ON DECOMPOSITIONS OF $E(G)^{1}$

CARTER LYONS

1. Introduction. The theory of near rings has been studied in some detail by several authors. In a paper that briefly summarized the elementary theory of near rings Berman and Silverman [1] generalized the Peirce Decomposition Theorem to obtain a decomposition theorem for near rings. Fröhlich [2], [3] studied the class of distributively generated near rings, and Malone [4] has emphasized the class of endomorphism near rings.

For an arbitrary group G the set of endomorphisms of G, denoted by $\operatorname{End}(G)$, form a distributive generating set (d.g. set) for the endomorphism near ring $E(G)$. The convention of writing functions on the right (i.e., $f: G \rightarrow G$ sends g to $(g) f$) makes $E(G)$ a left near ring. Therefore, all of the results in this paper are stated for left near rings.

The decomposition of Berman and Silverman provides a starting point for the investigation of two basic problems related to endomorphism near rings. First, by examining the decomposition theorem and using a construction technique of Malone and Lyons [6] one is able to construct classes of groups for which the endomorphism near ring decomposes in a predictable manner. Secondly, one is able to supply a sufficient condition on the relationship between groups G and H so that $E(H)$ embeds in $E(G)$. This provides an embedding result for endomorphism near rings that parallels the results of Malone and Heatherly [5] for the embedding of transformation near rings.
2. The decomposition. The statement of the Berman and Silverman decomposition theorem is

Theorem 2.1 [1, p. 27]. Let e be an idempotent in the near ring R. For each $r \in R, r=e r+(-e r+r)=(r-e r)+e r$. Thus $R=A_{e}+$ $M_{e}=M_{e}+A_{e}$ where $A_{e}=\{r-e r: r \in R\}=\{t \in R: e t=0\}, M_{e}=$ $\{e r: r \in R\}$, and $A_{e} \cap M_{e}=\{0\}$.

When no confusion can arise the summands A_{e} and M_{e} will be designated by A and M respectively.

Theorem 2.1 says that the group structure of any near ring with

[^0]nontrivial idempotent is a semidirect sum with normal summand A. The group morphism $f: R \rightarrow M$ via $(r) f=e r$ is associated with the sum $R=A+M$ and motivates the following characteristics of the summand A.

Theorem 2.2. The following statements are equivalent.
(1) $f: R \rightarrow M$ via $(r) f=$ er is a near ring morphism.
(2) A is an ideal.
(3) $M A=\{0\}$.
(4) eres $=$ ers for each $r, s \in R$.

Proof. $(1) \Rightarrow(2)$ is obvious as is $(4) \Rightarrow(1)$. It remains to be shown that $(2) \Longrightarrow(3) \Longrightarrow(4)$.
$(2) \Rightarrow$ (3) Since $M=e R, M A=e R A \subseteq e A=(0)$.
$(3) \Rightarrow(4)$ Let $r, s \in R$, then, $e r \in M, s-e s \in A$, and $0=e r(s-e s)$ $=$ ers - eres .

The equivalence of (1) and (2) guarantees that if A is an ideal M is a homomorphic image of R. Thus M inherits all structural properties that are preserved by homomorphisms.

If the near ring R contains a right identity one obtains another equivalence condition that A be an ideal.

Corollary 2.3. Let R be a near ring with right identity 1. A is an ideal if and only if e is a right identity for M.

Proof. (\Rightarrow) Let A be an ideal. Then for any $r \in R$, ere $=\operatorname{ere}(1)=$ $e r(1)=e r$ by equivalence (4). Thus, e is a right identity for M.
(\Longleftarrow) Suppose that e is a right identity for M and let $r, s \in R$. Then eres $=($ ere $) s=(e r) s=$ ers and equivalence (4) provides the result.

It is clear that e is a left identity for M. Thus, if R has a right identity, A is an ideal if and only if M has an identity. The condition that M have an identity is not as restrictive as it may seem. For example, consider the near ring $E(G)$ with idempotent e. If the image of G under $e,(G) e$, is a fully invariant subgroup of G, then e is a right identity for M and A is an ideal.
3. D. g. near rings. It is convenient at this point to make a definition.

Definition 3.1. Let R be a distributively generated (d.g.) near ring. The set $S \subseteq R$ is called a d.g. set provided that S is a subsemigroup of (R, \cdot) and that S additively generates $(R,+)$.

Throughout this section the near ring R will be d.g. with d.g. set S, idempotent e, and decomposition $R=A+M$. Both M and A are
subnear rings of R and have additive generating sets $\{e s: s \in S\}$ and $\{s-e s: s \in S\}^{M}=\{m+(s-e s)-m: m \in M, s \in S\}$ respectively [6, Theorem 2.3]. The problem of constructing a d.g. near ring R from a d.g. set S and an idempotent e reduces to the construction of the summands M and A.

Conditions under which the additive generating sets are in fact d.g. sets follow.

Theorem 3.2. A is an ideal if and only if M is d.g. with d.g. set eS and eses' $=$ ess' for each $s, s^{\prime} \in \mathrm{S}$.

Proof. (\Rightarrow) Statements (1) and (2) of Theorem 2.2 imply that M is d.g. with d.g. set $e S$. Statements (2) and (4) conclude the proof in this direction.
(\Leftarrow) This implication will be proved by showing that eret $=$ ert for each $r, t \in R$. For $r, t \in R, r=\sum_{i=1}^{q} n_{i} s_{i}$ and $t=\sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}{ }^{\prime}$ where $n_{i}, n_{j}{ }^{\prime} \in Z$ and $s_{i}, s_{j}{ }^{\prime} \in S$ for $i=1,2, \cdots, q$ and $j=1,2, \cdots, p$. It is clear that for any $x \in R, s \in S$ and $n \in Z$
(*)

$$
x(n s)=n(x s)=(n x) s
$$

It follows from equation (*) and left distributivity that

$$
\begin{aligned}
\text { eret } & =\text { ere } \sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}^{\prime}=\sum_{j=1}^{p} \operatorname{ere}\left(n_{j}{ }^{\prime} s_{j}^{\prime}\right) \\
& =\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(\text { eres }_{j}{ }^{\prime}\right)=\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(e\left(\sum_{i=1}^{q} n_{i} s_{i}\right) e s_{j}^{\prime}\right)
\end{aligned}
$$

But since $e S$ is a d.g. set for M and every element of R is left distributive

$$
\begin{aligned}
\sum_{j=1}^{p} n_{j}^{\prime}\left(e\left(\sum_{i=1}^{q} n_{i} s_{i}\right) e s_{j}^{\prime}\right) & =\sum_{j=1}^{p} n_{j}^{\prime}\left(\left(\sum_{i=1}^{q} e\left(n_{i} s_{i}\right)\right) e s_{j}^{\prime}\right) \\
& =\sum_{j=1}^{p} n_{j}^{\prime}\left(\left(\sum_{i=1}^{q} n_{i}\left(e s_{i}\right)\right) e s_{j}^{\prime}\right) \\
& =\sum_{j=1}^{p} n_{j}^{\prime}\left(\sum_{i=1}^{q} n_{i}\left(e s_{i} e s_{j}^{\prime}\right)\right)
\end{aligned}
$$

By the hypothesis of the theorem, the fact that S is a d.g. set for R, and the validity of equation $(*)$,

$$
\begin{aligned}
& \sum_{j=1}^{p} n_{j}{ }^{\prime}\left(\sum_{i=1}^{q} n_{i} e s_{i} e s_{j}{ }^{\prime}\right)=\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(\sum_{i=1}^{q} n_{i} e s_{i} s_{j}{ }^{\prime}\right) \\
& =\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(\left(\sum_{i=1}^{q} n_{i} e s_{i}\right) s_{j}{ }^{\prime}\right)=\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(e\left(\sum_{i=1}^{q} n_{i} s_{i}\right) s_{j}{ }^{\prime}\right) \\
& =\sum_{j=1}^{p} n_{j}{ }^{\prime}\left(e r s_{j}{ }^{\prime}\right)=\sum_{j=1}^{p} \operatorname{er}\left(n_{j}{ }^{\prime} s_{j}{ }^{\prime}\right)=e r \sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}{ }^{\prime}=e r t .
\end{aligned}
$$

Theorem 3.3. If $A M=\{0\}$ then A is d.g. with d.g. set

$$
\{s-e s: s \in S\}^{M} .
$$

Proof. The set $S^{\prime}=\{s-e s: s \in S\}^{M}$ is an additive generating set for \boldsymbol{A} [6, Theorem 2.3]. To be a d.g. set for A each element of S^{\prime} must distribute from the right over A and S^{\prime} must be a multiplicative semigroup of A. Let $a, b \in A$ and $e r+(s-e s)-e r=(s-e s)^{e r} \in \mathrm{~S}^{\prime}$. Then

$$
\begin{aligned}
(a+b)(s-e s)^{e r} & =(a+b) e r+(a+b)(s-e s)-(a+b) e r \\
& =(a+b) s-(a+b) e s=a s+b s \\
& =(a e r+a s-a e s-a e r)+(b e r+b s-b e s-b e r) \\
& =a(s-e s)^{e r}+b(s-e s)^{e r}
\end{aligned}
$$

so that the elements of S^{\prime} are right distributive over A. Now let $(s-e s)^{e r},\left(s^{\prime}-e s^{\prime}\right)^{e t} \in \mathrm{~S}^{\prime}$ and consider

$$
\begin{aligned}
(s-e s)^{e r}\left(s^{\prime}-r s^{\prime}\right)^{e t}= & (s-e s)^{e r} e t \\
& +(s-e s)^{e r}\left(s^{\prime}-e s^{\prime}\right)-(s-e s)^{e r} e t \\
= & (s-e s)^{e r} s^{\prime}-(s-e s)^{e r} e s^{\prime}=\left(s s^{\prime}-e s s^{\prime}\right)^{e r s^{\prime}}
\end{aligned}
$$

which is in the generating set.
The $A M=\{0\}$ condition is not necessary. The following example, which is due to Willhite [7], demonstrates this fact. Let the additive structure for the near ring R be the dihedral group of order eight. The addition table is included for reference.

+	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
0	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
a	a	$2 a$	$3 a$	0	$a+b$	$2 a+b$	$3 a+b$	b
$2 a$	$2 a$	$3 a$	0	a	$2 a+b$	$3 a+b$	b	$a+b$
$3 a$	$3 a$	0	a	$2 a$	$3 a+b$	b	$a+b$	$2 a+b$
b	b	$3 a+b$	$2 a+b$	$a+b$	0	$3 a$	$2 a$	a
$a+b$	$a+b$	b	$3 a+b$	$2 a+b$	a	0	$3 a$	$2 a$
$2 a+b$	$2 a+b$	$a+b$	b	$3 a+b$	$2 a$	a	0	$3 a$
$3 a+b$	$3 a+b$	$2 a+b$	$a+b$	b	$3 a$	$2 a$	a	0

The multiplication table that follows (Table 6(4), p. 34-35 of [7]) defines the unique d.g. near ring with identity on the dihedral group of order eight.

\cdot	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
0	0	0	0	0	0	0	0	0
a	0	a	$2 a$	$3 a$	b	$a+b$	$2 a+b$	$3 a+b$
$2 a$	0	$2 a$						
$3 a$	0	$3 a$	$2 a$	a	b	$3 a+b$	$2 a+b$	$a+b$
b	0	b	0	b	b	0	b	0
$a+b$	0	$a+b$	0	$a+b$	0	$a+b$	0	$a+b$
$2 a+b$	0	$2 a+b$	0	$2 a+b$	b	$2 a$	b	$2 a$
$3 a+b$	0	$3 a+b$						

It is clear that the set $S=\{a, b\}$ forms a d.g. set for R. Let $a+b$ decompose R, then $M=\{0, a+b\}=e S$ is d.g. Furthermore, $A=$ $\{0, b, 2 a, 2 a+b\}$ is d.g. with d.g. set $\{s-e s: s \in S\}^{M}=\{b, 2 a+b\}$, but $A M=\{0,2 a\}$.
If the group sum $R=A+M$ is direct then the summand M is normal and addition in R is componentwise. Conversely, if the addition in R is componentwise then the sum is direct. But, the normality of M is not enough to guarantee that M is an ideal.
Componentwise multiplication in R implies that A is an ideal and that both summands are d.g. near rings with d.g. sets as described in Theorems 3.2 and 3.3. However, componentwise multiplication in R does not imply that M is normal.

The link between componentwise addition and multiplication in R is provided by the condition that both summands are in fact ideals.
Theorem 3.4. R is the direct sum of ideals A and M if and only if both operations in R are componentwise.

Proof. (\Rightarrow) Suppose that both A and M are ideals, then $A M=$ $M A=A \cap M=\{0\}$. Since $M \triangleleft R$, addition is componentwise. It remains to be shown that $\left(a_{1}+m_{1}\right)\left(a_{2}+m_{2}\right)=a_{1} a_{2}+m_{1} m_{2}$ for each $a_{1}, a_{2} \in A$ and $m_{1}, m_{2} \in M$. Let $a_{2}=\sum_{i=1}^{q} n_{i} s_{i}$ and $m_{2}=\sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}{ }^{\prime}$
where $n_{i}, n_{j}{ }^{\prime} \in Z$ and $s_{i}, s_{j}{ }^{\prime} \in S$ for $i=1,2, \cdots, q$ and $j=1,2, \cdots$, p. Now, the left distributive law and equation $(*)$ provide that

$$
\begin{aligned}
\left(a_{1}+m_{1}\right)\left(a_{2}+m_{2}\right) & =\left(a_{1}+m_{1}\right) a_{2}+\left(a_{1}+m_{1}\right) m_{2} \\
& =\sum_{i=1}^{q}\left(n_{i}\left(a_{1}+m_{1}\right)\right) s_{i}+\sum_{j=1}^{p}\left(n_{j}^{\prime}\left(a_{1}+m_{1}\right)\right) s_{j}^{\prime}
\end{aligned}
$$

But, since addition is componentwise, $n\left(a_{1}+m_{1}\right)=n a_{1}+n m_{1}$ for any $n \in Z$. Thus,

$$
\begin{aligned}
\left(a_{1}\right. & \left.+m_{1}\right)\left(a_{2}+m_{2}\right) \\
& =\sum_{i=1}^{q}\left(n_{i} a_{1}\right) s_{i}+\sum_{i=1}^{q}\left(n_{i} m_{1}\right) s_{i}+\sum_{j=1}^{p}\left(n_{j}^{\prime} a_{1}\right) s_{j}^{\prime}+\sum_{j=1}^{p}\left(n_{j}^{\prime} m_{1}\right) s_{j}^{\prime}
\end{aligned}
$$

Equation (*) and the left distributive property applied to the last equality give

$$
\begin{aligned}
\left(a_{1}+m_{1}\right)\left(a_{2}+m_{2}\right)= & a_{1}\left(\sum_{i=1}^{q} r_{i_{i} s_{i}}\right)+m_{1}\left(\sum_{i=1}^{q} n_{i} s_{i}\right) \\
& +a_{1}\left(\sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}^{\prime}\right)+m_{1}\left(\sum_{j=1}^{p} n_{j}{ }^{\prime} s_{j}^{\prime}\right) \\
= & a_{1} a_{2}+\mathrm{m}_{1} a_{2}+a_{1} m_{2}+\mathrm{m}_{1} m_{2}=a_{1} a_{2}+m_{1} m_{2}
\end{aligned}
$$

(\Leftarrow) Suppose now that the operations in R are componentwise. Then $A M=M A=\{0\}$, so that A is an ideal. Also, the group sum is direct, so M is normal and hence a right ideal. It remains to be shown that $R M \subseteq M$. Let $r=a+m \in R$ and $m^{\prime} \in M$. Then $r m^{\prime}=(a+m) m^{\prime}$ $=(a+m)\left(0+m^{\prime}\right)=a(0)+m m^{\prime}=m m^{\prime}$ which is certainly contained in M.

If the conditions of Theorem 3.4 are satisfied then both M and A are d.g. with d.g. sets as described in Theorems 3.2 and 3.3 respectively.
4. Applications. For an arbitrary group G the endomorphism near ring $E(G)$ is not easily found. Specifically, d.g. sets are elusive and any known construction technique requires at least an additive generating set. However, the results of $\S 2$ and $\S 3$ provide some insight into the structure of $E(G)$ for certain groups.

Suppose, for example, that G is a semidirect sum with normal sum-
mand K. The endomorphism $e: G \rightarrow H \subseteq G$ having Ker $e=K$ with $e^{2}=e$ yields a decomposition of $E(G)$. Let $S=\operatorname{End}(G)$ so that $e S$ is an additive generating set for M. Since $e \in S, e S \subseteq S$ is a multiplicative semigroup of right distributive elements and hence $e S$ is a d.g. set for M.

If the sum is direct and the summand H is fully invariant then e is a right identity for M and A is an ideal by Corollary 2.3. Consider the slightly more general case in

Theorem 4.1. Let e be any idempotent in $E(G)$ such that $(G) e=H$ is fully invariant. Suppose also that if $f \in \operatorname{End}(H), f=\left.f^{\prime}\right|_{H}$ for some $f^{\prime} \in E(G)$. Then $E(H)$ is isomorphic to M where e decomposes $E(G)$ into $A+M$.

Proof. Let $i: \operatorname{End}(h) \rightarrow M$ via $(f) i=e f^{\prime}$. Now, H is fully invariant and e fixes H elementwise, thus e is a right identity for M. It follows that i is a semigroup morphism which extends to a near ring epimorphism $i^{\prime}: E(H) \rightarrow M$. Suppose that $(f) i^{\prime}=0$. Then $e f^{\prime}=0$ and for $h \in H,(h) e f^{\prime}=(h) f^{\prime}=(h) f=0$, so that f is the zero map of H. Thus i^{\prime} is an isomorphism.

In a paper by Malone and Heatherly, [5], it is shown that if H is a direct summand of G then $T_{0}(H)$ embeds as a direct summand in $T_{0}(G)$, where $T_{0}(G)\left(T_{0}(H)\right)$ is the near ring of transformations from G to $G(H$ to H) that send 0 to 0 . A similar result holds for endomorphism near rings whereby $E(H)$ embeds as a direct summand in $E(G)$.

Let $G=K \oplus H$ with H fully invariant and abelian. If $e: G \rightarrow H$ is the projection map, the decomposition $E(G)=A+M$ has M in the additive center of $E(G)$ and the sum $A+M$ is direct. This fact along with Theorem 4.1 provide the following embedding result.

Theorem 4.2. Let H be a fully invariant abelian summand of the group G. Then $E(H)$ embeds in $E(G)$ as a direct summand.

Bibliography

1. G. Berman and R. J. Silverman, Near-rings, Amer. Math. Monthly 66 (1959), 23-34. MR 20 \#6438.
2. A. Fröhlich, Distributively generated near-rings. I. Ideal theory, Proc. London Math. Soc. (3) 8 (1958), 76-94. MR 19, 1156.
3. ——, Distributively generated near-rings. II. Representation theory, Proc. London Math. Soc. (3) 8 (1958), 95-108. MR 19, 1156.
4. J. J. Malone Jr., A near ring analogue of a ring embedding theorem, J. Algebra 16 (1970), 237-238. MR 41 \#8477.
5. J. J. Malone Jr. and H. E. Heatherly, Some near ring embeddings, Quart. J. Math. Oxford Ser. (2) 20 (1969), 81-85. MR 39 \#265.
6. J. J. Malone Jr. and C. G. Lyons, Endomorphism near-rings, Proc. Edinburgh Math. Soc. (2) 17 (1970), 71-78. MR 42 \#4598.
7. Mary Lynn Willhite, Distributively generated near rings on the dihedral group of order eight, Master's Thesis, Texas A\&M University, College Station, Tex., 1969.

Madison College, Harrisonburg, Virginia 22801

[^0]: Received by the editors November 4, 1971 and, in revised form, January 3, 1972.
 AMS (MOS) subject classifications (1970). Primary 16A76; Secondary 16A48, 16A32.
 ${ }^{1}$ Portions of this paper appear in the author's Ph.D. dissertation written under the direction of Professor J. J. Malone, Jr. at Texas A \& M University.

