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GENERAL RADICAL THEORY IN RINGS 
W. G. LEAVITT 

1. The general radical theory. A radical property, speaking rough
ly, is one which can be "divided out". Thus, for example, any abelian 
group G has a largest torsion subgroup H = {x G. G \ nx = 0 for some 
positive integer n} such that GlH is torsion-free. Another perfectly 
typical example is the sum I of all nil ideals (every element nilpotent) 
of a ring R. It is easy to see that I is itself a nil ideal and that RII 
has no nonzero nil ideals. It will be clear as we go along that most 
of what we do could just as well be done in a much more general 
category (yielding, as special cases, the parallel theories in groups, 
rings, modules, algebras, and so on). However, to avoid too much 
generality we will stick to rings and agree that (unless otherwise 
stated) all rings considered will belong to some arbitrary (but fixed) 
universal class W of not necessarily associative rings. Mostly we can 
as well take W to be the class of all such rings, but the class could be 
more restricted, provided that it has the properties: 

(1) Hereditary; that is, I <RGW implies IEW (where l< R 
means I is an ideal of K). 

(2) Homomorphically closed; that is R E W implies all RII G. W. 
One of the motivations for studying radicals is that often the 

"dividing out" process yields a ring which in some sense is simpler 
than the original one and hence possibly more amenable. A typical 
example is the Wedderburn-Artin theorem: If R is a (associative) 
ring with descending chain condition on left (or right) ideals and I 
is the sum of all nilpotent ideals of R, then RII is the direct sum of 
a finite number of simple rings each a complete matrix ring over some 
division ring. Even more, it is always hoped that one may be able to 
extract information about the original ring. For example, if the 
Jacobson radical / of a ring R is nil then any idempotent element u 
(that is u2 = u) of RIJ has an inverse image in R which is idempotent. 
Much of what can be done will of course depend on the kind of ring 
and the particular radical. However quite a bit can be said about 
radicality in general, and in any case it is worthwhile looking at the 
general theory, if only to bring a certain amount of order into the 
bewildering tangle of results in the area. 
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The axiomatization we give for radical is due to Kuros [1] and, 
independently, Amitsur [2]. A subclass PC. W will be called 
radical if every R G W contains an ideal / = P(R) which is the 
"largest" P-ideal of R (in the sense that / G F and / < R with / G P 
implies / Ç 7), and such that RI I contains no nonzero P-ideals. 

We quote some theorems without proof: (Note. The proofs are 
easy, and most can be found in [3].) 

THEOREM 1. P is a radical class if and only if (Rl) P is homo-
morphically closed, and (R2) R (f P implies some 0 ^ R/I G SP, 
where SP = {KEW \if 0 f I< K then / $ P} (note that SP is 
called the semisimple class of the radical P). 

A criterion for radicality generally easier to check than the original 
definition (or Theorem 1) is 

THEOREM 2. P is a radical class if and only if (Rl), (R2a) if I, 
RI I G P then R G P, and (R2b) if {I{} is a chain of ideals ofR with all 
U G P then U h G F. 

There is a far-reaching (though not quite perfect) duality between 
semisimplicity as a property and radicality. We could, in fact, 
axiomatize semisimplicity as: A class Q is called semisimple if it has 
the properties: 

(51) I f R G Ç a n d O ^ j < R t h e n s o m e O ^ / / / G Ç, and 
(52) if R $ Q then there is some 0 f I < R with J G UQ, 

where UQ = {K G W | all 0 ^ K/I $ Q}. 
The duality is in interchanging ideal with image, when inter

changing radical and semisimple. Thus (R2) and (S2) are dual but 
(Rl) and (SI) are not quite. 

If the class W in which we are working consists of associative rings, 
or even alternative rings (namely rings in which all x2y = x(xy) and 
xy2 = (xy)y), there is a theorem which says that all semisimple 
classes are hereditary. Thus (in this case) we could replace (SI) by 
(SI '): Qis hereditary; which is indeed dual to (Rl). 

Typical dual theorems: 

THEOREM 3. If P is a radical class then SP is semisimple and 
USP = F. 

THEOREM 4. If Ç is a semisimple class then UQ is radical and 
SUQ = Q. 

Note that if Q satisfies only (SI) then UQ is still radical (it is called 
the upper radical defined by the class Q) and Q Ç SUQ. In fact 
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THEOREM 5. If Q satisfies (SI) then UQ is radical and SUÇ is the 
smallest semisimple class containing Q. 

This last part is easy to show, for suppose ÇQ T where T is a 
semisimple class. Now clearly both S and U are order-reversing, so 
SU is an order-preserving class function. Thus SUQ Ç SUT = T. 
This theorem is illustrative of a large class of "smallest" theorems, 
about which more will be said later. 

We now turn to radical and related constructions. These usually 
involve induction, often transfinite. It is a curious fact that one of the 
so-called paradoxes of set theory, namely the Burali-Forti paradox, 
plays an important role here. This takes various forms, the simplest of 
which is that the class of all ordinals is too big to be a set. That 
is, the paradox arises (as has happened) when one tries to treat the 
collection of all ordinals as a set. One of the neatest examples (and 
also one of the oldest) is the Levitzki Construction [4] of the lower 
Baer radical B of a ring R, which arises when one tries to divide out 
the property of nilpotence (of ideals). The construction proceeds. 
(Note: We are now operating in the class of associative rings.): Let 

/i = 2 a11 nilpotent/ < R, 

and for/3 an arbitrary ordinal define 

U Ia when ß is a limit ordinal, otherwise 
J <x<ß 

Iß — I 
2) / < R such that JIIß _x is nilpotent. 

Clearly the set {Iß } so defined forms a chain (that is, a < ß implies 
I a C Iß) and if it were true that always Ia jt Ja+1 then there would be 
a 1-1 correspondence between a set and the class of all ordinals. 
But this produces the paradox, so we conclude that for some ordinal 
y we have ly = Zy+1, and we call Iy = B(R) the lower Baer radical of 
R. The class B = {K | B(K) = K} is radical and for an arbitrary ring 
R it is true by definition that RIB(R) has no nonzero nilpotent ideals. 
Remark that it is also true that B(R) = f i all prime ideals of R (so 
B is sometimes called the prime radical). Furthermore B = 
U { all prime rings} = U { all semiprime rings (no nonzero nilpotent 
ideals)}. 

2. Lower radical constructions. Returning to our universal class 
W of not necessarily associative rings, we will give the Kuros Con
struction of the lower radical LM for an arbitrary class M C W (as 
modified in [5] ). We start by letting MA be the homomorphic closure 
of M, that is 
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Mx = HM= {K G W I K = RII for some R G M}, 

and for an ordinal ß, assuming classes Ma known for all a < ß, 

Mß = {K G W I every 0 ^ K/I has a nonzero ideal 

in Ma for some a < ß }. 

Then LM = U M^ taken over all ordinals ß. 

THEOREM 6. LM is radical and is the smallest radical class con
taining M (another smallest theorem). 

Note that while the B-F paradox is used in proving LM is radical 
(see [3] ), it does not apply to the Mß since they are classes. For 
example, even if W is restricted to be all associative rings and one 
takes the simplest case possible, namely M = {R} where R = {0, x} 
with 2x = x2 = 0, it develops that LM = M3 is already too big to be 
a set. Thus the Kuros steps while appearing simple, may in fact be 
enormous. 

Incidentally, transfinite induction, which is used freely in the 
lower radical construction, makes some people a bit uneasy. Thus 
it was distinctly pleasing to learn [6] that for associative rings 
LM = Mw where <o is the first transfinite ordinal, so that only ordinary 
induction need be used. (This result is sharp, by a construction of 
Heinicke [7].) In [6] it was also shown that for alternative rings 
LM = M^ but is is not known if this is sharp. On the other hand, 
Rjabuhin [8] constructed a sequence of rings showing that when 
W = class of all not necessarily associative rings and M = all simple 
rings, LM j^ Ma for any ordinal a. 

The lower radical is useful in many ways. For one thing it shows 
how to divide out an arbitrary property (whether radical or not) and 
in a minimal way. Also the lower radical can point the way to correct 
generalizations. For example, if in associative rings N = {all nil-
potent rings } then the lower Baer radical B = LN. However, for a non-
associative ring nilpotence is ambiguous (Do we require all 
x1(x2(* •*•)) = 0 or all products of n things associated arbitrarily, or 
what?). However, if Z = {R | xy = 0 for all x, y G R}, namely all 
zero rings, then also B = LZ and Z can be generalized unambiguously. 

There are a surprising number of apparently quite different con
structions which turn out to give the lower radical, sometimes in 
general, sometimes only for more restricted W. 

One example [9] is 

Mi = HM, 
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M n + 1 = {R G W | someO f I < R with / G Mn}, 

and define M* = {R G W | every 0 ^ R// has a nonzero ideal in 
some Mn}. It turns out that M* is always radical (and in general 
bigger than LM as examples show), but when W = all associative, 
or even alternative, rings M* = LM. (Note that M* is also equal to a 
radical constructed by Watters [10].) 

Another new one [11] also begins with Mi = HM, and when 
ß — 1 exists define 

Mß = {R 11 RII G M^_! for some I < R}3 

while when ß is a limit ordinal, define 

Mß = {R | R = U /i for some chain {/;} of ideals 

of R such that each l{ G Ma for some a< ß}. 

Then LM = U Mß, taken over all ordinalsß. 
This construction is in many ways better adapted than earlier ones 

to proving properties of LM. For example, an old result we proved 
with some pain in [ 12] has now a simple proof: 

THEOREM 7. If M is hereditary then so is LM. 

PROOF. First M hereditary implies Mi = HM hereditary. Suppose 
Mß-i hereditary and 0 ^ / < R G Mß. Now we have some J, 
RIIGMß-i so from (/ 4- / ) / / < RII we have //(I fi / ) = 
(I + J)II EMß_i. But also IC\J GMß_iy since I H J < I, and there
fore/ G Mß. 

If ß is a limit ordinal and for a < ß all Ma are hereditary, let RG Mß 

so R = U h for some chain of ideals I{ G Ma. But if / < R then / = 
U ( / n li) where each / H /< <J 4 so is in Ma. Therefore / G Mß and 
we are done. 

The hereditary property is a very useful one for a radical to have, 
thus this theorem is often helpful. It is true, in fact, that many radicals 
are hereditary, such as the nil radical and the Jacobson radical, but 
some (such as the idempotent radical = {all idempotent rings}) are 
not. 

More generally, defining a class M to be left (right, subring) 
hereditary if R E M implies / G M for all left ideals (right ideals, 
subrings) of R, then, as pointed out by Robert Rossa [13], virtually 
the same proof as that just given establishes 

THEOREM 7 '. If M is left (right, subring) hereditary then so is LM. 

We digress for a moment to consider the following: A radical class 
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F is called (left) strong [ 14] if I G F, where / is a left ideal of a 
ring R, implies IG P(R). Clearly [14, Proposition 2] F is strong if 
and only if no RŒ SP has a nonzero left ideal in F. It is known that 
the Jacobson and Levitzki radicals are strong and it has been con
jectured (the Koethe Conjecture) that this is also true of the nil 
radical. It was shown [14, p. 377] that the Brown-McCoy radical 
is not strong whereas the lower Baer radical B is strong [14, p. 
374]. We include as an illustration an alternative proof of this last 
fact (somewhat simpler than that of [14]). Let fi£SB with 
0 ^ / G B a left ideal. By the Levitzki Construction there must be 
some nilpotent 0 ^ A < /. Now any nilpotent left ideal of R is con
tained in a nilpotent ideal so since IA Ç A, we have IA Q B(R) = 0. 
Thus if N is the sum of all the nilpotent ideals of I we have IN = 0 
and so N2 = 0. But then N = B(I) = I and hence the contradiction 
Z 2= 0. 

The question has been raised as to whether a left hereditary radical 
must be left strong. We will use Theorem 7 ' to construct an example 
to show that this is not the case. Let F = Z/(2), the integers mod 2, 
and let I be generated over F by x, y where x2 = x, xy = 0, yx = y, 
and y2 = 0. Then I is associative and has an ideal / = {0, y}. Letting 
M be the class of all rings isomorphic to any of {0, / , I, F} then M = Mx 

and is left hereditary. Thus by Theorem 7 ' we have LM left hereditary. 
However, it is clear that I = {[£ o] } where a,b G F, which is a left 
ideal of F2. But F2 is simple and since a simple ring is a member of 
LM only if it is in Ml it follows that F2 has zero LM-radical. Thus 
LM is left hereditary but not left strong. On the other hand, the 
idempotent radical is left strong but not left hereditary, so these two 
properties are independent. 

3. Largest and smallest theorems. We will conclude with some 
remarks about smallest theorems and their dual largest theorems. 
(Most of this material is from [15].) A class function F is called 
admissible if 

(1) M C FM for all M C W, 
(2) M C Nimplies FMC FN, 
(3) If {Ma} is a chain defined for all ordinals then F U Ma = U FMa. 

THEOREM 8. If F is an admissible function then every class M is 
contained in a smallest radical class P such that FP = F. 

CONSTRUCTION. Mx= M and 

Mß= 1 
LFMß^i when ß — 1 exists, or 

U Ma when ß is a limit ordinal. 
V a<ß 
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Then F = U^ Mß. 
The idea here is to have some property of radicals in mind, then 

try to find an admissible F such that a radical F has the desired 
property if and only if FP = F. When this can be done, Theorem 8 
says that the property admits a smallest theorem. 

A typical example is as follows: Define 

I{M = {K | K < R for some R G M } , 

In^M^IJnM and IM = U InM. 
n 

Clearly the class IM is hereditary and a radical F is hereditary if and 
only if IP = F. It is also easy to see that I is an admissible function, 
and so by Theorem 8 every class M is contained in a smallest heredi
tary radical. (Of course one can get this result more easily by noticing 
that IM is the smallest hereditary class containing M. Hence the 
smallest hereditary radical containing M is just LIM.) 

For the dual theorem we need an F with not only properties (1), 
(2), and (3), but also (4) FM satisfies (SI). We call such a function 
S-admissible. 

THEOREM 9. If F is S-admissible then every class M is contained in 
a smallest semisimple class Ç such that FQ = Q. 

CONSTRUCTION. Let Mi= M and 

[ SUFMß_l when ß — 1 exists, 
MP = ì ii 

U Ma when ß is a limit ordinal, and 

Q = U Mß. 
ß 

Notice that the function I is also S-admissible, so as a corollary: 
Every class M is contained in a smallest hereditary semisimple class. 
From this it follows that in associative (or even alternative) classes 
any M is contained in a smallest semisimple class. However this is 
not true in general (see [ 16] ). 

Recently J. F. Watters [17] has shown that smallest theorems 
exist for F which may not satisfy property (3). The constructions of 
Theorems 8 and 9 still lead to radical (or semisimple) classes, but in 
general not the smallest ones with the desired property. In fact the 
process in [17] is quite the opposite, namely it consists of intersec
tion from above. That is, in place of the construction of Theorem 8, 
for example, one simply takes the intersection of all radicals F such 
that M C F and FP = F 
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Another problem which might be considered is as follows: Suppose 
one is given a particular class M. Does M contain a radical class, or 
even more, does it contain a radical with some specified property? If 
so, does it contain a largest radical with the desired property? 

This is rather too large a project, but we have a partial answer; 
in fact, there is sort of a four-way duality between largest and smallest; 
radical, and semisimple, as follows: 

THEOREM 10. If a class M contains a largest class Mx with property 
(R2) then M contains a largest radical class and a largest hereditary 
radical class. Moreover, if a given semisimple property admits a 
smallest theorem, then M contains a largest radical whose semisimple 
class has the property, and conversely. 

That is, there is a smallest theorem for a semisimple class if and 
only if there is a largest theorem for the corresponding radical. 

The dual theorem is 

THEOREM 11. If a class M contains a largest class Mx with property 
(S2) then M contains a largest semisimple class and, for a given radical 
property, a smallest theorem exists if and only if M contains a largest 
semisimple class whose radical has the property. 

The constructions are as follows: For Theorem 10 define inductively 

M n + 1 = {R G Mn | every 0 ^ RI I has an ideal in Mn}. 

Then P=C\nMn is the largest radical in M and P ' = 
{R G P | I{R} Ç F} is the largest hereditary radical contained in M. 

For Theorem 11 the construction must in general go transfinite, 
namely 

Mß = 

Pi Ma when ß is a limit ordinal, otherwise 
a<ß 

RGMß_x | i f0 J* I< Rthen some0 f IIJ G Mß-X. 

Then Q = f]ß Mß is the largest semisimple class contained in M. 
There are a number of open questions in this area. For example, 

one would like a better way of characterizing those radical or semi-
simple properties admitting smallest theorems, other than to simply 
search for an admissible function to express the property. Also one 
would like to know more about the relationship of properties of the 
initial class M to those of the smallest radical class, particularly those 
already possessed by the lower radical. Another problem is to clarify 
the role played by the class M (of Theorems 10 or 11) relative to 
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which dualization occurs. The conditions stated for M are sufficient 
but probably not necessary. On the other hand, some sort of condi
tions are going to be needed, since there are classes containing radicals 
(or semisimple classes) not containing even a maximal one. 
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