ON AN INTEGRAL INEQUALITY FOR DIVERGENCE-FREE FUNCTIONS

P. S. CROOKE

1. Introduction. Let D be a bounded, two-dimensional domain with smooth boundary ∂D and $\phi_{i}\left(x_{1}, x_{2}\right)=\phi_{i}(x)[i=1,2]$ any sufficiently smooth vector-valued function which is defined on D, vanishes on ∂D, and satisfies the divergence-free condition, $\phi_{j, j}=0$ in D. Here the summation convention is used and a comma denotes differentiation; for example,

$$
\phi_{j, j}=\frac{\partial \phi_{1}}{\partial x_{1}}+\frac{\partial \phi_{2}}{\partial x_{2}} .
$$

Of interest in this work is the calculation of a positive constant λ such that

$$
\begin{equation*}
\int_{D} \phi_{i} \phi_{i} d x \leqq \frac{1}{\lambda} \int_{D} \phi_{i, j} \phi_{i, j} d x \tag{1}
\end{equation*}
$$

when D can be enclosed in a wedge of angle $\pi / \alpha, \alpha>\frac{1}{2}$. Ideally we would like to calculate an optimal value for λ; however, this does not seem possible and we shall, therefore, sharpen known results.

Inequality (1) has been employed in stability and uniqueness studies for the Navier-Stokes equations (see e.g. Serrin [11]) and in an examination of growth properties of solutions for a model of a dusty gas system (see Crooke [2]), among other applications.
It is generally possible to establish these types of inequalities by considering a corresponding variational problem. For inequality (1) we are interested in the following variational problem:

$$
\begin{equation*}
\hat{\lambda}=\inf _{\psi_{i} \in \mathbf{\in}(D)} \frac{\int_{D} \psi_{i, j} \psi_{i, j} d x}{\int_{D} \psi_{i} \psi_{i} d x} \tag{2}
\end{equation*}
$$

where $\Gamma(D)$ denotes the class of Dirichlet integrable, vector-valued functions which are defined on D, vanish on ∂D and satisfy $\psi_{j, j}=0$ in D. Hence, if λ is any lower bound for $\hat{\lambda}$ and ϕ_{i} any function belonging to $\Gamma(D)$, then

$$
\lambda \leqq \inf _{\psi_{i} \in \mathbf{Y}(D)} \frac{\int_{D} \psi_{i, j} \psi_{i, j} d x}{\int_{D} \psi_{i} \psi_{i} d x} \leqq \frac{\int_{D} \phi_{i, j} \phi_{i, j} d x}{\int_{D} \phi_{i} \phi_{i} d x},
$$

Received by the editors October 26, 1971.
AMS (MOS) subject classifications (1970). Primary 49G15, 49G05.
or

$$
\int_{D} \phi_{i} \phi_{i} d x \leqq \frac{1}{\lambda} \int_{D} \phi_{i, j} \phi_{i, j} d x
$$

We note that if

$$
\lambda^{\prime}=\inf _{\psi_{i} \in \Gamma^{\prime}(D)} \frac{\int_{D} \psi_{i, j} \psi_{i, j} d x}{\int_{D} \psi_{i} \psi_{i} d x}
$$

where $\Gamma^{\prime}(D)$ denotes the space of Dirichlet integrable, vector-valued functions which are defined on D and vanish on ∂D, then $\lambda^{\prime} \leqq \hat{\lambda}$. Lower bounds for λ^{\prime} abound in the literature. For example, the wellknown Faber-Krahn inequality (see [3], [5]) states $\lambda^{\prime} \geqq\left[j_{0}\right]^{2} / P^{2}$ where P is the radius of the circle having the same area as D and j_{0} is the first zero of the Bessel function J_{0}. Payne and Weinberger [10] have obtained a sharper lower bound for λ^{\prime} when D lies interior to a wedge of angle $\pi / \alpha, \alpha \geqq 1$. The results of this paper will be applicable to similar domains; however, we shall be interested in lower bounds for $\hat{\lambda}$, not λ^{\prime}. Serrin [11] and Velte [14] have presented lower bounds for $\hat{\lambda}$ which depend on the geometry of D.
2. An eigenvalue inequality. Suppose D is a two-dimensional, bounded domain which can be enclosed in a wedge of angle π / α, $\boldsymbol{\alpha}>\frac{1}{2}$. That is, if r denotes the distance from the apex of the wedge, which is assumed to be at the origin, then

$$
D \subset\{(r, \theta): \theta \in(0, \pi / \alpha), r \in(0, R)\}=D_{\alpha}
$$

As can readily be seen by its definition, D_{α} is the sector of a circle of radius R. Noting that $\hat{\lambda}$ is a monotone function of domain, it is sufficient to consider computing a lower bound for the eigenvalue

$$
\begin{equation*}
\tilde{\lambda}=\inf _{\psi_{i} \in \Gamma\left(D_{\alpha}\right)} \frac{\int_{D_{\alpha}} \psi_{i, j} \psi_{i, j} d x}{\int_{D_{\alpha}} \psi_{i} \psi_{i} d x} \tag{3}
\end{equation*}
$$

since $\tilde{\lambda} \leqq \hat{\lambda}$.
To compute a lower bound for $\tilde{\lambda}$, we shall use Weinstein's (see [15], [16]) " method of intermediate problems". In order to employ this technique it is necessary to change the form of (3) by introducing a stream-function v such that $\psi_{1}=v,_{2}$ and $\psi_{2}=-v,_{1}$. It is easily demonstrated that with this definition of $v(x)$ variational problem (3) is transformed into

$$
\begin{equation*}
\tilde{\lambda}=\inf _{r \in \Omega\left(D_{\alpha}\right)} \frac{\int_{D_{\alpha}}(\Delta v)^{2} d x}{\int_{D_{\alpha}}(\nabla v)^{2} d x} \tag{4}
\end{equation*}
$$

where $\Omega\left(D_{\alpha}\right)$ is the space of sufficiently smooth scalar functions which are defined on D_{α} and which with their normal derivatives vanish on ∂D_{α}. It might be noted that the positive constant $\tilde{\lambda}$ is the first eigenvalue of the buckling problem for an elastic plate occupying D_{α}. The corresponding problem for the square was one of the problems originally treated by Weinstein in [15]. Since the normal derivative of v, which we henceforth denote $\partial v / \partial n$, vanishes on ∂D_{α}, it follows that for any bounded function p defined on ∂D_{α} we have

$$
\oint_{\partial D_{\alpha}} p \frac{\partial v}{\partial n} d \mathrm{~S}=0 .
$$

This leads us to our first intermediate problem:

$$
\begin{equation*}
\lambda=\inf _{v \in \Omega^{\prime}\left(D_{\alpha}\right)} \frac{\int_{D_{\alpha}}(\Delta v)^{2} d x}{\int_{D_{\alpha}}(\nabla v)^{2} d x} \tag{5}
\end{equation*}
$$

where $\Omega^{\prime}\left(D_{\alpha}\right)$ is the space of sufficiently smooth scalar functions v defined on ∂D_{α}, satisfying the boundary conditions:

$$
\begin{array}{ll}
v=\partial v / \partial n=0 & \text { on } r=R, \\
v=0 & \text { on } \partial D_{\alpha}^{*}, \tag{6.b}
\end{array}
$$

and

$$
\begin{equation*}
\oint_{\partial D_{\alpha^{*}}} p \frac{\partial v}{\partial n} d S=0 \tag{6.c}
\end{equation*}
$$

where $\partial D_{\alpha}{ }^{*}$ denotes that portion of ∂D_{α} for which $\theta=0, \pi / \alpha$. Using the standard arguments of variational calculus, it follows that $\lambda \leqq \bar{\lambda}$.

The Euler equation and associated boundary conditions for the variational problem (5) can be shown to be:

$$
\begin{align*}
\Delta^{2} v+\lambda \Delta v & =0 & & \text { in } D_{\alpha}, \tag{7.a}\\
v & =\partial v / \partial n=0 & & \text { on } r=R, \tag{7.b}
\end{align*}
$$

and

$$
\begin{equation*}
v=0, \quad \Delta v=a p \quad \text { on } \partial D_{\alpha} * \tag{7.c}
\end{equation*}
$$

where a is an undetermined constant and $\Delta^{2} v=\Delta(\Delta v)$. Let v^{j} and $\lambda^{j}(j=1,2, \cdots)$ denote the eigenfunctions and corresponding eigenvalues of the base problem, i.e., problem (7) with $a=0$. That is, v^{j} and λ^{j} are solutions of

$$
\begin{aligned}
\Delta^{2} v^{j}+\lambda^{j} \Delta v^{j} & =0 & & \text { in } D_{\alpha}, \\
v^{j} & =\partial v^{j} / \partial n=0 & & \text { on } r=R,
\end{aligned}
$$

and

$$
v^{j}=\Delta\left(v^{j}\right)=0 \quad \text { on } \partial D_{\alpha}^{*}
$$

These eigenfunctions and eigenvalues can be computed explicitly, but as we shall see in the analysis that follows, it is only necessary to explicitly know the first three. They are

$$
v^{1}(r, \theta)=r^{\alpha} \sin (\alpha \theta)\left[r^{-\alpha} J_{\alpha}\left(\sqrt{\lambda^{1}} r\right)-R^{-\alpha} J_{\alpha}\left(\sqrt{\lambda^{1}} R\right)\right]
$$

and

$$
\begin{gathered}
\lambda^{1}=\frac{\left[j_{\alpha+1}^{(1)}\right]^{2}}{R^{2}} \\
v^{2}(r, \theta)=\left\{\begin{array}{l}
v_{1}^{2}=r^{\alpha} \sin (2 \alpha \theta)\left[r^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{1}^{2}} r\right)-R^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{1}{ }^{2}} R\right)\right] \\
\text { or } \\
v_{2}^{2}=r^{\alpha} \sin (\alpha \theta)\left[r^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{2}^{2}} r\right)-R^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{2}^{2}} R\right)\right]
\end{array}\right.
\end{gathered}
$$

and

$$
\begin{aligned}
& \lambda^{2}=\left\{\lambda_{1}{ }^{2}=\frac{\left[j_{2 \alpha+1}^{(1)}\right]^{2}}{R^{2}} \text { or } \lambda_{2}{ }^{2}=\frac{\left[j_{\alpha+1}^{(2)}\right]^{2}}{R}\right\} \\
& v^{3}(r, \theta)= \begin{cases}v_{1}{ }^{3}=r^{\alpha} \sin (3 \alpha \theta)\left[r^{-3 \alpha} J_{3 \alpha}\left(\sqrt{\lambda_{1}{ }^{3}}\right)-R^{-3 \alpha} J_{3 \alpha}\left(\sqrt{\lambda_{1}{ }^{3}} R\right)\right] \quad \text { or } \\
v_{2}{ }^{3}=r^{\alpha} \sin (2 \alpha \theta)\left[r^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{2}{ }^{3}}\right)-R^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{2}{ }^{3}} R\right)\right] \text { or } \\
v_{3}{ }^{3}=r^{\alpha} \sin (\alpha \theta)\left[r^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{3}{ }^{3}} r\right)-R^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{3}{ }^{3}} R\right)\right] \quad \text { or } \\
v_{4}{ }^{3}=r^{\alpha} \sin (2 \alpha \theta)\left[r^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{4}{ }^{3}} r\right)-R^{-2 \alpha} J_{2 \alpha}\left(\sqrt{\lambda_{4}{ }^{3}} R\right)\right] \quad \text { or } \\
v_{5}{ }^{3}=r^{\alpha} \sin (\alpha \theta)\left[r^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{5}{ }^{3}} r\right)-R^{-\alpha} J_{\alpha}\left(\sqrt{\lambda_{5}{ }^{3}} R\right)\right]\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \lambda^{3}=\left\{\lambda_{1}{ }^{3}=\frac{\left[j_{3 \alpha+1}^{(1)}\right]^{2}}{R^{2}}, \lambda_{2}{ }^{3}=\frac{\left[j_{2 \alpha+1}^{(2)}\right]^{2}}{R^{2}}, \lambda_{3}{ }^{3}=\frac{\left[j_{\alpha+1}^{(3)}\right]^{2}}{R^{2}}\right. \\
& \lambda_{4}{ }^{3}\left.=\frac{\left[j_{2 \alpha+1}^{(1)}\right]^{2}}{R^{2}} \text { or } \lambda_{5}{ }^{3}=\frac{\left[j_{\alpha+1}^{(2)}\right]^{2}}{R^{2}}\right\} .
\end{aligned}
$$

In the above expressions $j_{\nu}{ }^{(n)}$ denotes the nth zero of the Bessel function $J_{\nu}(\cdot)$. One should note that the superscripts in $v_{j}{ }^{i}$ and $\lambda_{j}{ }^{i}$ are to be interpreted as indices and not as powers.

Expanding $v(r, \theta)$ in a series of the eigenfunctions $v^{j}(r, \boldsymbol{\theta})$, we have

$$
v(r, \theta)=\sum_{i=1}^{\infty} B\left(v, v^{i}\right) \frac{v^{i}}{k^{i}}
$$

where we have set $B\left(v, v^{i}\right)=\int_{D_{\alpha}} v,{ }_{j} v^{i}{ }_{, j} d x$ and $k^{i}=B\left(v^{i}, v^{i}\right)$. We now develop an expression for $B\left(v, v^{i}\right)$ in terms of λ, λ^{i} and

$$
\oint_{\partial D_{\alpha}^{*}} p \frac{\partial v^{i}}{\partial n} d S
$$

Integrating by parts and using the boundary conditions for v and v^{i}, one finds that

$$
\begin{equation*}
B\left(v, v^{i}\right)=-\int_{D_{\alpha}} v\left(\Delta v^{i}\right) d x=-\int_{D_{\alpha}} v^{i}(\Delta v) d x \tag{8}
\end{equation*}
$$

Using Green's first identity and the appropriate boundary conditions for v^{i}, we obtain

$$
\begin{equation*}
\int_{D_{\alpha}} v^{i}\left(\Delta^{2} v\right) d x-\int_{D_{\alpha}} \Delta v\left(\Delta v^{i}\right) d x=-\oint_{\partial D_{\alpha}} \Delta v \frac{\partial v^{i}}{\partial n} d \mathrm{~S} \tag{9}
\end{equation*}
$$

Integrating the second term in (9) by parts twice, (9) becomes

$$
\int_{D_{\alpha}} v^{i}\left(\Delta^{2} v\right) d x-\int_{D_{\alpha}} v\left(\Delta^{2} v^{i}\right) d x=-\oint_{\partial D \alpha} \Delta v \frac{\partial v^{i}}{\partial n} d S
$$

Employing the differential equations satisfied by v and v^{i}, this identity transforms to

$$
-\lambda \int_{D_{\alpha}} v^{i}(\Delta v) d x+\lambda^{i} \int_{D_{\alpha}} v(\Delta v) d x=-\oint_{\partial D_{\alpha}^{*}} \Delta v \frac{\partial v^{i}}{\partial n} d S
$$

With (8), we have then

$$
\left(\lambda-\lambda^{i}\right) B\left(v, v^{i}\right)=-\oint_{\partial D_{\alpha}^{*}} \Delta v \frac{\partial v^{i}}{\partial n} d \mathrm{~S}=-\oint_{\partial D_{\alpha}^{*}} a p \frac{\partial v^{i}}{\partial n} d \mathrm{~S}
$$

or

$$
B\left(v, v^{i}\right)=-\frac{a \oint_{\partial D_{\alpha}^{*}} p\left(\partial v^{i} / \partial n\right) d S}{\lambda^{i}-\lambda}
$$

Our infinite series for $v(r, \theta)$ then becomes

$$
v(r, \theta)=\sum_{i=1}^{\infty} \frac{\oint_{\partial D_{\alpha} *} p\left(\partial v^{i} / \partial n\right) d S}{\lambda^{i}-\lambda} \frac{v^{i}}{k^{i}} .
$$

Since $\oint_{\partial D_{\alpha}}{ }^{*} p(\partial v / \partial n) d S$ must vanish, we find that λ must satisfy the expression

$$
\begin{equation*}
a \sum_{i=1}^{\infty} \frac{\left[\oint_{\partial D_{\alpha}{ }^{*}} p\left(\partial v^{i} / \partial n\right) d S\right]^{2}}{k^{i}\left(\lambda^{i}-\lambda\right)}=0 \tag{10}
\end{equation*}
$$

At this point we choose our function $p(r)$ which has been, up to this time, arbitrary. Namely, we set $p(r)=\partial v 1 / \partial n$ on ∂D_{α}^{*}. With respect to equation (10) we have two cases to consider.

Case I. If $a=0$, then λ is one of the λ^{i} s. Since with the above choice of $p(r)$ we have that

$$
\oint_{\partial D_{\alpha^{*}}} p(r) \frac{\partial v^{1}}{\partial n} d S \neq 0 \quad \text { and } \quad \oint_{\partial D_{\alpha^{*}}} p(r) \frac{\partial v_{2}^{2}}{\partial n} d \mathrm{~S} \neq 0
$$

then necessarily $\lambda=\lambda_{1}{ }^{2}$.
Case II. Suppose $a \neq 0$. In this case we necessarily have that λ must satisfy

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{\left[\oint_{\partial D_{\alpha}} p\left(\partial v^{1} / \partial n\right) d S\right]^{2}}{k^{i}\left(\lambda^{i}-\lambda\right)}=\sum_{i=1}^{\infty} \frac{\left(c^{i}\right)^{2}}{\lambda^{i}-\lambda}=0 \tag{11}
\end{equation*}
$$

where we have set

$$
c^{i}=\frac{1}{\sqrt{k^{i}}} \oint_{\partial D_{\alpha^{*}}} p \frac{\partial v^{i}}{\partial n} d S
$$

We now define the auxiliary function ψ such that

$$
\begin{align*}
\Delta^{2} \psi & =0 & & \text { in } D_{\alpha} \tag{12.a}\\
\psi & =\frac{\partial \psi}{\partial n}=0 & & \text { on } r=R \tag{12.b}
\end{align*}
$$

and

$$
\begin{equation*}
\psi=0, \quad \Delta \psi=p \quad \text { on } \partial D_{\alpha}^{*} \tag{12.c}
\end{equation*}
$$

Using the differential equations for v^{i} and ψ, together with Green's identity, we find that

$$
\begin{aligned}
\oint_{\partial D_{\alpha}} p \frac{\partial v^{i}}{\partial n} d S & =\oint_{\partial D_{\alpha}} \Delta \psi \frac{\partial v^{i}}{\partial n} d S=\int_{D_{\alpha}} \psi\left(\Delta^{2} v^{i}\right) d x \\
& =-\lambda^{i} \int_{D_{\alpha}} \psi \Delta v^{i} d x=\lambda^{i} B\left(v^{i}, \psi\right)
\end{aligned}
$$

Hence, (11) becomes

$$
\begin{equation*}
\frac{\left(c^{1}\right)^{2}}{\lambda-\lambda^{1}}=\sum_{i=2}^{\infty} \frac{\lambda^{i}}{\lambda^{i}-\lambda}\left\{\frac{\lambda^{i}}{k^{i}}\left[B\left(v^{i}, \psi\right)\right]^{2}\right\} . \tag{13}
\end{equation*}
$$

We now consider two subcases, depending on whether c_{2} is zero or not.

Suppose $c_{2}=0$ (which is the case when $v^{2}=v_{1}{ }^{2}$); then (13) reduces to

$$
\frac{\left(c^{1}\right)^{2}}{\lambda-\lambda^{1}}=\sum_{i=3}^{\infty} \frac{\left(\lambda^{i}\right)^{2}}{k^{i}\left(\lambda^{i}-\lambda\right)}\left[B\left(v^{i}, \psi\right)\right]^{2}
$$

Now either $\lambda \geqq \lambda^{3}$ or $\lambda<\lambda^{3}$. Since Case I leads to the best possible result, $\lambda=\lambda_{1}{ }^{2}$, the only inequality of interest is when $\lambda<\lambda^{3}$. We then have, noting that for all $i>3$

$$
\lambda^{i} /\left(\lambda^{i}-\lambda\right) \leqq \lambda^{3} /\left(\lambda^{3}-\lambda\right),
$$

the result

$$
\frac{\left(c^{1}\right)^{2}}{\lambda-\lambda^{1}} \leqq \frac{\lambda^{3}}{\lambda^{3}-\lambda} \sum_{i=3}^{\infty} \frac{\lambda^{i}}{k^{i}}\left[B\left(v^{i}, \psi\right)\right]^{2}
$$

or

$$
\frac{\left(c^{1}\right)^{2}}{\lambda-\lambda^{1}} \leqq \frac{\lambda^{3}}{\lambda^{3}-\lambda}\left\{\sum_{i=1}^{\infty} \frac{\lambda^{i}}{k^{i}}\left[B\left(v^{i}, \psi\right)\right]^{2}-\frac{\lambda^{1}}{k^{1}}\left[B\left(v^{1}, \psi\right)\right]^{2}\right\} .
$$

One can show by expanding $\psi(r, \theta)$ in a Fourier series,

$$
\psi(r, \theta)=\sum_{i=1}^{\infty} B\left(v^{i}, \psi\right) \frac{v^{i}}{k^{i}},
$$

that

$$
\sum_{i=1}^{\infty} \frac{\lambda^{i}}{k^{i}}\left[B\left(v^{i}, \psi\right)\right]^{2}=\int_{D_{\alpha}}(\Delta \psi)^{2} d x .
$$

This identity implies that

$$
\frac{\left(c^{1}\right)^{2}}{\lambda-\lambda^{1}} \leqq \frac{\lambda^{3}}{\lambda^{1}\left(\lambda^{3}-\lambda^{1}\right)}\left\{\lambda^{1} \int_{D_{\alpha}}(\Delta \psi)^{2} d x-\left(c^{1}\right)^{2}\right\} .
$$

Finally, after considerable algebraic manipulation, one can show that

$$
\lambda \geqq \lambda^{1}[1+1 /(A-1)]
$$

where

$$
A=\frac{\lambda^{3} \lambda^{1}}{\left(c^{1}\right)^{2}\left(\lambda^{3}-\lambda^{1}\right)} \int_{D_{\alpha}}(\Delta \psi)^{2} d x .
$$

This yields a lower bound for λ. However since $\int_{D_{\alpha}}(\Delta \psi)^{2} d x$ is not easily computable, we present two lemmas which afford upper bounds for this quantity in terms of $\oint_{\partial D_{\alpha}}{ }^{*} p^{2} d S$.
Lemma 1. Let ψ satisfy (12). Then

$$
\int_{D_{\alpha}}(\Delta \psi)^{2} d x \leqq \gamma^{1} \oint_{\partial D_{\alpha^{*}}} p^{2} d \mathrm{~S}
$$

where γ^{1} is a constant which depends on α and D_{α} and is given by

$$
\boldsymbol{\gamma}^{1}=\frac{(3)^{3 / 8}}{(2)^{1 / 3} \sqrt{\Lambda} \sin (\pi / 2 \boldsymbol{\alpha})} .
$$

Here $\boldsymbol{\Lambda}$ is any constant such that

$$
\int_{D_{\alpha}}(\nabla u)^{2} d x \leqq \frac{1}{\Lambda} \int_{D_{\alpha}}(\Delta u)^{2} d x
$$

where u is any sufficiently smooth function which with its normal derivative vanishes on ∂D_{α}.
Proof. Integrating by parts twice and using boundary condition (12.c), we find that ${ }^{-}$

$$
\int_{D_{\alpha}}(\Delta \psi)^{2} d x=\int_{\partial D_{\alpha^{*}}} p \frac{\partial \psi}{\partial n} d S .
$$

An application of the Schwarz inequality yields

$$
\begin{equation*}
\left[\int_{D_{\alpha}}(\Delta \psi)^{2} d x\right]^{2} \leqq\left[\oint_{\partial D_{\alpha}^{*}}(p)^{2} d s\right]\left[\oint_{\partial D_{\alpha^{*}}}\left(\frac{\partial \psi}{\partial n}\right)^{2} d S\right] \tag{14}
\end{equation*}
$$

Let (\bar{x}_{1}, \bar{x}_{2}) be an arbitrary point in D and consider

$$
\begin{align*}
& \int_{D_{\alpha}}\left(x_{k}-\bar{x}_{k}\right) \psi_{, k} \psi_{, j j} d x \\
&=-\int_{D_{\alpha}}\left[\left(x_{k}-\bar{x}_{k}\right) \psi_{, k}\right]_{, j} \psi_{, j} d x \tag{15}\\
&+\int_{\partial D_{\alpha}}\left(x_{k}-\bar{x}_{k}\right) \psi_{, k} \psi_{, j} n_{j} d \mathrm{~S}
\end{align*}
$$

where n_{j} is the j th component of the outward normal vector on ∂D. It can be shown by simple manipulations that (15) collapses to

$$
\begin{equation*}
\int_{D_{\alpha}}\left(x_{k}-\bar{x}_{k}\right) \psi_{, k} \psi_{, j j} d x=\frac{1}{2} \oint_{\partial D_{\alpha^{*}}}\left(x_{k}-\bar{x}_{k}\right) n_{k}\left(\frac{\partial \psi}{\partial n}\right)^{2} d \mathrm{~S} \tag{16}
\end{equation*}
$$

We now suppose the point $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ is chosen to lie on the line $\theta=$ $\pi / 2 \alpha$. Furthermore, let d be a positive number such that $d \leqq$ $2\left(x_{k}-\bar{x}_{k}\right) n_{k}$ for all $x \in \partial D_{\alpha}{ }^{*}$. If $q^{2}=\left(x_{k}-\bar{x}_{k}\right)\left(x_{k}-\bar{x}_{k}\right) \quad$ and $h=\left(x_{k}-\bar{x}_{k}\right) n_{k}$, then (16) becomes

$$
\begin{equation*}
\oint_{\partial D_{\alpha^{*}}} h\left(\frac{\partial \psi}{\partial n}\right)^{2} d S=2 \int_{D_{\alpha}} q \frac{\partial \psi}{\partial q} d x . \tag{17}
\end{equation*}
$$

Employing Schwarz's inequality to (17), we have

$$
\begin{align*}
& {\left[\oint_{\partial D_{\alpha^{*}}} h\left(\frac{\partial \psi}{\partial n}\right)^{2} d \mathrm{~S}\right]^{2}} \tag{18}\\
& \quad \leqq 4\left[\int_{D \alpha} \psi_{, j} \psi_{, j} d x\right]\left[\int_{D \alpha} q^{2}\left(\psi_{, j j}\right)^{2} d x\right] .
\end{align*}
$$

Integrating by parts and employing (12), one calculates:

$$
\begin{aligned}
\int_{D_{\alpha}} q^{2}\left(\psi_{, j j}\right)^{2} d x= & \oint_{\partial D_{\alpha^{*}}} q^{2} p \frac{\partial \psi}{\partial n} d S-2 \oint_{\partial D_{\alpha^{*}}} h\left(\frac{\partial \psi}{\partial n}\right)^{2} d S \\
& +4 \int_{D_{\alpha}} \psi_{, j} \psi_{, j} d x .
\end{aligned}
$$

Returning to inequality (18), we have with the above identity, for all $\beta>0$,

$$
\begin{aligned}
& d^{2}\left[\oint_{\partial D_{\alpha^{*}}}\left(\frac{\partial \psi}{\partial n}\right)^{2} d S\right]^{2} \\
& \leqq\left[4 \int_{D_{\alpha}} \psi_{, j} \psi_{, j} d x\right]\left[\frac{1}{2 \beta} \oint_{\partial D_{\alpha^{*}}} \frac{q^{4} p^{2}}{h} d S\right. \\
& +\frac{(\beta-4)}{2} \oint_{\partial D_{\alpha_{*}^{*}}} h\left(\frac{\partial \psi}{\partial n}\right)^{2} d S \\
& \left.+4 \int_{D_{\alpha}} \psi, \psi_{, j} d x\right] .
\end{aligned}
$$

Choosing $\beta=4$, the above inequality simplifies to

$$
\begin{aligned}
& d^{2}\left[\oint_{\partial D_{\alpha^{*}}}\left(\frac{\partial \psi}{\partial n}\right)^{2} d \mathrm{~S}\right] \\
& \begin{aligned}
\leqq \frac{1}{2 \Lambda d}\left[\int_{D_{\alpha}}(\Delta \psi)^{2} d x\right] & {\left[\oint_{\partial D_{\alpha^{*}}} q^{4} p^{2} d \mathrm{~S}\right] } \\
& +\frac{16}{\Lambda^{2}}\left[\int_{D_{\alpha}}(\Delta \psi)^{2} d x\right]^{2}
\end{aligned}
\end{aligned}
$$

where we have made use of the inequality

$$
\int_{D_{\alpha}} \psi_{, j} \psi_{, j} d x \leqq \frac{1}{\Lambda} \int_{D_{\alpha}}\left(\psi_{, j j}\right)^{2} d x
$$

Using this upper bound for $\left.\oint_{\partial D_{\alpha^{*}}} \partial \psi / \partial n\right)^{2} d S$, inequality (14) becomes

$$
\begin{aligned}
& {\left[\int_{D_{\alpha}}(\Delta \psi)^{2} d x\right]^{3}} \\
& \quad \leqq\left[\oint_{\partial D_{\alpha^{*}}} p^{2} d \mathrm{~S}\right]^{2}\left[\frac{1}{2 \Lambda d^{3}} \oint_{\partial D_{\alpha^{*}}} q^{4} p^{2} d \mathrm{~S}\right. \\
& \\
& \left.\quad+\frac{16}{\Lambda^{2} d^{2}} \int_{D_{\alpha}}(\Delta \psi)^{2} d x\right]
\end{aligned}
$$

Using a form of the arithmetic-geometric mean inequality, we have for all $\boldsymbol{\sigma}>0$,

$$
\begin{aligned}
& {\left[\int_{D_{\alpha}}(\Delta \psi)^{2} d x\right]^{3}} \\
& \quad \leqq \frac{3 \boldsymbol{\sigma}^{2}}{\left(3 \boldsymbol{\sigma}^{2}-1\right)}\left[\frac{d}{2 \Lambda[\sin (\pi / 2 \alpha)]^{4}}+\frac{128 \sigma}{3 \Lambda^{3} d^{3}}\right] \\
& \quad \cdot\left[\oint_{\partial D_{\alpha^{*}}} p^{2} d \mathrm{~S}\right]^{3}
\end{aligned}
$$

where we have made use of the fact that

$$
\sup _{D_{\alpha}}(q)=\frac{d}{\sin (\pi / 2 \alpha)} .
$$

Recalling that the two constants d and $\boldsymbol{\sigma}$ are still at our disposal, we optimize them by the choices

1. $d=4(\boldsymbol{\sigma})^{1 / 4} \sin (\pi / 2 \alpha) / \sqrt{\Lambda}$,
2. $\boldsymbol{\sigma}=\sqrt{3}$.

This completes the proof of Lemma 1.
We remark that the upper bound for $\int_{D_{\alpha}}(\Delta \psi)^{2} d x$ presented in Lemma 1 deteriorates as $\boldsymbol{\alpha}$ becomes large. For larger $\boldsymbol{\alpha}$ we present the following lemma.

Lemma 2. If ψ is a sufficiently smooth function which satisfies (12), then for $\alpha>1$ we have

$$
\int_{D_{\alpha}}(\Delta \psi)^{2} d x \leqq \gamma^{2} \oint_{\partial D_{\alpha}{ }^{*}} p^{2} d S
$$

where $\gamma^{2}=R \sin (\pi / \alpha) / 2$.
Proof. We define the auxiliary function ϕ such that

$$
\begin{align*}
\Delta^{2} \phi & =0 & & \text { in } D_{\alpha} \tag{19.a}\\
\phi & =\Delta \phi=0 & & \text { on } r=R \tag{19.b}
\end{align*}
$$

and

$$
\begin{equation*}
\phi=0, \quad \Delta \phi=p \quad \text { on } \partial D_{\alpha}^{*} \tag{19.c}
\end{equation*}
$$

With the above definition of ϕ it is not difficult to show that

$$
\int_{D_{\alpha}}(\Delta \psi)^{2} d x \leqq \int_{D_{\alpha}}(\Delta \phi)^{2} d x
$$

It can be shown (see Payne [9]) that if $h(x)=h\left(x_{1}, x_{2}\right)$ is a harmonic function on a bounded domain D whose boundary ∂D has everywhere nonnegative average curvature and if ρ denotes the strip of minimum width that encloses D, then

$$
\int_{D}|h|^{q} d x \leqq \frac{\rho}{2} \oint_{\partial D}|h|^{q} d S, \quad q \geqq 1
$$

Since $\Delta \phi$ is a harmonic function in D_{α}, we have for $q=2$

$$
\int_{D_{\alpha}}(\Delta \phi)^{2} d x \leqq \frac{\rho}{2} \oint_{\partial D_{\alpha}}(\Delta \phi)^{2} d \mathrm{~S}
$$

However, $\Delta \phi=p$ on ∂D_{α}^{*} and zero on the rest of ∂D; therefore, since $\rho=R \sin (\pi / \boldsymbol{\alpha}), \alpha>1$, we conclude that

$$
\int_{D_{\alpha}}(\Delta \phi)^{2} d x \leqq \frac{R \sin (\pi / \boldsymbol{\alpha})}{2} \oint_{\partial D_{\alpha^{*}}} p^{2} d \mathrm{~S}
$$

This completes the proof of Lemma 2.

We remark that it is possible to improve Lemma 2 for specific values of $\boldsymbol{\alpha}$. In particular, Payne [9] has shown that

$$
\int_{D}|h|^{q} d x \leqq \frac{\sigma_{M}}{2} \oint_{\partial D}|h|^{q} d \mathrm{~S}
$$

where σ_{M} is the maximum stress for the torsion problem on D. Saint-Venant (see Timoshenko [12]) has computed σ_{M} for the domain D_{α} when $\alpha=1,3 / 2,3$. In particular, he showed that $\sigma_{M}=$ $(0.849) R$ when $\alpha=1 ; \sigma_{M}=(0.652) R$ when $\alpha=3 / 2 ;$ and $\sigma_{M}=$ $(0.490) R$ when $\alpha=3$. However, these numbers yield only marginal improvements over the results of Lemma 2.

In comparing the upper bounds for $\int_{D_{\alpha}}(\Delta \psi)^{2} d x$ afforded by Lemmas 1 and 2, we find that if $\gamma=\min \left[\gamma^{1}, \gamma^{2}\right]$, then $\gamma=\gamma^{1}$ for $\alpha=1,2,3,4$ and $\gamma=\gamma^{2}$ for $\alpha>4$.

Finally, with the upper bounds for $\int_{D_{\alpha}}(\Delta \psi)^{2} d x$ we obtain the lower bound for λ in the case when $a \neq 0$ and $c_{2}=0$:

$$
\lambda \geqq \lambda^{1}\{1+1 /(A-1)\}
$$

where

$$
A=\frac{\lambda^{3} \lambda^{1} \gamma}{\left(c^{1}\right)^{2}\left(\lambda^{3}-\lambda^{1}\right)} \oint_{\partial D_{\alpha^{*}}} p^{2} d S
$$

with the understanding that if $\alpha \leqq 1$, then $\gamma=\gamma^{1}$. With our choice of p, one can show (see Luke [6], Abramowitz and Stegun [1], and Tranter [13]) that

$$
\begin{aligned}
& \oint_{\partial D_{\alpha^{*}}} p(r) \frac{\partial v^{1}}{\partial n} d S=\oint_{\partial D_{\alpha^{*}}} p^{2} d S=R^{-1} J_{\alpha}^{2}\left(j_{\alpha+1}^{(1)}\right) \\
& \cdot\left\{\frac{4 \alpha^{2}}{4 \alpha^{2}-1}\left[\left(j_{\alpha+1}^{(1)}\right)^{2}+\alpha+\frac{1}{2}\right]\right. \\
& \quad-\frac{4 \alpha^{2}}{2 \alpha-1}\left[1+\frac{2^{\alpha-1} \sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}{\left(j_{\alpha+1}^{(1)}\right)^{\alpha-2}}\right. \\
& \left.\left.\cdot\left(H_{\alpha+1}\left(j_{\alpha+1}^{(1)}\right)-\frac{2 \alpha}{j_{\alpha+1}^{(1)}} H_{\alpha}\left(j_{\alpha+1}^{(1)}\right)\right)\right]+\frac{2 \alpha^{2}}{2 \alpha-1}\right\}
\end{aligned}
$$

and

$$
k^{1}=\frac{\pi\left[j_{\alpha+1}^{(1)}\right]^{2}}{4 \alpha} J_{\alpha}\left(j_{\alpha+1}^{(1)}\right),
$$

where here $\Gamma(\cdot)$ is the gamma function and $H_{\nu}(\cdot)$ denotes the Struve function of order ν. Lastly, since $\partial v_{2}^{3 / \partial n}$ and $\partial v_{4} 3 / \partial n$ are orthogonal to $p(r)$ on $\partial D_{\alpha}{ }^{*}$, and $\lambda_{5}{ }^{3} \leqq \lambda_{3}{ }^{3}$, we conclude that $\lambda^{3}=$ $\min \left[\lambda_{1}{ }^{3}, \lambda_{5}{ }^{3}\right]$.

The subcase when $c_{2} \neq 0$ (which is the situation when $v^{2}=$ $v_{2}{ }^{2}$ and $\lambda^{2}=\lambda_{2}{ }^{2}$) still remains. Using the same type of analysis as in the subcase when $c_{2}=0$, one can show that

$$
\lambda \geqq \lambda^{1}[1+1 /(B-1)]
$$

where

$$
B=\frac{\lambda^{2} \lambda^{1} \boldsymbol{\gamma}}{\left(c^{1}\right)^{2}\left(\lambda^{2}-\lambda^{1}\right)} \oint_{\partial D_{\alpha}{ }^{*}} p^{2} d S, \quad \lambda^{2}=\lambda_{2}{ }^{2}
$$

Therefore, in any case or subcase we have

$$
\begin{align*}
& \lambda \geqq R^{-2} \min \left\{\left[j_{2 \alpha+1}^{(1)}\right]^{2},\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(A-1)]\right. \\
& {\left.\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(B-1)]\right\} . } \tag{20}
\end{align*}
$$

Putting this eigenvalue inequality in the context of our integral inequality, we have shown:

Theorem 1. Let $\phi_{i}(i=1,2)$ be any sufficiently smooth, vectorvalued function which is defined on a two-dimensional domain D, which can be enclosed in a wedge of angle $\pi / \boldsymbol{\alpha}, \alpha>\frac{1}{2}$, and sidelength R. If in addition ϕ_{i} vanishes on the boundary of D and satisfies the divergence-free condition $\phi_{j, j}=0$ in D, then

$$
\int_{D} \phi_{i} \phi_{i} d x \leqq \frac{1}{\lambda} \int_{D} \phi_{i, j} \phi_{i, j} d x
$$

where

$$
\begin{aligned}
& \lambda=R^{-2} \min \left\{\left[j_{2 \alpha+1}^{(1)}\right]^{2},\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(\right.A-1)] \\
& {\left.\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(B-1)]\right\} . }
\end{aligned}
$$

3. Conclusion. Velte [14] has shown that $\lambda=\Lambda^{1}$ where Λ^{1} is the first eigenvalue for the clamped plate problem on a two-dimensional, bounded domain D. Furthermore, Payne and Weinberger (see Payne [8]) have proven that $\Lambda^{1} \geqq \bar{\lambda}^{2}$ (an inequality conjectured by Weinstein [15]) where $\bar{\lambda}^{2}$ is the second eigenvalue for the fixed membrane problem on D. Hence, applying these two results to our wedge domain D_{α}, the literature affords the lower bound for λ :

$$
\begin{equation*}
\lambda \geqq \bar{\lambda}^{2}=R^{-2} \min \left\{\left[j_{2 \alpha}^{(1)}\right]^{2},\left[j_{\alpha}^{(2)}\right]^{2}\right\} \tag{21}
\end{equation*}
$$

For comparison purposes the lower bounds provided by the Wein-stein-Velte result, (21), and our result, (20), have been computed for $\alpha=1,2,3,4$. This juxtaposition is presented in the following table where we have assumed for the sake of simplicity that $R=1$.

$$
\lambda_{C}=\min \left\{\left[j_{2 \alpha+1}^{(1)}\right]^{2},\right.
$$

Value of

$$
\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(A-1)]
$$

$\frac{\alpha}{2}$	$\lambda_{W V}=\min \left\{\left[j_{\alpha}^{(2)}\right]^{2},\left[j_{2 a}^{(1)}\right]^{2}\right\}$	$\left.\left[j_{\alpha+1}^{(1)}\right]^{2}[1+1 /(B-1)]\right\}$
1	$\left[j_{2}{ }^{(1)}\right]^{2}=26.37$	$1.3\left[j_{2}{ }^{(1)}\right]^{2}=35.29$
2	$\left[j_{4}{ }^{(1)}\right]^{2}=57.58$	$1.7\left[j_{3}{ }^{(1)}\right]^{2}=70.77$
3	$\left[j_{3}^{(2)}\right]^{2}=95.27$	$2.1\left[j_{4}^{(1)}\right]^{2}=122.32$
4	$\left[j_{4}^{(2)}\right]^{2}=122.42$	$2.2\left[j_{5}^{(1)}\right]^{2}=168.68$

In the above calculations we have let $\Lambda=\min \left\{\left[j_{\alpha}^{(2)}\right]^{2},\left[j_{2 \alpha}^{(1)}\right]^{2}\right\}$ and the values of the various Struve functions have been taken from [4]. Calculations of λ_{C} and $\lambda_{W V}$ when $\alpha>4$ seem to indicate that

$$
\lambda_{C}>\frac{\left[j_{\alpha+1}^{(2)}\right]^{2}}{R^{2}} \geqq \frac{\left[j_{\alpha}^{(2)}\right]^{2}}{R^{2}}=\lambda_{W V} .
$$

Finally, to show how our lower bound is sensitive to the positioning of the origin, let D be a right isosceles triangular region with equal sides of unit length. If the origin is taken at the midpoint of the hypotenuse, then we obtain from (20) with $\boldsymbol{\alpha}=1$,

$$
\lambda \geqq 70.58 .
$$

Placing the origin at the right-angled corner, we have with $\alpha=2$,

$$
\lambda \geqq 70.77
$$

Finally, if we choose the origin at once of the acute-angled corners and letting $\alpha=4$ in (20), we find

$$
\lambda \geqq 84.34
$$

4. Acknowledgement. The author would like to express his gratitude to Professor L. E. Payne, with whom the author had many fruitful discussions.

Bibliography

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover, New York, 1966. MR 34 \#8606.
2. P. S. Crooke, On growth properties of solutions of the Saffman dusty gas model, Z. Angew. Math. Phys. 23 (1972), 182-200.
3. G. Faber, Beweis dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, S.-B. Bayer. Akad. Wiss. 1923, 169-172.
4. C. W. Horton, A short table of Struve functions and of some integrals involving Bessel and Struve functions, J. Math. Physics 29 (1950), 56-58. MR 11, 691.
5. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1924), 97-100.
6. Y. L. Luke, Integrals of Bessel functions, McGraw-Hill, New York, 1962. MR 25 \#5198.
7. National Bureau of Standards, Tables of $n!$ and $\Gamma(n+1 / 2)$ for the first thousand values of n, Appl. Math. Ser., U. S. Government Printing Office, Washington, D. C., 1951.
8. L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517-529. MR 17, 42.
9. -_, Bounds for the maximum stress in the Saint-Venant torsion problem, Indian J. Mech. Math., Special Issue in Honor of B. Sen, Part I (1968), 51-59.
10. L. E. Payne and H. F. Weinberger, A Faber-Krahn inequality for wedgelike membranes, J. Math. Physics 39 (1960), 182-188. MR 23 \#B1202.
11. J. B. Serrin, Jr., On the stability of viscous fluid motions, Arch. Rational Mech. Anal. 3 (1959), 1-13. MR 21 \#3993.
12. T. Timoshenko, Theory of elasticity, McGraw-Hill, New York, 1934.
13. C. J. Tranter, Bessel functions with some physical applications, Hart, New York, 1969. MR 39 \#3053.
14. W. Velte, Über ein Stabilitätskriterium der Hydrodynamik, Arch. Rational Mech. Anal. 9 (1962), 9-20. MR 27 \#5435.
15. A. Weinstein, Etude des spectres des equations aus dérivées partielles de la thèorie des plaques élastiques, Mem. Sci. Math., fasc. 88, Gauthier-Villars, Paris, 1937.
16. -, The intermediate problems and the maximum-minimum theory of eigenvalues, J. Math. Mech. 12 (1963), 235-245. MR 27 \#5025.

Vanderbilt University, Nashville, Tennessee 37203

