when K(an*lbn*) is 
approximated by its nth approximant? For this problem it is natural 
to study inclusion regions defined as follows: 

DEFINITION 1. For each n = 1, 2, 3, • • • let Dn be a subset of the 
complex, 2n dimensional, Cartesian space C2n. Let K denote the class 
consisting of: 

(A) All finite continued fractions K^=i (ajbn), such that 

(4) (al9 bl9 • • % aw bn) G Dn, n = 1, • • -, N, N = 1, 2, • • -, 

and 
(B) all infinite continued fractions K(ajbn), such that 
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(5) (i) (al9 bl9 - - -, aw bn) G Dn, n = 1,2, • • •. 

Let K(an*lbn*) be a given continued fraction contained in the class 
K. For each n = 1, 2, 3, • • • let <I>n be the set consisting of the values 
of all finite continued fractions in K of the form 

(6) Kit?(aklbk), m ^ 0, such that (ak, bk) = (ak*9 bk*), k = 1, • • -, n. 

Then every closed set of complex numbers fl^ containing 4>n is called 
an nth inclusion region for K(ön*/fon*) relative to the class K. The 
closure of 4>n is called the best nth inclusion region for K(an*/bn*) 
relative to the class K. 

REMARK. AS can be seen the closure of 4>n contains the nth approxi-
mant of K(an*/fon*) as well as all possible values of continued fractions 
in K having the first n pairs of elements (ai*, &!*), • • •, (an*, fon*). 
Moreover, every closed set containing the above points must contain 
<ï>n. Thus we obtain, 

THEOREM 1. Let K(an*/fon*) be a convergent continued fraction be
longing to a class K as described in Definition 1. Let fn be the nth 
approximant of K(an*/fon*) and f = l im/n . If {O^} is a sequence of 
inclusion regions for K(an*/fon*) relative to class K, then 

(7) If -fn | ̂  diameter IV 

In studies made so far {iin} has been a nested sequence of compact 
subsets of C such that diameter fl^ —> 0. Clearly the error bounds in 
(7) can be best (on the basis of what is given) only if the fì^ are best 
inclusion regions and fn lies on the boundary of (i^. In no case can 
the error bound be less than half the diameter of fl^. 

The first error bounds for continued fractions (with complex ele
ments) based on inclusion regions were obtained by Thron [18] in 
1958. For the class of continued fractions K(ajl) with elements con
tained in the bounded subset of a parabolic region 

\an\ ~ Re(ane~2ia)^l cos2a, -TT/2 < a< TT/2. 

Thron obtained a nested sequence of circular (disk) inclusion regions. 
His sharp estimates of the diameters of these disks provided a priori 
error bounds. More recently Thron's result has been extended by 
Snell and the author [12] to include variable parabolic regions and 
increased speed of convergence of the error bounds. An example is 
given by 
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THEOREM 2 [12]. Let {Pn} be a sequence of complex numbers 
Pn = pne

i^n such that 

(8) \Pn - 1/2| ^ 1/2 - e, 0 < £ < 1/2, n = 0,1, • • •. 

Let {En} be the sequence of parabolic regions defined by 

(9)En = {£ : |{| - Re[C exp( - i (* n + ^n_x))] ^ 2fcpn_1(cos i/,n - pn)}, 

where 0 ^ fc < 1. 7f K(ajl) is a continued fraction with elements 
satisfying 

(10) <*„££„, 0 < K I ^ M , n = 1,2, ••• , 

for some constant M > 0, ^ n K(ajl) converges to a value f and 

m ) I f - f i s K I ( c o s » i - P i ) „ = 2 3 . . . 

REMARKS. (1) The right side of (11) estimates the diameter of the 
nth circular (disk) inclusion region. A decrease in the parameter k 
reduces the element regions En but increases the rate of convergence 
of the error bounds in (11). 

(2) Thron's approach illustrated above has also been employed by 
Lange [14] for continued fractions K(ajl) with twin-element-
regions and by Hillam [ 10], Sweezy and Thron [ 17] and Field 
and Jones [5] for continued fractions K(llbn) with the bn contained 
in regions which are complements of open circular disks. In these 
cases the nth approximant of the continued fraction is in the interior 
of the nth inclusion region and hence resulting error bounds are best 
possible. Examples of best inclusion regions and best error bounds for 
continued fractions will be given in the next section on simple se
quences. 

3. Simple Sequences. 

DEFINITION 2. A sequence of complex numbers {wn} is called a 
simple sequence if there exists a positive number C (called a simple 
sequence constant) such that 

(12) K + m - wn\^ C\wn- !*;„_! |, m ^ 0, n ^ 2. 

Simple sequences generalize real number sequences with the nest
ing property 

(13) w2n_2 ^ w2n ^ w2n+l ^ w2n-i, n è 2. 

A simple sequence may not converge (e.g. wn = ( — l)n) and, moreover, 
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a convergent sequence may not be simple (e.g., wn = 1/n, which does 
not converge fast enough to be simple). However, knowledge of a 
simple sequence constant provides an immediate a posteriori trunca
tion error bound as shown by 

THEOREM 3. If {wn} is a simple sequence converging to w, with 
simple sequence constant C, then 

(14) \w-wn\^C\wn-wn_lln^2. 

Most of the known a posteriori error bounds for continued fractions 
have been obtained in this way. Simple sequence constants for these 
cases are given in Table 1. The left column of Table 1 contains refer
ences (in brackets) and author's initials used hereafter to identify a 
particular result. 

Perhaps the first known examples of continued fractions with simple 
sequences of approximants are those of the form K(ajl) with an > 0 
and K(l/bn) with bn > 0; in such cases the approximants are positive 
real numbers satisfying (13) with simple sequence constant C = 1. 
These results are obtainable as special cases of HP in Table 1, with z 
real and positive. The first examples with complex elements an, bn 

were obtained in Blanch [2] in 1964, using comparison relations for 
continued fractions (B1 and B2 in Table 1). An improvement of these 
results by Merkes [16] in 1966 was made from an analysis based on 
chain sequences (M in Table 1). In the same year Henrici and Pfluger 
[9] developed error bounds (HP in Table 1) for S-fractions (or series 
of Stieltjes) by considering inclusion regions Q^ as follows: For an 
arbitrary but fixed S-fraction let Tn denote the circle passing through 
the approximants /n_2 , fn-i> fn a n d let Tn* denote the union of 
r n and its interior. (If z is not real, the points / n _ i , fn, fn+i 
are not collinear and so Tn is a non-degenerate circle. In the 
limiting case that z is real and positive, the lens-shaped inclusion 
region f̂  becomes a real line segment and the situation reduces to 
(13)). Then fln is the lens-shaped region r*n_x H Tn* (see Figure 
1). For each n § 3 , they proved the following results relative to 
the class of all S-fractions (finite or infinite) having the given set 
of first n elements «i*, • • •, an* : (1) iln is the best nth inclusion 
region in the sense of Definition 1. (2) iìn+l C fl^. (3) fl^ is convex. 
(4) Tn and Tn_l intersect in an angle (interior to fìj of magnitude 
|arg z |, independent of n. From these facts it was shown that {fn} 
is a simple sequence with constant C(z) given in Table 1 (HP) and 
diameter Cln+l= C(z)\fn — / n _ i | . Thus both the ideas of simple 
sequences and inclusion regions were employed. 
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Using a modification of the method of HP, Jefferson [11] ob
tained best inclusion regions for the class of T-fractions in Table 1 
(J) and showed that the approximants form simple sequences. A 
generalization of HP and J was obtained by Thron and the author 
[13] (see Table 1, JT); it applies also to continued fractions of 
Gauss, to large classes of /-fractions, to continued fractions K(l/bn) 
where |arg bn\ = (77-/2) — e, e > 0 or bn = 0, and to other examples. 
They developed inclusion regions ü^ as follows: Let 6 be a given real 
number such that 0 < 16 \ < TT and let {yn} be a given sequence of 
real numbers. Let K denote the class of all (finite or infinite) con
tinued fractions K(ajbn) satisfying the conditions in Table 1 (JT). Let 
K(an*lbn*) be an arbitrary but fixed infinite continued fraction in K, 
with nth approximant fn. For each n ^ 1 let Tn denote the circle 
defined by 

r n : w = Sn(te^n), - 00 ^ t^ 00 y 

where {Sn} is the sequence of l.f.t.'s (3b) associated with K(an*lbn*). 
It is shown that there exists a sequence {£n} such that each Tn passes 
through fn_l = Sn(oo), £n, fn = Sn(0) and Cn-i in the given order. 
Then Û^ is defined as the closed, lens-shaped region bounded on one 
side by the arc of Tn with end points /„_!, Cn-i passing through £n 

and wn and on the other side by the arc of Tn_1 with the same end 
points fn_l9 £„_! and not passing through fn_2 or £n_2 unless £n_i 
fn-2 o r fn-i = Cn-2 ( s e e Figure 2). For each n ^ 2 they proved the 
following: (1) fln is an nth inclusion region for K(an*/fon*) relative to 
the class K. (2) iin+1 C fl^. (3) fì^ is convex. (4) Tn and rn_2 intersect 
in an angle (interior to 1\) of magnitude |0| , independent of n. 
From this it was shown that {fn} is a simple sequence with constant 
C(6) given in Table 1 (JT) and diameter f\ = C(6)\Çn_l - fn-i\ê 
C( 0)\fn ~~ fn-il- I* w a s further shown that the conditions imposed on 
the an> bn in Table 1 (JT) are invariant in form under equivalence trans
formations of continued fractions. The inclusion regions ü^ could not 
be shown to be best in the sense of Definition 1, without assuming 
more about the structure of the class K. 

We conclude with some remarks on subclasses of S-fractions (or 
series of Stieltjes) which represent functions f(z) holomorphic at the 
origin. For such cases smaller inclusion regions and sharper error 
estimates than those of HP have been obtained. In 1968 Common 
[3] obtained such bounds for real values of z and Baker [1] extended 
this to complex z by considering best inclusion regions. However, 
Baker's analysis did not provide a simple method to calculate error 
bounds, since it did not show that the lens-shaped inclusion regions 
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[in were convex (a property that greatly simplifies the calculation of 
diameter fln). This was done in an independent study at about the 
same time by Gragg [6] for the case with f(z) holomorphic for 
\z\ < 1. In a second paper Gragg [7] extended his analysis to include 
functions holomorphic in the complex plane cut along an arbitrary 
finite interval of the real axis. 
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TABLE 1. Simple Sequences {fn} from Continued Fractions 

fn = nth Approximant of: 

^ + ^ + ••• , k | ^ i - 6 , 0 < € < l / 4 

bx b2 

a i , a2 i 1 a" 1 <r ,./i .-1 n <r . <- l/" 
fc, ' fo2 ' ' 1 bjbn-l\-'{1 ' ) ' ° " ' < 1 / -

0 I + ^ + 0 3 + O i + . . . > a n > 0 , | a r g z | < f f 

z 1 z 1 
(S-fraction) 

z z 
1 1 /-/ -r i l 1 . . . rJ >* A 1 1 a0z l l l •, an > u, 
(T-fraction) 2 |argz|<7r 

1T+ÌT+ •'•» ro, Öreal,0< | 0 | < T T 
1 2 7n = arg an - yn_! - Ö (mod 2TT) 

wlere »1*0], -rr < 6 < 0 

D[a,ß] = {z:z = O o r a g argzâjS} . 

C = Simple Sequence Constant 

C = (l/2€) - 1 

c=di(i-d),d = i+ j _ _ r/1+ *_y_j\J 

C = r/(l - 2r) 

r l , \&rgz\^irl2 
( ' \ tan [(1/2) arg z] n/2 < |arg z| < w 

C(z)= I 1 ' | argz |^W2 
Isec [ (1/2) arg z ] , TT/2 < |arg z | < TT 

C(())- f l , 0 < | Ö | < 7 7 / 2 
V ' Isecfle\ - n/2), TT/2 <\6\<V. 

to 
00 

o 
M 
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FIGURE 1. Schematic diagram of best inclusion regions Qn for S-fractions. 
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FIGURE 2. Schematic diagram for lens-shaped inclusion regions for class of con
tinued fractions in Table 1 (JT). 


