A HOMOMORPHISM OF A PSEUDO PLANE ONTO A PROJECTIVE PLANE

E. H. DAVIS

1. The purpose of this paper is to give an example of a homomorphism of a proper pseudo plane onto a projective plane. The pseudo plane used is coordinatized by Zemmer's nonplanar nearfield [5], and the image plane is a field plane. With the exception of the concept of place of a homomorphism the notation and terminology will follow that found in [4]. In $\$ 2$ we give a characterization of place found in [1], and in $\S 3$ we give the example referred to above.
2. We let π and π^{\prime} be pseudo planes and $\alpha: \pi \rightarrow \pi^{\prime}$ be a homomorphism. We may choose a coordinatizing quadrangle for π such that its image is a coordinatizing quadrangle for π^{\prime}. Call the quadrangle for $\pi,(\infty),(0),(0,0),(1,1)$. Let T and T^{\prime} be the pseudo ternaries associated with these quadrangles for π and π^{\prime} respectively. Pseudo ternaries are discussed in [3]. Then there is a mapping $\bar{\alpha}: T \rightarrow$ $T^{\prime} \cup\{\infty\}$ defined by

$$
\bar{\alpha} b= \begin{cases}b^{\prime} & \text { if } \alpha(0, b)=\left(0^{\prime}, b^{\prime}\right), \\ \infty & \text { if } \boldsymbol{\alpha}(0, b)=\alpha(\infty) .\end{cases}
$$

$\overline{\boldsymbol{\alpha}}$ is called a place of $\boldsymbol{\alpha}$. Generally no confusion results from denoting $\bar{\alpha}$ by α.

If we assume that $(T,+, \cdot)$ is a nearfield, then the proof of Theorem 4.3 found in [1] suffices to show that $\boldsymbol{\alpha}$ is a place of a homomorphism if and only if the following hold:
S1. $\alpha 0=0$, and $\alpha 1=1$.
S2. αa and $\alpha b \neq \infty$ implies $\alpha(a+b)=\alpha a+\alpha b$, and $\alpha(a b)=$ $\alpha a \alpha b$.
S3. $\alpha a \neq \infty$ and $\alpha b=\infty$ implies $\alpha(a+b)=\alpha(b+a)=\infty$.
S4. $\alpha a \neq 0$ and $\alpha b=\infty$ implies $\alpha(a b)=\alpha(b a)=\infty$.
S5. $\alpha\left(-a x+a^{*} x\right) \neq \infty$ and $\alpha x=\infty$ implies $\alpha a=\alpha a^{*}$.
S6. $\alpha\left(a x-a x^{*}\right) \neq \infty$ and $\alpha a=\infty$ implies $\alpha x=\alpha x^{*}$.
S7. $a^{*} x+a x^{*}=a x$ and $\alpha a=\alpha x=\alpha\left(a^{*} x\right)=\alpha\left(a x^{*}\right)=\infty$ implies $\alpha a^{*}=\infty$ or $\alpha x^{*}=\infty$.

Received by the editors October 22, 1971 and, in revised form, December 13, 1971.

AMS (MOS) subject classifications (1970). Primary 50D35, 12K05.
Copyright © 1973 Rocky Mountain Mathematics Consortium

We will use $\mathrm{S} 1-\mathrm{S} 7$ in the next section to show that a mapping is a place.
3. The pseudo plane under consideration in this section is the pseudo plane coordinatized by Zemmer's nonplanar nearfield [5].

Definition. Let $N=F(\lambda)$ be the set of rational functions over F, a field of characteristic 0 . For $a(\lambda) \in F(\lambda)$ let $n(a)=$ degree of numerator of a, and $d(a)=$ degree of denominator of a. Let $\delta(a)=n(a)-$ $d(a)$. Define $a(\lambda)+b(\lambda)$ to be the sum in $F(\lambda)$. For $a(\lambda) \neq 0$, let $a(\lambda) \circ b(\lambda)=a(\lambda) b(\lambda+\delta(a))$, and also let $0 \circ b(\lambda)=0$.

It is known, [5], that $(N,+, \circ)$ is a near field in which the equation $x=\lambda \circ x+\lambda$ has no solution. Hence ($N,+, \circ$) cannot coordinatize a projective plane. We will construct a place from ($N,+, \circ$) to ($F,+, \cdot$), and the latter does coordinatize a projective plane as it is a field. $(N,+, \circ)$ coordinatizes a pseudo plane [2].

The following facts will be used, often without mention.

$$
\delta(a+b)= \begin{cases}\delta(a) & \text { if } n(a)+d(b)>n(b)+d(a) \tag{1}\\ \delta(b) & \text { if } n(a)+d(b)<n(b)+d(a) \\ k \leqq \delta(a) & \text { if } n(a)+d(b)=n(b)+d(a)\end{cases}
$$

$$
\begin{equation*}
\delta(a \circ b)=\delta(a)+\delta(b) \tag{2}
\end{equation*}
$$

Let $a=\left(a_{n} \lambda^{n}+\cdots+a_{0}\right) /\left(c_{m} \lambda^{m}+\cdots+c_{0}\right)$, and define

$$
\alpha(a)= \begin{cases}a_{n} / c_{m} & \text { if } \delta(a)=0 \\ 0 & \text { if } \boldsymbol{\delta}(a)<0 \\ \infty & \text { if } \delta(a)>0\end{cases}
$$

We will prove that α is a place of a homomorphism from the pseudo plane coordinatized by $(N,+, \circ)$ onto the plane coordinatized by $(F,+, \cdot)$ by showing that $\mathrm{S} 1-\mathrm{S} 7$ are satisfied.

S1 is immediate.
To verify S2, let a be given as above, and let

$$
b=\left(b_{u} \lambda^{u}+\cdots+b_{0}\right) /\left(e_{v} \lambda^{v}+\cdots+e_{0}\right)
$$

If we write only the terms of largest degree in each product, we obtain

$$
a+b=\frac{a_{n} e_{v} \lambda^{n+v}+b_{u} c_{m} \lambda^{m+u}+\cdots}{c_{m} e_{v} \lambda^{m+v}+\cdots}
$$

Take $\alpha a \neq \infty \neq \alpha b$. Then $n \leqq m$ and $u \leqq v$. So $n+v \leqq m+v$
and $m+u \leqq m+v$. If $n+v>m+u$, then $v>u$, and thus $\alpha b=0$. But $\alpha(a+b)=\left(a_{n} e_{v}\right) /\left(c_{m} e_{v}\right)=a_{n} / c_{m}=\alpha a=\alpha a+\alpha b$. Similarly, the desired result holds if $n+v<m+u$.

Let $n+v=m+u$. If $n<m$, then $v>u$, and $\alpha a+\alpha b=0$. But then $\delta(a+b)=k \leqq \delta(a)<0$. So $\alpha(a+b)=0$ as required. If $n=m$, then $u=v$ and $\alpha a=a_{n} / c_{m}$ and $\alpha b=b_{u} / e_{v}$. Thus $\alpha a+\alpha b=$ $\left(a_{n} e_{v}+b_{u} c_{m}\right) /\left(c_{m} e_{v}\right)$. If $a_{n} e_{v}+b_{u} c_{m} \neq 0$, then

$$
\alpha(a+b)=\left(a_{n} e_{v}+b_{u} c_{m}\right) /\left(c_{m} e_{v}\right)
$$

as required. Suppose that $a_{n} e_{v}+b_{u} c_{m}=0$, then $k<0$, and in this case $\boldsymbol{\alpha}(a+b)=0$, and $\alpha a+\alpha b=0 /\left(c_{m} e_{v}\right)=0$.

That $\alpha(a \circ b)=\alpha a \alpha b$ is immediate.
Now consider S3. Use a and b as above with $\alpha a=\infty$, and $\alpha b \neq \infty$. Then $n>m$, and $u \leqq v$. So as before,

$$
a+b=\frac{a_{n} e_{v} \lambda^{n+v}+b_{u} c_{m} \lambda^{m+u}+\cdots}{c_{m} e_{v} \lambda^{m+v}+\cdots}
$$

We have $n+v>m+u$, and $n+v>m+v$, so $n(a+b)=n+v$ and $\alpha(a+b)=\infty$.

For S4 we take a and b as before with $\alpha a \neq 0$, and $\alpha b=\infty$. Then $m \leqq n$, and $u>v$. Considering only leading terms we have

$$
a \circ b=\frac{a_{n} b_{u} \lambda^{n+u}+\cdots}{c_{m} e_{v} \lambda^{m+v}+\cdots}
$$

Thus, $\alpha(a \circ b)=\infty$ as $n+u>m+v$. Similarly, $\alpha(b \circ a)=\infty$.
For S5 let a and b be as above, and let

$$
\begin{gathered}
x=\frac{x_{r} \lambda^{r}+\cdots+x_{0}}{w_{s} \lambda^{s}+\cdots+w_{0}}, \quad a^{*}=\frac{y_{t} \lambda^{t}+\cdots+y_{0}}{z_{p} \lambda^{p}+\cdots+z_{0}}, \\
x^{*}=\frac{f_{q} \lambda^{q}+\cdots+f_{0}}{g_{h} \lambda^{h}+\cdots+g_{0}}
\end{gathered}
$$

We take $\alpha\left(-a \circ x+a^{*} \circ x\right) \neq \infty$, and $\alpha x=\infty$. Then

$$
\begin{aligned}
a^{*} \circ x-a \circ x= & \left(\frac{y_{\lambda} \lambda^{t}+\cdots+y_{0}}{z_{p} \lambda^{p}+\cdots+z_{0}}\right) \circ\left(\frac{x_{r} \lambda^{r}+\cdots+x_{0}}{w_{s} \lambda^{s}+\cdots+w_{0}}\right) \\
& -\left(\frac{a_{n} \lambda^{n}+\cdots+a_{0}}{c_{m} \lambda^{m}+\cdots+c_{0}}\right) \circ\left(\frac{x_{r} \lambda^{r}+\cdots+x_{0}}{w_{s} \lambda^{s}+\cdots+w_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(y_{t} \lambda^{t}+\cdots+y_{0}\right)\left(x_{r}(\lambda+t-p)^{r}+\cdots+x_{0}\right)}{\left(z_{p} \lambda^{p}+\cdots+z_{0}\right)\left(w_{s}(\lambda+t-p)^{s}+\cdots+w_{0}\right)} \\
& -\frac{\left(a_{n} \lambda^{n}+\cdots+a_{0}\right)\left(x_{r}(\lambda+n-m)^{r}+\cdots+x_{0}\right)}{\left.\left(c_{m} \lambda^{m}+\cdots+c_{0}\right)\left(w_{s} \lambda+n-m\right)^{s}+\cdots+w_{0}\right)} \\
= & \frac{y_{t} x_{r} \lambda^{t+r}+\cdots}{z_{p} w_{s} \lambda^{p+s}+\cdots-\frac{a_{n} x_{r} \lambda^{n+r}+\cdots}{c_{m} w_{s} \lambda^{m+s}+\cdots}} \\
= & \frac{y_{t} x_{r} c_{m} w_{s} \lambda^{t+r+m+s}-a_{n} x_{r} z_{p} w_{s} \lambda^{n+r+p+s}+\cdots}{z_{p} w_{s} c_{m} w_{s} \lambda^{p+m+s+a}+\cdots}
\end{aligned}
$$

considering only leading terms. Since $\alpha x=\infty$ we have $r>s$.
Case 1. $t+r+m+s>n+r+p+s$. Then $t+r+m+s \leqq$ $p+m+2 s$, since $\alpha\left(-a \circ x+a^{*} \circ x\right) \neq \infty$. Thus, $t+m>n+p$, and $t+r \leqq p+s$. Thus, $t<p$, so $m>n$. Hence $\alpha a=\alpha a^{*}=0$.

Case 2. $t+r+m+s<n+r+p+s$ yields as in Case 1, $\alpha a=$ $\alpha a=0$.

Case 3. $t+r+m+s=n+r+p+s$. If $y_{t} x_{r} c_{m} w_{s}-a_{n} x_{r} z_{p} w_{s} \neq$ 0 , then $t+r+m+s \leqq p+m+2 s$. Thus $t+r<p+s$. Hence $t<p$. But $t+m=n+p$, so $m>n$. Again $\alpha a^{*}=\alpha a^{*}=0$. Finally, take $y_{t} x_{r} c_{m} w_{s}-a_{n} x_{r} z_{p} w_{s}=0$. Then $y_{t} c_{m}=a_{n} z_{p}$, and thus $a_{n} / c_{m}=$ y_{t} / z_{p}. Hence $\alpha a=\alpha a^{*}$, as $m-n \geqq 0$ if and only if $p-t \geqq 0$.

Next, we consider S6. By the definition of $\alpha, \alpha(-g)=-\alpha g$. Let $\alpha\left(a \circ x-a \circ x^{*}\right) \neq \infty$ and $\alpha a=\infty$, where x^{*} is given above. Now, $(N,+, \circ)$ is a nearfield, so we have

$$
\alpha\left(a \circ x-a \circ x^{*}\right)=\alpha\left(a \circ\left(x-x^{*}\right)\right),
$$

So by S4, $\alpha\left(x-x^{*}\right)=0$. We show that $\alpha x=\alpha x^{*}$. If at least one of αx or αx^{*} is ∞, then by S3, they both must be ∞. So suppose that neither is ∞. Then by $\mathrm{S} 2, \alpha x=\alpha \alpha^{*}$.

Lastly we consider S7. We suppose that the hypotheses for S7 are satisfied, and as for S5 we consider only leading terms in $a^{*} \circ x+$ $a \circ x^{*}=a \circ x$. The result is

$$
\frac{y_{t} x_{r} c_{m} g_{h} \lambda^{t+r+m+h}+a_{n} f_{q} z_{p} w_{s} \lambda^{n+q+p+s}+\cdots}{z_{p} w_{s} c_{m} g_{h} \lambda^{p+s+m+h}+\cdots}=\frac{a_{n} x_{r} \lambda^{n+r}+\cdots}{c_{m} w_{s} \lambda^{m+s}+\cdots},
$$

which yields,

$$
\begin{gathered}
y_{t} x_{r} c_{m} g_{h} c_{m} w_{s} \lambda^{t+r+m+h+m+s}+a_{n} f_{q} z_{p} w_{s} c_{m} w_{s} \lambda^{n+q+p+s+m+s} \\
=a_{n} x_{r} z_{p} w_{s} c_{m} g_{h} \lambda^{n+r+p+s+m+h}+\cdots
\end{gathered}
$$

The assumptions yield $n>m, r>s, t+r>p+s$, and $n+q>$ $m+h$.

Case 1. $t+r+m+h+m+s>n+q+p+s+m+s$. Then we have that $t+r+m+h+m+s=n+r+p+s+m+h$. Hence, $t+m=n+p$, so $t>p$. Hence, $\boldsymbol{\alpha} a^{*}=\infty$.

Case 2. $t+r+m+h+m+s<n+q+p+s+m+s$. Then we have that $n+q+p+s+m+s=n+r+p+s+m+h$, so $q+s=r+h$. Hence $q>h$, which implies that $\alpha x^{*}=\infty$.

Case 3. $t+r+m+h+m+s=n+q+p+s+m+s$. Now, if $n+q+p+s+m+s=n+r+p+s+m+h$, then as in Case $2, q>h$, and $\alpha x^{*}=\infty$. If $n+q+p+s+m+s<n+r+p+s$ $+m+h$, we may apply Case 1 . Suppose that $n+q+p+s+m+s$ $>n+r+p+s+m+h$, then again $q+s>r+h$, so $q>h$. Hence $\alpha \alpha^{*}=\infty$.

Thus by the discussion in $\$ 2$, there is a homomorphism from the pseudo plane coordinatized by the nearfield to the projective plane coordinatized by $(F,+, \cdot)$. The fact that this homomorphism is onto is immediate.

References

1. J. André, Über Homomorphismen projektiver Ebenen, Abh. Math. Sem. Univ. Hamburg 34 (1969/70), 98-114. MR 42 \#949.
2. E. Davis, Incidence systems associated with non-planar nearfields, Canad. J. Math. 22 (1970), 939-952.
3. R. Sandler, Pseudo planes and pseudo ternaries, J. Algebra 4 (1966), 300316. MR 33 \#7929.
4. R. Sandler, On homomorphisms and images of projective planes and pseudo planes, Acta Math. (to appear).
5. J. Zemmer, Nearfields, planar, and non-planar, Math. Student 31 (1964), 145-150. MR 31 \#5888.

Kansas State College of Pittsburg, Pittsburg, Kansas 66762

