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CRITICAL POINT PHENOMENA — THE ROLE OF 
SERIES EXPANSIONS 

MICHAEL E. FISHER 

ABSTRACT. The use of series expansions to determine the 
nature of critical point singularities, especially the values of 
the critical exponents, is reviewed. Ratio techniques, based on 
extrapolation of the ratios of successive expansion coefficients, 
and Padé approximant methods, utilizing logarithmic deriva
tives, are explained, illustrated, and compared. 

1. Introduction. In this lecture I will survey briefly the phenomena 
observed near the critical point of a system. The range of behavior is 
very varied and we shall only examine one or two typical examples. 
The main aim will be to establish the existence of the so-called "critical 
point exponents" which describe the nature of the mathematical 
singularities exhibited by the different thermodynamic functions as the 
critical point is approached. The theory of these singularities may be 
developed via suitable statistical-mechanical models which, while 
caricatures of a realistic physical system, retain such vital features as 
the dimensionality of space, the finite range of the interactions, and 
certain basic symmetry properties. 

These models in turn are usually intractable as regards exact mathe
matical analysis. However, general methods can be developed which 
yield power series expansions for many functions of interest; frequently 
between 8 to 30 leading coefficients of such power series can be 
obtained. The problem is then a numerical one of extrapolating the 
series in such a way as to estimate the nature of the particular critical 
point singularity and the behavior of the function in its vicinity. I 
will show how this can, in favorable cases, be handled by studying the 
ratios of successive expansion coefficients. The method was pioneered 
by Domb and his coworkers, especially Sykes and Fisher [1], [2]. 
The reliability of the techniques can be tested against the relatively 
few closed form mathematical results, in particular, Onsager's re
nowned solution of the two-dimensional Ising models [3]. 

In less favorable examples this approach fails, and then, as first 
demonstrated by Baker [3], Padé approximants have a vital role to 
play. In a number of important cases the intelligent application of 
Padé approximants has been strikingly successful [3], [4]. Such 
techniques have thus established a central place for themselves in the 

Received by the editors February 8, 1973. 
Copyright © 1974 Rocky Mountain Mathematics Consortium 

181 



182 M . FISHER 

study of critical phenomena and, more generally, in the statistical 
mechanics of many-particle systems. 

In this lecture I shall be able to present only a rather rapid survey. 
More detailed reviews have been given by the author [6], [7], and, 
more recently, by Gaunt and Guttman [8] and by Hunter and Baker 
[9]. 

2. Critical Phenomena. If a gas is compressed at a high enough tem
perature its density p increases continuously and monotonically with 
pressure p, until it is a dense fluid indistinguishable from a normal 
liquid. On the other hand if the same gas is compressed at a tempera
ture below its critical temperature T = Tc, the density p exhibits a 
jump discontinuity from a relatively low gas (or vapor) density PQ(T) 
to a much higher liquid density PL(T). Since, at these two densities, 
both liquid and vapor can coexist in equilibrium in the same con
tainer, the function 

(2.1) Ap(T) = pL(T) - pG(T), 

is referred to as the "coexistence curve." As T is raised towards Tc it 
is found that Ap decreases monotonically, finally vanishing identically 
at Tc where PL(T) = PG(T) = pc. Some data for carbon dioxide [10] 
are displayed in Figure 1: note that the temperatures go to within a 
millidegree of Tc (=304° K) but that the scale, with 

(2.2) A T = \T- Tc\, 

is nonlinear, the ordinate being proportional to AT1/3. The observa
tions may be summarized accurately by 

(2.3) Ap/pc«A(A27Tc)', 

where A is a constant amplitude, while the "critical exponent" ß is 
evidently very close to 1/3; in fact the relation (2.3) holds over three or 
four decades in AT/TC, and corrections become significant only for 
AT/T C ^ 0.01. Furthermore the "one third" value for the exponent 

ß seems to be "universal", applying within experimental precision to 
all gases and, indeed, even to fluid mixtures. Thus accurate measure
ments for xenon indicate ß = 0.343 ± 0.005. 

More surprising still is the fact that if one studies ferromagnets one 
obtains closely analogous results. If M(H, T) is the magnetization as 
a function of magnetic field H, and temperature T, one discovers a 
discontinuity of magnitude 

(2.4) AM = 2M0(T) = lim [M(H, T) - M(-H, T)], 
H-+0 + 
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as a function of the field. The spontaneous magnetization M0(T), so 
defined, vanishes abruptly at the Curie temperature Tc (which is 
nothing but a magnetic critical temperature) according to the law 

(2.5) M0(T) ~ A(AT/Tc)ß, (T -+ Tc-). 

Despite many approximate theories which predict ß = 1/2 (see e.g. 
the reviews [6], [7] ), one observes experimentally that ß lies in the 
range 0.33 to 0.35, just as for fluids! 

Different physical variables and different directions of approach to 
a critical point, yield different exponents, although their values are 
apparently still "universal" over a given class of systems. Thus, for the 
compressibility of a fluid on approach to the critical temperature from 
above, one has 

(2-6) K ' = 7 ( ^ ) r ~ ( 4 f r ^ ° ° ' (P-H.T-+T.+ ). 
This defines the important exponent y. Similarly for the susceptibility 
of a ferromagnet one has 

/ dM \ / AT \-y 

For fluids one finds y — 1.22 to 1.25; in this case ferromagnets seem 
to be characterized by a higher value, namely, y — 1.33 to 1.38. This 
difference is now believed to be associated with the presence of a con
tinuous rotational symmetry for typical ferromagnets. Further aspects 
of the theory of critical phenomena are reviewed in References [6], 
[7], and [11]. 

3. Formal Exponent Definitions. For mathematical work one needs 
a more precise definition of a critical exponent. Since the power law 
behavior is expected to hold only asymptotically as the critical point 
is approached, we write 

(3.1) /(*) — ** as x - > 0 + , 

to mean 

(3.2) lim [ìnf(x)lìnx] = A. 

In principle, of course, this limit might not exist; in such a case it 
would normally be appropriate to replace lim by lim sup. From both 
numerical and analytical viewpoints it is useful, however, to dis
tinguish more detailed cases as follows: 
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(3.3) (a) Pure power law f(x) = Axx; 

(3.4) (b) Simple singularity f(x) = xxf0(x), 

withfQ(x) analytic in the neighborhood of x — 0; 

(c) Complex singularities 

(i) coincident weaker singularities, such as 

(3.5) /o(*) = / o + / i * M 0 < Ai < 1), 

(ii) coincident divergent singularities, such as 

(3.6) / 0 = ( lnx-i^/ooW, 

with Xi ^ 0 and, say, /oo(*) analytic near x = 0. 
The presence of logarithmic factors, as in this last case, is by no 

means purely academic. Figure 2 displays remarkable data obtained 
recently by Ahlers [12] for the specific heat, C(T), of liquid helium 
at the so-called lambda transition, below which helium becomes a 
superfluid. In this case the transition point Tx (= Tc) is determined to 
one part in 10 "7, and the data are linear versus log(A T/Tc) over four 
decades of temperature! (The two curves in Figure 2 represent data 
above and below Tx, respectively.) To high precision one finds 

(3.7) C(T) « A±in(^TITc)-
1 + B±, (T-> Tc±), 

with B+ < B_ and A+ — A_. More generally, to describe specific heat 
singularities, one writes 

(3.8) C(T)~ (AT/TJ-«. 

Simple logarithmic behavior of the form (3.7), is then accommodated 
by differentiating sufficiently often until a power law divergence is 
obtained; on writing 

(3.9) -rr~ x~k+Xs -> °°, x - • OH-, v ; dxk 

the corresponding 'singular-part' exponent, \s, is defined in a natural 
way. The data on helium at the lambda point are thus described by 
otg = 0 (and k = 1 suffices); for many ferromagnets one finds c^ — 
— 0.1, corresponding to a finite but cuspoidal singularity in C(T) [7]. 

4. The Ising Model. At this point in time the theorist studying 
critical phenomena has quite a battery of different statistical me
chanical models in his repertoire. Undoubtedly the most important, the 
best understood, and the most widely applied model is the Ising model 
(see [3], [6], [7] ). A brief description of this model will serve to give 
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an impression of the general picture. The Ising model is most easily 
thought of as describing a highly anisotropic magnetic system in which 
each "spin" or "microscopic magnet," sif associated with a crystal lat
tice site i, can point only "up" or "down." More formally let i = 1, 2, 
• • • N label the sites of a regular d-dimensional space lattice (e.g., a 
simple hypercubic lattice with coordinates vectors rt = (n/%, n^a, 
• • % rii{d)a) where the n^k) are integers and a is the lattice spacing).. 

Associated with each site i is a spin variable, which takes the values 
Si = -hi or — 1, only. Each spin configuration {^} of the whole lattice 
has an energy which (in the simplest case) is taken to be 

(4.1) E{Si}= - / 2 ^ - f f S s. 

Here the first sum runs over nearest neighbor pairs in the lattice; for 
/ > 0 this term associates a lower, favorable energy with a pair of 
adjacent spins "pointing the same way" (i.e., s{ = Sj = -hi or S{ = Sj 
= — 1). The term proportional to the field, H, favors alignment of the 
spins with the same sense as H. (Note that the model may be inter
preted as a lattice gas' of nonoverlapping particles, by identifying 
Si= -h 1 as an empty site, while letting $ = — 1 denote the presence 
of a particle at site /.) 

Following Gibbs' basic statistical postulate one now defines the 
partition function 

(4.2) ZN(H, T) = S exp{E{Si}lkBT} = £ e
K*'»J+L*» , 

where T is the temperature, kB is Boltzmann's constant, while the basic 
dimensionless variables are 

(4.3) K = JlkBT and L = H/kBT. 

All the observable thermodynamic properties, such as the magnetiza
tion, specific heat, etc., now follow by taking derivatives of the funda
mental thermodynamic potential, or "free energy," namely 

(4.4) f(H,T)= l imN-i lnZ^H, T). 

The limit operation involved here is essential for any serious discus
sion of critical phenomena, since no true mathematical singularities 
are present for finite N. Clearly, however, this 'thermodynamic limit' 
accounts for much of the mathematical difficulty of the problem. 

In the famous work already alluded to, Onsager [3] calculated 
analytically the partition function, ZN(0, T), and the free energy 
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/(O, T) in zero field (H = 0) for the two-dimensional (d = 2) Ising 
model. He obtained the specific heat in terms of elliptic integrals; 
from this result the exponent is found to be <% = 0, corresponding to 
the expression (3.7) (with, in fact A+ = A_ and B+ = B_). He also 
showed (see [6], [7]) that the spontaneous magnetization of the 
square lattice is 

(4.5) M0(T) = [1 - (sinh 2K)-*] ^ (T ^ Tc). 

On comparison with (2.5) we find ß = 1/8. Further analytical work 
(see [7] ) shows that the susceptibility exponent is y = 1%. 

Unfortunately no comparable closed formulae have been obtained 
for dimensions d > 2, nor even for nonzero field when d = 2; the 
problem is one of "classic difficulty"! (The case d = 1 is trivial but no 
proper critical point exists.) Rigorous mathematical results concern
ing the existence of a phase transition, the analyticity of f(H, T) for 
H ^ 0, and bounds on Tc, have been found. Such results, however, 
say nothing about the values of the critical exponents; all that has 
been proved in that direction are inequalities such as 

(4.6) a' + 20 + < y ' ^ 2 , 

where the primes denote the approach of T to Tc from below (see 
[6] and [7] ). While this, and some similar inequalities appear, in 
fact, to be best possible (i.e., to hold on equalities, [6], [7], [11]) 
they clearly leave much to be desired. 

5. Series Expansions. In the face of the profound analytical diffi
culties, progress has been made by generating power series expan
sions for the properties of interest. Some of the most informative ex
pansions follow by introducing the identity 

(5.1) é?Kvj= (cosh K)[l + vsiSj], 

(5.2) v = tanh K = tanh(//JfcBT), 

which holds since s^ = ± 1. Substitution in (4.2), and formal expan
sion in powers of v, leads to expansions of the free energy f(H, T) 
and its derivatives, in which the coefficients can be expressed in "dia
grammatic" or "graphical" terms [6], [7]. For example, the zero 
field susceptibility above Tc has the expansion 

(5.3) X(T)= So-»", 
n=0 

where the coefficients are given by 
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(5.4) an= S^ (Q n MQ n ; ^ ) . 
G 

Here the sum runs over all linear graphs, Gt
n, of I points (or vertices) 

and n lines (or edges); w(G) is a weight factor depending only on the 
graph G; the lattice constant' 7T(G; J!) counts the number of ways the 
graph G can be embedded in the particular lattice X (now conceived 
as an infinite graph with its lines connecting nearest neighbor sites or 
points). The leading coefficients an for the square (d = 2), and simple 
cubic (d = 3) lattices, are shown in Table I. (At present the square 
lattice series is known up to a2i> [12].) For the susceptibility, the 
dominant graphical contribution comes from the number, cn, of n-step 
self-avoiding walks (linear chains) which can be drawn on the lattice 
starting at the origin. These numbers are shown in Table I for com
parison. 

As can easily be imagined from the size of the integers involved, 
these data are not easy to obtain. (The last known coefficient for the 
body centered cubic lattice is al5 = 2 665 987 056 200, [12].) Indeed, 
special methods have been developed, especially by Sykes, and his 
collaborators (see [6], [7], [13], [14]), in order to calculate them 
(correctly!). Electronic computers are a help, but they have a poor 
geometrical and topological sense, and by no means deliver an easy 
salvation. In the case of less intensively studied functions and models, 
often only 9 to 12 exact coefficients are available. 

Other expansions can be obtained which are valid at high fields, 
in terms of the variable y = e~2L = exp( — 2H/kBT), and at low tem
peratures, in terms of x = e~2K = exp(—2///CBJT). Formulae analogous 
to (5.4) hold, but the definitions of the weight factors are more com
plicated. However, in all cases the uniformity of the underlying lat
tice, and the increasing number of graphs contributing in higher 
orders, encourages the hope that the expansion coefficients should, in 
turn, display some sort of regularity. 

6. Ratio Analysis of Series Expansions. In order to draw useful 
conclusions concerning critical point singularities from a truncated 
series such as (5.3), it is clearly pointless merely to sum the first N 
available terms; some method of extrapolation is essential. Now the 
positive and monotonically increasing nature of the known coefficients 
an displayed in Table I, suggests that X(v) belongs to the class (A) of 
functions 

(6.1) F(z)= 2a„z«, 
n=0 

with non-negative Taylor series coefficients an. (One might hope to 
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prove this in certain cases but it does not seem at all easy.) For such 
a function, the nearest singularities to the origin of the complex z-
plane include the "physical singularity" on the real positive axis at 

(6.2) z=zc= lim \an\-U", 

This singularity will normally be the dominant, i.e., strongest, singu
larity. 

One might try to estimate zc by extrapolating the nth roots of the 
coefficients an, but, by considering simple examples, it is easy to see 
that this will usually yield a very slowly convergent sequence which 
is hard to extrapolate reliably. A much better procedure [1], [2] is 
to study the successive ratios 

(6.3) nn = ajan_u 

for which one has 

(6.4) lim /LLn = ix = llzc, 

whenever the limit exists. A plot versus 1/n of the ratios fxn (nor
malized by the lattice coordination number q) is shown in Figure 3, for 
the susceptibility of triangular (d = 2), and face centered cubic (d = 3) 
Ising lattices; a striking linearity is observed. (The reader is urged to 
construct similar plots with the data of Table I; on doing so one 
discovers the same linear behavior but with a superimposed odd-even 
oscillation.) The observed linearity suggests construction of the linear 
extrapolants 

(6.5) nn' = (n + e)fin - (n + € - 1)M»-I , 

or, for a sequence of ratios with an oscillatory component, 

(6.6) /xn" = ± [(n + € K - (n + € - 2)/mn_2]. 

Here € is a small number (the n-shift) which may be varied to obtain 
a number of sequences converging to the limit /ut« at different rates 
and from different directions. The triangular lattice data, to n = 12, 
yield the sequences fin" = • • • 3.7395, 3.7381, 3.7369, for e = 0, and 
jLtn" Ä • • • 3.7228, 3.7245, 3.7257, for e = {; these indicate a limit 
H = 3.731 ± 0.002. This, in turn, may be compared with the exact 
result fjLoo = 2 + V3 = 3.7320- • • due to Onsager (see [7]). The 
agreement is very encouraging and is confirmed more closely by 
further terms in the expansion. By this same method and various re
finements, the critical points of all the usual three-dimensional lattices 
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have been estimated to an apparent precision of 1 part in 104 or better. 
Of course one does not have rigorous error bounds in such work; but 
the comparison with the closely analogous but exactly soluble cases, 
provides strong presumptive evidence. 

Of greater significance than the position, zc, of the singularity is the 
value of the corresponding critical exponent. If the linear behavior 
of the ratios is truly asymptotic, so that, 

(6.7) A t n=M[l + (g/n) + 0(l/n)], 

where g is the limiting slope of the 1/n plot, we have 

It then follows from Appell's comparison theorem that (for g > — 1) 

(6-9) F(z) = {1_
A

 )1+e{l + o(z - zc)}, (z -* zc-). 

Thus if the function under study is the susceptibility X, the corre
sponding critical exponent is given simply by 

(6.10) y = 1 + g. 

The limiting slope, g, may be estimated from sequences such as 

(6.11) gn=(n + e)[((<Jfi) - 1] and Jn = \{gn + g , . , ) , 

where fi is the exact limit /x, if known, or, otherwise the best available 
estimate. (An interesting example in which (JL (=1) is known, is pro
vided by the coefficients an = (K„2), representing the mean square 
end-to-end distance of all n-step self-avoiding walks [17].) 

This method can again be tested on the two-dimensional Ising 
model; it is found to work very well. For the simple cubic (d = 3) 
lattice the critical point estimate fi = llvc — 4.5840 yields the se
quence Yn = * * % 0-248, 0.2506, 0.2488, 0.2505, 0.2495 up to n = 11. 
(The reader may carry this further with the data of Table I). The 
results suggest g = 0.250 ± 0.001 or, allowing for the (apparent) un
certainty in fi, g = 0.250 ± 0.005. The behavior of estimates for the 
body-centered, face-centered and diamond lattices is equally regular 
and numerically almost identical [1], [13]. One is led strongly to 
conjecture that the exact exponent for all the three-dimensional lat
tices is y = 1.250 = IM! This contrasts with the known two-dimen
sional result, y = 1%. The validity of the estimate y ~ 1.25 has been 
confirmed strikingly by experiments on the binary alloy beta-brass 
(approximately 50 : 50 Cu : Zn for which the Ising model is a fairly 
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accurate representation of reality [15]. Other alloys such as Fe3Al 
yield similar results. 

These ratio extrapolation methods may be developed considerably. 
If the value of the exponent 1 4- g is known (or strongly suspected) 
improved estimates of the critical point can usually be found from the 
sequence 

(6.12) M n * = M n ( n + €)/(n + e + g), 

which should approach /x more rapidly than 1/n. The amplitude A 
of the singularity in (6.9) can be estimated by matching the known co
efficients to the form (6.8). Given the first N coefficients an, and 
reliable estimates g, fi, and A, of g, /x, and A, the behavior of the func
tion F(z) may be approximated for \z \ < zc by 

(6.13) F(z) - J anz" + RN(z) 
n=0 

where 

(6.14) RN(z)=Ä [ ( i - / f c ) - i - 5 - t ( n + e ) ß n ] -

Other refinements of the technique can be used to study weaker 
singularities, such as often occur at z = — \zc |, by dividing out the 
dominant singularity and studying the ratios of the resulting coeffici
ents (see [6], [7]). Given long enough series, it is even possible to 
estimate the nature of coincident singularities of the type indicated 
in (3.5). On the other hand, as one may show by constructing examples 
like (3.5) and (3.6), the methods can fail to reveal the true nature of a 
singularity if there is a strong close-by or coincident singularity [e.g., 
a small value of Xx in (3.5)], or if there are logarithmic factors, as in 
(3.6). Even in such cases, however, the numerical values of the func
tion will normally be quite well represented by approximants such as 
(6.13), even close to the singularity. 

Finally, it is worth noting that the ratio techniques are invariant 
to transformations of the type 

(6.15) F(z) =>P(z) = hz>F(z) + k(z), 

where h is a constant, j is a small integer (say =^5) and k(z) is a low 
order polynomial (of degree, say, =5) . Although this remark is not at 
all profound it is quite significant in practice since one does not have 
to worry about questions of "normalization" or additive "backgrounds." 
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Furthermore this invariance property is not shared by the Padé ap-
proximant techniques to be described next. 

7. Padé Approximant Analysis. Unfortunately not all functions of 
practical interest belong to class (A), that is, have positive expansion 
coefficients. Consider, in particular, the series exhibited in Table II, 
for the spontaneous magnetization M0(T) of the face centered cubic 
Ising lattice, which one would like to analyze to determine the ex
ponent ß [defined in (2.3) and (2.5)]. The magnitudes of the terms are 
quite irregular and the sequence of signs seems random! Clearly no 
information can be gained by the ratio technique. The mathematical 
implication of such a class (B) expansion, is merely that the dominant 
singularity (or conjugate pair of singularities) lying closest to the 
origin of the 3-plane is no longer the physical singularity (which is 
always the nearest singularity on the real positive axis). 

What is thus required is an effective (numerical) method of analyti
cal continuation, which will serve to carry the function beyond the 
circle of convergence determined by the closest, but nonphysical 
singularities. For such a task, Padé approximants are ideally suited. 
However, there is comparatively little to be gained by forming direct 
Padé approximants to a series such as that in Table II. The reason is 
simply that while Padé approximants will provide rapid convergence 
to a function in the vicinity of a simple zero or pole, they cannot con
verge well near a branch point of the form (zc — z)ß, such as is ex
pected in functions like M0. (Numerical experiments reveal that Padé 
approximants represent the branch cuts, necessitated by their single 
valuedness, by an interlacing sequence of zeros and poles [ 15] ; 
convergence near such a cut is consequently slow and irregular.) A 
successful route past this obstacle was first demonstrated by Baker 
[4] : suppose we can write 

(7.1) F(z) = 2 a„z" = (1 - pz)'C(z), 
n=0 

where C(z) is analytic and nonzero in the vicinity of z = zc = 1/̂ t or, 
at least, is only weakly singular there [for example like (3.5) with 
Ài > 1]. Then consider the logarithmic derivative 

(7.2) D(z) = j - l n F ( z ) = £ dnz" = - £ — + | - l n C ( z ) . 
az n = 0 z - zc dz 

Evidently the branch point has become merely a simple pole. Conse
quently we may hope that Padé approximants, defined, as usual, by 
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(7.3) 
L + M 

= X dnzn + 0(zL+M+1\ 
n=0 

will converge well even in the immediate neighborhood of the singu
larity zc. In practice, given the coefficients an for n^ N, one cal
culates the coefficients dn (by a straightforward recursion relation), 
computes the approximants [ L/M] D for L+ M = N, and then studies 
their poles in the vicinity of the expected critical point. The locations 
of these poles provide estimates for zc; but, more importantly, by (7.2), 
the residues at the poles represent estimates for the exponent ß. In 
view of the well known invariance of the diagonal approximants 
[MIM], under Euler transformations, [4],[16], attention is mainly 
focussed on the diagonal, and near-diagonal, [MI(M + / ) ] , sequences. 

Of course, this method of analysis is not confined to functions of 
class (B). It may, indeed, be tested on the class (A) high temperature 
Ising model susceptibility expansions. Table III displays the poles and 
residues of the first few diagonal approximants calculated from the 
data of Table I. The agreement of the estimates with the exact 
results (for the d = 2, square lattice), and with the previous ratio 
estimates (for the d — 3, simple cubic lattice), is most impressive! 
Furthermore the concordance improves rapidly as further terms are 
added, the latest estimate for the simple cubic critical point being 
vc = 0.21813 ± 1 [13]. 

If the critical point zc is already known, refined estimates of the 
critical exponent may be obtained by defining the exponent function 

(7.4) ß\z) = (z - zc)D(z) = (z - zc)f In F(z) = £ bnz». 
d z n=0 

This function must approach ß as z —> zc; hence estimates for ß may 
be found by evaluating direct approximants [LIM] ß* to the bn se
quence at z = zc. In practice one often modifies this method by re
placing zc in (7.4) by some reliable estimate zc. In this case, however, 
the estimates for ß will be biased by the choice of critical point esti
mate; this normally results in a fairly strong linear correlation between 
the estimates ß and zc. 

Some results of this technique are displayed in Table IV, which 
contains estimates for ß derived from the magnetization series for the 
three-dimensional Ising model, by using the critical points estimated 
from the high temperature susceptibility series. (As a matter of fact, 
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the estimates of Tc obtained independently from the low temperature 
series agree with these values to within better than one part in 103.) 
From Table IV we see that even the highly irregular expansion ex
hibited in Table II yields an almost constant sequence. A detailed 
investigation reveals that one has successfully penetrated analytically 
past four closer, nonphysical singularities. More impressive from the 
viewpoint of physical theory, is the agreement between the estimates 
for different lattices (involving, in each case, a continuation past a 
different pattern of nonphysical singularities). This evidence, and 
later work, indicates a universal value, ß = 0.312 ̂ - ^ g — 5/16, for 
all three-dimensional Ising lattices. This differs strongly from the 
exact two-dimensional result, ß= 1/8 [see (4.5)], which exphasizes 
the importance of dimensionality in determining the values of critical 
exponents. Again, agreement with experiment is striking: neutron dif
fraction experiments on beta brass yield ß = 0.305 ± 0.010 [15]. 
These successes, and those obtained by the ratio technique, remain, so 
far, unduplicated by any other theoretical methods, and have estab
lished a dominant role for the series expansion approach in the study 
of critical point phenomena [6], [7], [11]. 

When the values of zc = 1//JL and ß are known, or reliably esti
mated, one can form direct approximants to the amplitude function 

(7.5) C(z) = (1 - pz)-ßF(z) = 2 c „ z » 
n=0 

which should converge well even in the vicinity of z = zc. The original 
function can then be approximated well by 

(7.6) F(z)=* [ L / M ] C ( l ) ( l - / « ) " . 

Other variants are possible and have been explored. If the exponent 
ß is known, the critical point may be estimated by studying the zeros 
(or poles if ß < 0) of direct approximants to 

(7.7) G(z) = [F(z)]W= 2 g „ z « . 
n=0 

Sometimes the modified exponent function 

which approaches l — (1//8) as z -* zc> may be useful since the result
ing exponent estimates are less closely correlated with the estimate for 
zc than those found with the formula (7.4). 

Finally some of the drawbacks of present Padé approximant tech-
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niques should be mentioned. Even when successive approximants 
converge well, the detailed nature of the approach to a limit can be 
quite irregular, and experience has shown that one often cannot gauge 
reliably the "trend" of the approximant values. Typical signs of this 
'noisiness' can be seen in Table IV — note in particular the erratically 
high entry of 0.373 in the first fee column. Another symptom of this 
same difficulty is the quite frequent appearance of 'tears' or "defects," 
that is a close pole-zero pairs, in a region of the complex plane which 
may be known to be free of singularities, and where other approxi
mants appear well converged. Further mathematical progress con
cerning the rate of convergence of Padé approximants near singu
larities might help in understanding these phenomena. In the mean
while, the ratio method, which converges in a more regular and well-
understood manner, is often to be preferred in those circumstances 
where it can be employed. 

Another feature of Padé approximant techniques is the difficulty of 
estimating weak singularities, i.e., those with small exponents such 
as near-logarithmic functions. This can be seen by first noting that 
Padé approximants are emphatically not invariant under the transfor
mation (6.15) with a nonzero background, k(z). On the contrary, 
changes in the first one or two coefficients of a long series can some
times have quite disturbing effects on the values of high order ap
proximants. This feature, of course, contrasts strongly with ratio tech
niques. The origin of the difficulty can be understood by considering 
a function such as 

(7.9) F(z) = A(z) In (1 - pz) + B(z), 

[which has the same asymptotic form as (3.7) when z —> Ufi]. Dif
ferentiation introduces a simple pole but, unless A(z) is constant, a 
logarithmic term still remains. Likewise, if a logarithmic derivative is 
taken, before or after differentiating F(z), the correction term 
d In C(z)ldz in (7.2), is still nonanalytic at z = zc. For nonzero B(z) 
this is still true if ln(l — fiz) is replaced by (1 — ixz)ß with, say, 
\ß\< 1. Consequently, the Padé approximants must still attempt to 
represent a branch cut running from z = zC9 and so convergence will 
be impeded. (One may, however, sometimes be lucky in that the re
quired discontinuity across the cut is small, so that fair convergence 
is obtained.) 

8. Conclusions. In this brief review I have tried to show how simple 
but subtle numerical techniques, known in essence for over a hundred 
years, have had a profound effect in one of the most difficult areas of 
modern mathematical physics. The extensive work on the theory of 
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critical phenomena by no means exhausts the range of significant 
applications of the series expansion approach combined with the ratio 
and Padé approximant techniques (see, e.g., [2], [17]-[20]). We 
may look forward to a growing appreciation and application of these 
methods in fields where the nature of a singularity plays a central role. 

As regards the theory of Padé approximants themselves, I have 
indicated how knowledge of the rate and nature of convergence, 
especially near a singularity, could be most helpful in practical appli
cations. Another, perhaps easier task for the future, is to develop and 
test effective approximation schemes for handling power series ex
pansions in two (or even more) variables. Experience in the area of 
critical point theory may be useful here, since, in certain cases, the 
singularity structure of a function F(x, y) of physical significance, 
may be expected to have the so-called "scaling form" found to describe 
the free energy as a function of two thermodynamic variables, such as 
H and T (see [7] and [11]). 
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TABLE I 

Susceptibility Expansion Coefficients an, for the square and simple 
cubic lattices, together with the numbers cn of n-step self-avoiding 

walks (from Refs. [7] , [13], [14] ) 
Lattice 

n 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
14 
15 

16 
17 
18 

square (d= 2) 

"n 

4 
12 
36 
100 
276 

740 
1972 
5172 
13492 
34876 

89764 
229628 
585508 
1486308 
3763460 

9497380 
23918708 
60080156 

cn 

4 
12 
36 
100 
284 
780 

2172 
5916 
16268 
44100 

120292 
324932 
881500 
2374444 
6416596 

17245332 
46466676 
124658732 

simple cubic (d= 3) 

an 

6 
30 
150 
726 
3510 

16710 
79494 

375174 
1769686 
8306862 

38975286 
182265822 
852063558 
3973784886 
18527532310 

86228667894 
401225391222 

^_ 

6 
30 
150 
726 

3534 

16926 
81390 
387966 
1853886 
8809878 

41934150 
198842742 
943974510 
4468911678 

21175146054 

100117875366 

TABLE II 

Series Expansion in Powers of x = e~2K = exp( — 2J/kBT), for the 
spontaneous magnetization of the face centered cubic (d = 3) Ising 

lattice. (Further coefficients are known!) 

M0(T) = 1 - 2x12 - 24z22 + 26x24 + 0 + 0 - 48*30 

- 252x32 + 720x34 - 438x36 - 192x38 

- 984x40 - 1008x42 + 12924*44 - 19536*46 

+ 3062x48 - 8280x50 + 26694r52 + 143536a;54 

- 507948*56 + 406056r58 - 79532s60 

+ 729912*62 + 631608*64 - 9279376x66 + • • • 
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TABLE III 

Poles and Residues of [MIM] Padé Approximants, to the logarithmic 
derivatives of the Ising model susceptibility series of Table I (after Ref. 

[4] ). (Note that further entries can now be computed.) 

M 

3 
4 
5 
6 
7 

exact 
values 

(»c)est 

0.4093 
0.4164 
0.4121 
0.41412 
0.4142106 

0.4142135 

Square 
Vest 

1.626 
1.797 
1.682 
1.746 
1.7496 

1.7500 

M 

2 
3 
4 
5 

ratio 
estimates 

Simpl 
(»c)est 

0.2151 
0.2189 
0.21815 
0.21818 

0.21815 

e cubic 
Yest 

1.205 
1.281 
1.2505 
1.2518 

1.250 

TABLE IV 

Estimation of the Spontaneous Magnetization 
approximants to the exponent function ß*(z) 
Table II and Ref. [5]. Diagonal [MIM], 

sequences are presented. 

Exponent, from direct 
derived from data in 
and next-to-diagonal 

M 

4 
5 
6 
7 
8 
9 

Simple 

0.304 
0.304 
0.278 
0.314 
0.314 

cubic 

zw 
0.301 
0.303 
0.302 
0.307 
0.301 
0.310 

Body-centered cubic 
M 

6 
7 
8 
9 

10 
11 
12 
13 

0.303 
0.308 
0.307 
0.316 
0.316 
0.315 
0.313 
0.314 

0e.t 
0.285 
0.305 
0.310 
0.340 
0.316 
0.324 
0.313 
0.314 

Face-centered cubic 
M 

9 
10 
11 
12 
13 
14 
15 
16 

0.307 
0.309 
0.306 
0.306 
0.306 
0.373 
0.309 

A« 
0.307 
0.308 
0.308 
0.306 
0.306 
0.305 
0.306 
0.315 
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Figure 1. The coexistence curve of carbon dioxide close to the critical point, 
showing the variation of the density discontinuity Ap(T) with temperature devia
tion A T = \T — Tc\. The temperature scale is nonlinear, the ordinate of the 
graph being proportional to ( A T / T C ) 1 / 3 . (After Lorentzen [10].) 
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Figure 2. The specific heat, C( T), of helium near the superfluid transition. Note 
that C(T) is plotted linearly versus logi0(AT/Tc) where AT = \T - TK\ (Tk = Tc). 
The upper and lower curve apply for T ^ Tc, respectively. (After Ahlers [11].) 
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Figure 3. Plot of the ratios of coefficients an (normalized by the coordination 
number q) versus 1/n for the Ising model susceptibility series of the triangular 
(d = 2), and face centered cubic lattice (d = 3). Further data confirm the linear 
behavior. 




