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ON AN INTEGRAL INEQUALITY FOR DIVERGENCE-FREE 
FUNCTIONS 

P. S. CROOKE 

1. Introduction. Let D be a bounded, two-dimensional domain with 
smooth boundary 3D and <f>i(xi, x2) = <f>i(x) [i = 1, 2] any sufficiently 
smooth vector-valued function which is defined on D, vanishes on 
3D, and satisfies the divergence-free condition, <f>jyj = 0 in D. 
Here the summation convention is used and a comma denotes dif
ferentiation; for example, 

_ d<fti d(j)2 

™ dXl dx2 ' 

Of interest in this work is the calculation of a positive constant X such 
that 

(1) <k<fo dx g — fafajdx 
J D X J D 

when D can be enclosed in a wedge of angle nla, a>\. Ideally we 
would like to calculate an optimal value for X; however, this does not 
seem possible and we shall, therefore, sharpen known results. 

Inequality (1) has been employed in stability and uniqueness 
studies for the Navier-Stokes equations (see e.g. Serrin [11]) and 
in an examination of growth properties of solutions for a model of a 
dusty gas system (see Crooke [2] ), among other applications. 

It is generally possible to establish these types of inequalities by 
considering a corresponding variational problem. For inequality (1) 
we are interested in the following variational problem: 

(2) k= inf ^ff^f 

where Y(D) denotes the class of Dirichlet integrable, vector-valued 
functions which are defined on D, vanish on BD and satisfy i/^ = 0 
in D. Hence, if X is any lower bound for X and fc a n y function be
longing to r(D), then 

< . f Sptybjtyhjdx ^ SD<t>i,ft>hj dx 
~ îGixD) jD$i$idx "" Jo^idx 
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or 

j D fafadx^Y j fajfaj dx. 

We note that if 

X' = inf 

where Y'(D) denotes the space of Dirichlet integrable, vector-valued 
functions which are defined on D and vanish on dD, then X ' ^ X. 
Lower bounds for X ' abound in the literature. For example, the well-
known Faber-Krahn inequality (see [3], [5]) states X' = [j0]

 2IP2 

where F is the radius of the circle having the same area as D and j 0 

is the first zero of the Bessel function /0 . Payne and Weinberger [ 10] 
have obtained a sharper lower bound for X ' when D lies interior to a 
wedge of angle irla, a = 1. The results of this paper will be applicable 
to similar domains; however, we shall be interested in lower bounds 
for X, not X'. Serrin [11] and Veite [14] have presented lower 
bounds for X which depend on the geometry of D. 

2. An eigenvalue inequality. Suppose D is a two-dimensional, 
bounded domain which can be enclosed in a wedge of angle nla, 
a > 2 • That is, if r denotes the distance from the apex of the wedge, 
which is assumed to be at the origin, then 

D C {(r, 0) : e G (0,7T/a), r G (0, R)} = Da. 

As can readily be seen by its definition, Da is the sector of a circle 
of radius R. Noting that X is a monotone function of domain, it is 
sufficient to consider computing a lower bound for the eigenvalue 

(3) X= inf Yf,"? > 
since X = X. 

To compute a lower bound for X, we shall use Weinstein's (see [15], 
[ 16] ) " method of intermediate problems". In order to employ this 
technique it is necessary to change the form of (3) by introducing 
a stream-function v such that ^1 = ^,2 a n d ^2 = ~~v>i- It is easily 
demonstrated that with this definition of v(x) variational problem 
(3) is transformed into 

(4) *- inf i^tf 
V ,en(Da) SDa{Vvfdx 
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where 0(Dtt) is the space of sufficiently smooth scalar functions which 
are defined on Da and which with their normal derivatives vanish on 
dDa. It might be noted that the positive constant X is the first eigen
value of the buckling problem for an elastic plate occupying Da. The 
corresponding problem for the square was one of the problems original
ly treated by Weinstein in [15]. Since the normal derivative of v, 
which we henceforth denote dvldn, vanishes on dDa, it follows that 
for any bounded function p defined on dDa we have 

f p-^-dS-O. 
hDa

 r dn 

This leads us to our first intermediate problem: 

(5) X - taf '*< A o >' ik ELil'(Da) / o a ( V u ) 2 à 

where 0 ' ( D J is the space of sufficiently smooth scalar functions v 
defined on dDa, satisfying the boundary conditions: 

(6.a) 

(6.b) 

and 

v = dvldn = 0 

v = 0 

o n r = R, 

on dDa*, 

where dDa* denotes that portion of dDa for which 0 = 0 , irla. 
Using the standard arguments of variational calculus, it follows that 

The Euler equation and associated boundary conditions for the 
variational problem (5) can be shown to be: 

(7.a) 

(7.b) 

and 

à2v + A At; = 0 

v = dvldn = 0 

inD a , 

on r = R, 

(7.c) v = 0, A« = ap on dDa* 

where a is an undetermined constant and A2t> = A( AÜ). Let iV 
and \j (j = 1,2, • • •) denote the eigenfunctions and corresponding 
eigenvalues of the base problem, i.e., problem (7) with a = 0. That is, 
vß and kj are solutions of 
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and 

A V + A'At>>= 0 inD a , 

vß = dvi/dn = 0 on r = fi, 

on dD*. v> = A(t>>) = 0 

These eigenfunctions and eigenvalues can be computed explicitly, 
but as we shall see in the analysis that follows, it is only necessary to 
explicitly know the first three. They are 

vl(r, S) =rasm(ad)[r-%(Vkîr) - R-«Ja(VTlR)] 

and 

k R* 

' V = t-sm(2a6)[r-^J2a(Vx^r) - R-^J^Vk^R)] 

or v'2(r, 6) = \ 

and 

A2 = { V = 

i>2
2 = r«sm(ae)[r-°Ja(Vk2Zr) - R- /„ (Vx?R)] 

im* (1) 1 2 

R2 orX2
2 = L7a+iJ 1 

R J 

/ » i 3 = rsmiSaOnr-ZoJ^VkT*) - R-^J3a(Vk?R)] or 

ü23 = ^sin(2aÖ)[r-^/ 2 a(VÄ?r) - R-^ / s jVÄ^R)] or 

t)3(r, e) = I u3
3 = r-sm(a6)[r--Ja(Vx^r) - R-»/a(Vx?R)] or 

ü4
3 = f sin(2a0)[r-2«/2a(VX7r) - R-^/2 a(VX?R)] or 

.o53 = fsin(a0)[r-/< l(VX?V) - R - / a ( VX?fl)] 

and 

.3= {V = 
,-d) , 2 (2) 1 2 

[J3o + l ] v 3 _ [J2a + l ] v 3 _ [ j a + l ] ' 
i < 3 > 1 2 

R2 -,V = R2 A 3 R2 

r,-(D 12 r / 2 ) 1 2 -

V4 R2 0 r X s R2 / 

In the above expressions j v
{ n ) denotes the nth zero of the Bessel func

tion /„( • ). One should note that the superscripts in v/ and A/ are to 
be interpreted as indices and not as powers. 

Expanding v(r, 6) in a series of the eigenfunctions vJ(r, 0), we have 
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v(r,e)= i BMO-n 
i = l 

where we have set B(v,vi)= JD(xv,jv
i,jdx and kl = Bip^v*). We 

now develop an expression for B(v, vl) in terms of X, X* and 

J S D * r , an 

Integrating by parts and using the boundary conditions for v and v\ 
one finds that 

(8) B(v, v{) = - f v(Av{) dx = - f Ü*(AÜ) dx. 

Using Green's first identity and the appropriate boundary conditions 
for v\ we obtain 

(9) f vHA2v)dx- f Av(Avi)dx=- f A Ü — dS. 
V ' J D « J D „ V ' JdDa oïl 

Integrating the second term in (9) by parts twice, (9) becomes 

f vHA2v)dx- f ü ( A V ) a = - f A Ü — d S . 
J Da Jo« J^D« dn 

Employing the differential equations satisfied by v and v\ this iden
tity transforms to 

- A f u'(Au) dx + X« f t?(Af?) dr = - f A Ü — dS. 

With (8), we have then 

(X - kl)B(v, v{) = - f A Ü 4 ? dS = - f öp — dS, 

or 

= _af9Dsp(dv*ldn)dS 
V ' ; Xf - X 

Our infinite series for t>(r? 0) then becomes 

- faPaViMdn) dS t>* 
v ' ,fi X* - X A:* 
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Since $3Da*p(dvldn) dS must vanish, we find that X must satisfy the 
expression 

(10) a± [^^a^a ,o. 
v ; Â fc'(v-x) 

At this point we choose our function p(r) which has been, up to 
this time, arbitrary. Namely, we set p(r) = dvlldn on dDa*. With 
respect to equation (10) we have two cases to consider. 

Case I. If a = 0, then X is one of the X*'s. Since with the above 
choice of p(r) we have that 

( P(r)-~^- dS^O and f o(r) ^ dS 4 0, 

then necessarily X = X^. 
Case II. Suppose a f^ 0. In this case we necessarily have that X 

must satisfy 

, m Y [^^p(aoVan)dS]' = ^ (cp» = 
( ; Â *<(A«-A) à A*-À 

where we have set 

c<= * ( p — d S 
V F hDa* H dn 

We now define the auxiliary function ifß such that 

(12.a) A2^ = 0 inD a , 

dé 
(12.b) i/i = - T 2 - = 0 on r = R, 

on 

and 

(12.c) i/f = 0, Ai/* = p ondDa*. 
Using the differential equations for v* and i/f, together with Green's 
identity, we find that 

f p— dS= ( Aifß^dS = 1* * ( A V ) à 

= -X f f i/fAt^dx = X % » ^r). 
J Da 

Hence, (11) becomes 
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(13) v-x 1 ~ x '-x I fc* L v '^J J 

We now consider two subcases, depending on whether c2 is zero or 
not. 

Suppose c2 = 0 (which is the case when v2 = vx
2); then (13) reduces 

to 

Now either X â X3 or X < X3. Since Case I leads to the best possible 
result, X = Xi2, the only inequality of interest is when X < X3. We 
then have, noting that for all i > 3 

X7(X* - X) g X3/(X3 - X), 

the result 

X - X 1 X 3 - X 4 fc< L ^ Ü ' ^ J 
or 

One can show by expanding i/f (r, 0) in a Fourier series, 

*(r,*)= É B(o',*)-g-, 

that 

X« 2-£-[B(i><,*)]* = f (A^dx. 

This identity implies that 

Finally, after considerable algebraic manipulation, one can show that 

\ g \ 1 [ l + 1/(A- 1)] 

where 
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A= - • — L x . ) / , . ( * » > ' * x^ 1 

( c 1 ) 2 ^ 3 - * 1 ) 

This yields a lower bound for A. However since foa (Ai//)2dx is 
not easily computable, we present two lemmas which afford upper 
bounds for this quantity in terms oî§dD(*p2 dS. 

LEMMA 1. Let i/f satisfy (12). Then 

where yl is a constant which depends on a and Da and is given by 

y ~ (2)1'3VÄsin(W2a) ' 

Here A is any constant such that 

I ( V u ) 2 d x g i [ (Au)2dx 
jDa A JD<x 

where u is any sufficiently smooth function which with its normal 
derivative vanishes on dDa. 

PROOF. Integrating by parts twice and using boundary condition 
(12.c), we find that' 

f (^fdx = f ^p^-dS. 
J Da J dDa* On 

An application of the Schwarz inequality yields 

(14) [\Dai^TdX]^ [I/Pfds ] [iaX^ps] . 
Let (xi9 x2) be an arbitrary point in D and consider 

(xk-xk)ilß9kilß9jjdx 
JDa ç 

(15) = - [{xk-xk)^9k]9j^9jdx 
J Da 

+ f (**- xk)ilß9k\lf,jnjdS 
J dDa 

where rij is the jth component of the outward normal vector on dD. 
It can be shown by simple manipulations that (15) collapses to 
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f _ i f / # \ 2 

(16) J (xfc - xfc)*,fc * # d* = y J d / V (** - **K ( -^ ) ds-

We now suppose the point (xl9 x2) is chosen to lie on the line 0 = 
7r/2a. Furthermore, let d be a positive number such that de 
2(xk — xk)nk for all x E dDa*. If q2 = (sfc — 3cfc)(xfc — xk) and 
^ = (xk "" **)nfc> then (16) becomes 

(17) ( fc(4^)2ds = 2 f q^r-d*. 
' JBDa* \ dn I JDa^ dq 

Employing Schwarz's inequality to (17), we have 

L L/v \ dn / J 
(18) 

=g4 [ f +^^£fairf q*(*4)*dx] . 
L J Da J L J Da J 

Integrating by parts and employing (12), one calculates: 

f qW^dx- f q*p -?*- dS -2 f fe f - ^ M dS 

+ 4ioa *>i*>Jdx-
Returning to inequality (18), we have with the above identity, for all 
ß>0, 

L Ja/v \ dn I J 

= [4W>^][ik<^ds 

+ ̂ f fc(^s 
2 Jao«* \ dn / 

+ 4JDJ,*,jdx] . 

Choosing ß = 4, the above inequality simplifies to 



450 P. CROOKE 

U dDa* \ dn / J 

where we have made use of the inequality 

Using this upper bound for $wa*(d\\tldn)2 dS, inequality (14) be
comes 

[Lew2*]' 
a [L,>"ds]'l^L ^'ds 

Using a form of the arithmetic-geometric mean inequality, we have for 
alia > 0, 

[ I„< A *> 8 *] 3 

< 3<72 r d 128(7 I 
(3<7 2 - l ) L 2A[sin(7r/2a)]4 3A3d3 J 

I 3 

where we have made use of the fact that 

d 
S7a

{q)= sin(„/2«)-

Recalling that the two constants d and a are still at our disposal, we 
optimize them by the choices 

1. d= 4(a)1'4 sin(wl2a)lVÄ, 
2. a = V3. 
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This completes the proof of Lemma 1. 
We remark that the upper bound for /Da(At/j)2 dx presented in 

Lemma 1 deteriorates as a becomes large. For larger a we present 
the following lemma. 

LEMMA 2. If $ is a sufficiently smooth function which satisfies (12), 
then for a> I we have 

wherey2=i Rsin(irla)l2. 

PROOF. We define the auxiliary function </> such that 

(19.a) A2<f> = 0 in Da, 

(I9.b) 0 = A0 = 0 on r = R, 

and 

(19.c) <f> = 0, A0 = p on dDa*. 

With the above definition of <\> it is not difficult to show that 

It can be shown (see Payne [9] ) that if h(x) = h(xiy x2) is a har
monic function on a bounded domain D whose boundary dD has 
everywhere nonnegative average curvature and if p denotes the 
strip of minimum width that encloses D, then 

L W'*sfL,|fc|'dS, 9^1. 
Since A<f> is a harmonic function in Da, we have for q = 2 

JD.<A«8*siL<A*>ads-
However, A<£ = p on dDa* and zero on the rest of dD; therefore, 
since p = R sin(7r/a), a > 1, we conclude that 

This completes the proof of Lemma 2. 
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We remark that it is possible to improve Lemma 2 for specific 
values of a. In particular, Payne [9] has shown that 

L^ iSTLw,dS 

where <rM is the maximum stress for the torsion problem on D. 
Saint-Venant (see Timoshenko [ 12] ) has computed aM for the 
domain Da when a = I, 3/2, 3. In particular, he showed that <TM = 
(0.849)R when a = 1; aM = (0.652)R when a = 3/2; and aM = 
(0.490)R when a = 3. However, these numbers yield only marginal 
improvements over the results of Lemma 2. 

In comparing the upper bounds for /^(Ai/*)2 dx afforded by 
Lemmas 1 and 2, we find that if y = min [y1, y 2 ] , then y = y1 for 
a = 1, 2, 3, 4 and y = y2 for a > 4. 

Finally, with the upper bounds for J*Da(A0)2dx we obtain the 
lower bound for A. in the case when a ^ 0 and c2 = 0: 

X ^ X 1 { 1 + 1/(A- 1)} 

where 

A = (c i )2 (A3-A')Lv p 2 r f S 

with the understanding that if a = 1, then y = y1. With our choice of 
p, one can show (see Luke [6], Abramowitz and Stegun [1], and 
Tranter [13]) that 

• — i L /-'<1) ^ a - 2 
2a-1L a^r 

and 

7 1 = ^ Ü a + l ] 2 T / . ( 1 ) X 

4a M7«+i/> 
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where here r ( ' ) is the gamma function and Hv( * ) denotes the Struve 
function of order v. Lastly, since dv2

3ldn and dv4
3ldn are ortho

gonal to p(r) on dDa*, and X5
3 =i X3

3, we conclude that X3 = 
min[X1

3,X5
3]. 

The subcase when c2 ^ 0 (which is the situation when v2 = 
v2

2 and X2 = X2
2) still remains. Using the same type of analysis as in 

the subcase when c2 = 0, one can show that 

X ^ X * [ 1 + 1 / (B- 1)] 

where 

B = x2xy 
(c 1 ) 2 ^ 2 - X1) 

V f 
— X1) hü**r ^2 • 

Therefore, in any case or subcase we have 

X ü H-* m i n U ^ i ] 2, [jaii] 2[1 + 1/(A - 1)], 

U:ViHl+l/(B-l)]}. 

Putting this eigenvalue inequality in the context of our integral in
equality, we have shown: 

THEOREM 1. Let fa (i = 1,2) be any sufficiently smooth, vector-
valued function which is defined on a two-dimensional domain D, 
which can be enclosed in a wedge of angle nla, a > { , and side-
length R. If in addition fa vanishes on the boundary of D and satisfies 
the divergence-free condition fa?j = OinD, then 

fafa dx g—- fa,jfa,j dx 
J D \ J D 

where 

X = R-*min{[j£+i] \ [jiVi] 2[1 + 1/(A - 1)], 

U V i ] 2 [ l + l / ( B - l ) ] } . 

3. Conclusion. Veite [14] has shown that X = A1 where A1 is the 
first eigenvalue for the clamped plate problem on a two-dimensional, 
bounded domain D. Furthermore, Payne and Weinberger (see Payne 
[8] ) have proven that A1 = X2 (an inequality conjectured by Wein
stein [15] ) where X2 is the second eigenvalue for the fixed membrane 
problem on D. Hence, applying these two results to our wedge 
domain Da, the literature affords the lower bound for X: 

(21) X ^ X2 = R- 2 min{ [£>] 2 [jQ<2>] 2 } . 
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For comparison purposes the lower bounds provided by the Wein-
stein-Velte result, (21), and our result, (20), have been computed for 
a = 1, 2, 3, 4. This juxtaposition is presented in the following table 
where we have assumed for the sake of simplicity that R = 1. 

X c=min{[^ ,
+ i]2 , 

Value 

a 

1 

2 

3 

4 

ot 

A W y » m i n { &<»>]*,[ j £ 

[J2(i)]2= 26.37 

[7V«)]2= 57.58 

Ü3 ( 2 ) l 2 = 95.27 

[J4i2)] 2 = 122-42 

1!1 _ 
[ j a V l ] 2 [ l + l / ( A - l ) ] , 

UlVi]2[i + i / ( g - i ) ] } 

1.3[</VI>]2= 35.29 

1.7[jV , ,]2= 70.77 

2.1[j4<«)]2= 122.32 

2 .2[ / 5
( I , ] 2 = 168.68 

In the above calculations we have let A = min{|ja
(2)] 2, [j^J ] 2} and 

the values of the various Struve functions have been taken from [4]. 
Calculations of Xc and \ w v when a > 4 seem to indicate that 

R2 ~ R2 AC ^ D 0 = DO "~ A W V ' 

Finally, to show how our lower bound is sensitive to the positioning 
of the origin, let D be a right isosceles triangular region with equal 
sides of unit length. If the origin is taken at the midpoint of the 
hypotenuse, then we obtain from (20) with a = 1, 

\ è 70.58. 

Placing the origin at the right-angled corner, we have with a = 2, 

k ^ 70.77. 

Finally, if we choose the origin at once of the acute-angled corners 
and letting a = 4 in (20), we find 

X ^ 84.34. 

4. Acknowledgement. The author would like to express his 
gratitude to Professor L. E. Payne, with whom the author had many 
fruitful discussions. 
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