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1. Introductory Remarks. The work reported in this lecture has 
been done during the past two or three years in collaboration with 
research students Glenys Rowlands, Alan Genz and Graham Matt
hews. Alan Genz is now a member of staff in the University of Kent 
at Canterbury, and has contributed a great deal to the work. Both 
Glenys Rowlands and Alan Genz were supported as students by a 
U.S.A.A.F. grant, through the European office. 

The work performed in collaboration with Glenys Rowlands and 
Alan Genz has been published, [1], and was reported last year to the 
second Marseilles colloquium on computational physics [2]. For 
this reason, I shall only summarise this part of my lecture in the written 
report. I shall give a full written account of die results obtained so 
far by Graham Matthews. 

2. Accelerated Convergence of Quadrature Approximants. In this 
section I shall summarise the results obtained in collaboration with 
Glenys Rowlands and Alan Genz. 

The basic idea is to use Wynn's €-algorithm, related to the use of 
Pa dé Approximants, [3], to accelerate the convergence of a sequence 
{Sp} of quadrature approximants to an integral 

(2.1) S = \h f(x)dx 
J a 

For finite-range integrals, the range was taken to be (0,1), and the 
study centred on sequences {Sp} defined by using generalised trape
zoidal rules, [4], in particular using the two-point Legendre-Gauss 
formula on 2^ equal subintervals. Then using error formula of Lyness 
and Ninham, [4], and Fox, [5], Genz has shown that, for integrands 
with certain types of end-point singularities, the €-algorithm elimi
nates successive error terms. Comparison is made with the original 
Romberg [6] and the Bulirsch-Stoer [7] methods of acceleration, 
both of which also eliminate successive error terms when the inte
grand is well-behaved. It is found that, as expected, the €-algorithm 
method is inferior for well-behaved integrands, but that it is the only 
method that works well for integrands with infinite singularities at 
end-points, for example x_1/2, x~116 and x~1/2logx; for these inte
grands, Gaussian integration gives poor results. The conclusion is 
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that using a generalized trapezoidal rule, together with €-algorithm 
acceleration, is a good universal method of evaluating integrands with 
end-point singularities. 

A second successful application of e-algorithm acceleration concerns 
sequences of Laguerre-Gauss quadratures to integrals over the range 
(0, oo ); the method was remarkably successful for integrands which 
oscillated infinitely, for example /1/2M, Jmi*) a n d *_1- The se
quence of quadratures has an arithmetically increasing number of 
points. What is remarkable is that accurate results are obtained from 
few points, using quadrature approximants which are themselves 
extremely inaccurate. The reason for this success is unknown; we 
have been unable to produce any convincing error analysis. 

3. Evaluation of Fourier Transforms. Padé approximants and 
Fourier transforms were linked together in work which Alan Common 
and I carried out a few years ago, [8]. We were concerned with the 
interpretation of the infìnte series of generalized functions (physically, 
a one-dimensional multipole expansion) 

(3.1) g(k) = 2n Ìan(-l)»8<»)(fe), 
n=0 

where 8n(k) is the nth derivative of the Dirac 6-function. One can 
interpret (3.1) in two ways: 

(a) By integrating term by term with test functions {^(k)} forming 
a suitable space; we showed that such spaces exist. Then we obtain 

(3.2) g(*M*) = 27T i Mr<»>(0). 
n=0 

When 

(3.3) lim n\an = 0, 

the generalized function is localized at k = 0. But when an § 
(n!)_1, it represents a generalized function with non-compact support, 
of the form 

(3.4) g(fc) = 27ra08(fc) - 2;r [g0(fc) 6(k)] ', 

where go(fc) has an integral representation 

(3.5) go(fc)= J%-fc'»#(u), 
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and <f>(u) is a measure function to be defined. 
(b) By defining a term-by-term Fourier transformed series 

(3.6) /(*)= 2 «»(-<*)"• 
n=0 

When (3.3) is satisfied, the integral 

(3.7) g(*)= f" dxe*f(x), 
J — oo 

can be evaluated term-by-term. We considered the difficult case for 
which (3.3) does not hold; to evolve rigorous proofs, we had to assume 
that (3.6) was a Series of Stieltjes in ix. Then writing 

<»» * > - J . " r £ d4>(u) 
iux 

defines the unique measure function <f>(u) occurring in (3.5). We were 
able to show that forming the (N, N — 1) Padé approximant to the 
series (3.6), and substituting in (3.7), gives an approximation to g(k). 

In detail, if the approximant to (3.8) is 

« . <3'9) .?. TÎ m = l - ' Wn 

then the corresponding approximant to the function (3.5) is 

N 
(3.10) 2 V - ^ » . 

m = l 

This is a Gammel-Baker approximant [9] to (3.5). Alan Common and 
I had to modify Baker's proofs to establish our approximation theorem. 

In effect, Gammel-Baker approximants have been proved to be good 
approximants to the Fourier transform (3.7), for this particular class of 
generalized functions. Graham Matthews has therefore been investi
gating the possibility of using the same technique to approximate other 
Fourier transforms. Suppose that f(x) has a power series expansion 

(3.11) /(*)= £fc„x» 

and the (N,N — 1) Padé approximant to this series is 

(3-12) /w-i(*)s 2~^r-
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Then we might expect that a well-defined Fourier transform 

g(fc) = J"_ dxf(x)eik* 

would be approximated by the Gammel-Baker approximant 

(3.13) gN,N-i(k)= S r dx-Z^-e**. 

In general, the poles am can lie anywhere in the x-plane. If 
they do not lie on the real axis, the integrals in (3.13) can be evaluated 
explicitly by contour integration to give 

(3.14) gN,N-i(k)= S yme^, 
CT »i i n 

V2- p lane 

the direct analogue of (3.10). If a pole <jm lies on the rsal axis, we 
would expect half of the corresponding term to occur in (3.14). Since 
one cannot prove in general that (3.12) approximates (3.11), it is not 
established that (3.14) is a good approximation to g(k). We have 
therefore experimented by applying the method to evaluate Fourier 
transforms of functions Ji(x), J2(x) and £~~H For various values of 
k and IV, the errors 

te(*)-gw-i(*)i 
are given in Tables 1, 2 and 3. These errors are compared with those 
arising in two other procedures for evaluating g(fc): a standard quad
rature formula with Romberg acceleration, and the Filon method. 
For e "1*1, we have also used €-algorithm acceleration in N. One can 
see that, in these examples, the Padé method gives better results than 
the other two methods, especially for low values of k. The Filon 
method gives the poorest results. The Padé method uses about three 
times as much computer time as the quadrature method; most of this 
time is spent in finding the roots of the Padé denominator. We would 
welcome an improved method of factoring polynomials! 

Graham Matthews has generalized this method to evaluate Fourier 
transforms of functions of the type 

Fl(x) = x'«/(x) 

F2(x) = *-"*/(*) 

and 

F3(x) = (1 + x*)-»*/(*), 
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where f(x) is given as a power series (3.11). Forming (N, N — 1) 
and (N, N — 2) Padé approximants then leads to approximations which 
are linear combinations of the standard integrals 

roo \x\Meikx 

J _ « x2 — a 

f°° \x\~ll2eikx 

dx x - ß 

and 

ikx 

dx. 
(1 + x2)l'2(x - ß) 

The errors using this method, and the two alternative methods, to 
evaluate the Fourier transforms of /1/2M and /3/2(x), are given in 
Tables 4 and 5. Once again we see that the Padé method gives the 
best results, especially for low values of k. 

The accuracy to which we have been able to calculate has been 
limited by the precision attainable using our own fairly small com
puter; it is not yet fully equipped to deal with double precision 
arithmetic of complex variables, so that round-off error has been a 
problem. The results given in this section may therefore be improved 
upon in later work. 

4. Conclusions. It seems that both the e-algorithm acceleration of 
sequences of quadrature approximants, and the approximation of 
integrand factors by Padé approximants, are useful methods of per
forming certain classes of integrals. The ^-algorithm method has been 
extended by Alan Genz to deal with multiple integrals, [1], Further 
work on all of these problems is still proceeding. 
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TABLE 1. Errors for J'*„ J\{x)eikx dx = 0. 

k= 

Using 

/ 2 , i ( * 2 ) 

Using 

J3,2(*2) 

Quad 

Romberg 

Filon 

k= 

Using 

/3,2(*2) 

Using 

A3(*2) 
Quad. 

Romberg 

1 

- l - O . l O - 6 

+ J22-4 

- 2 0.10-6 

+ Z8-33 

1-62.10-4 

+ i 238-1 

17-3 

+ i820 

1 

6 10-7 

- Î 2 - 2 6 5 

0 

- i 0-316 

4-77.10-2 

- Ì 3 4 - 2 

2 

0 

+ Ì2-2.10-2 

0 

+ i 2 -OLIO-3 

1 -6.10-5 

+ Ì1-23 

1 -79.10 - i 

+ i 3 - l 

TABLE 2. 

2 

0 

- i 2.10-8 

0 

- i l - 7 . 1 0 - 8 

2-18.10-4 

- Î 2 - 1 3 . 1 0 - 2 

3 

0 

+ i 2.10-5 

0 

+ Î4-3.10-6 

3-61.10-6 

+ Î3-1.10-3 

4-13.10-3 

+ i 8.10-2 

4 

0 

0 

0 

+ il -33.10-5 

2 -12.10 -s 

+ * 3 -5.10-4 

Errors for S^vJ2{x)eikxdx = 0. 

3 

0 

0 

7-11.10-6 

- i l - 8 . 1 0 - 5 

4 

0 

0 

0 

- J 3 - 1 . 1 0 - 7 

+ 

+ 

5 

0 

0 

0 

Î6-2.10-7 

I-LIO" 6 

i 8.10-6 

5 

0 

0 

0 

no-8 

6 

0 

0 

0 

0 

6 

0 

0 

0 

Filon 
79-17 

•i 6 -3.10-4 
1-37 

- i l - 8 . 1 0 2 

5 -92.10-3 

•i 0-875 

7-34.10-6 

- i3 -4.10-3 

1-2.10-8 

- i6 -6 .10 -6 
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