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1. Introduction. Let £ be a real Hilbert space, and l e t / b e a real 
valued function whose domain V is a subset of E to be specified later. 
Morse theory deals with the critical points of/, i.e., those points 
x0 E V at which the Fréehet differential df(x; h) (see e.g. [2] ) of / is 
zero (identically in h). Since, for any x €E V, the differential df{x; h) is a 
linear bounded functional in h, there exists a unique element g = g(x) 
in E, called the gradient of/ such that 

(1-1) dj{x;h)=(g(x),h), 
where ( -, •) denotes the scalar product in E. (In a finite-dimensional 
space this definition is easily seen to agree with the usual one of 
grad / as the vector whose components are the partial derivatives of 
/ ) It follows that a point x E V i s critical if and only if it satisfies the 
equation 
(1.2) g(x) = 0. 

Related to the notion of a critical point is that of a critical level: 
DEFINITION 1.1. A critical level (or value) of / is a real number c 

such that/(x) = c for at least one critical point x. 
Two problems arise naturally: 
PROBLEM I. Describe the "nature" of a critical point, a local problem. 
PROBLEM II. Obtain an estimate of the number of critical points in 

terms of geometrical (topological) properties of the domain V of / a 
problem in the large. 

Problems I and II will be discussed in §§2 and 3 respectively in 
detail. At the present moment we confine ourselves to some intro
ductory and intuitive remarks concerning these problems in very 
simple cases. These remarks motivate the use of the more abstract 
notions employed later, in particular the use of the singular homology 
theory. A review of the relevant definitions and facts of this theory 
forms the last part of this introduction. 

A simple case of Problem I. Let E = E2 be the Euclidean plane of 
points x = (xi9 x2), let V = D be a disc with center 6 = (0, 0), and let 
/ be a diagonalized quadratic form. We consider the cases 
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(a) f=xf + x2\ iß) f= -Xl* + x2\ (y) / = - xf - x2
2. 

The three cases differ by the number j of negative squares, the index of 
the quadratic form. (A point mass situated at $ is stable in case (a), 
unstable in case (y), and stable or unstable in case (ß) according to the 
initial displacement. Thus the index j gives a measure of instability.) 
Obviously the point 6 is a critical point of f furnishing a minimum in 
case (a), a saddle point in case (ß), and a maximum in case (y). For 
any real number a let 

(1.3) 

and 

fa= {xGV \f(x) < a}, 

(1.4) 

Then 

B= B, 

B=V, 

A = / „ , B=faU{6}. 

A = 0 , the empty set in case (a), 

A = V - {6} in case (y) 

while in case (ß), A is the (open) shaded area, and B is this area aug
mented by the point 6. (See Fig. 1.) 

FIGURE 1 

This simple example suggests that the nature of the critical point 
may be described by considering the couple (B, A) of the sets defined 
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in (1.4) and by examining the change in topological properties con
nected with the transition from A to B. (Note e.g. that in case (ß) the 
set B is connected but A is not.) 

A simple case of Problem II. Let V be a torus tangent to the 
(xi, x2)-plane E2 as indicated in Fig. 2, and let x3 = f(x) be the dis
tance of the point x = (xx, x2, x3) G V from E2. 

Obviously, pi9 P^P^PA
 a r e *he critical points o f / and Ci=f(pi) 

(i = 1, 2, 3, 4) are the critical levels. We make two remarks: 
REMARK 1. The s e t ^ defined in (1.3) does not change its "homotopy 

type" if a varies without crossing one of the critical levels c{. For in
stance for c2 < a < c3, fa can be deformed into a cylinder; this is no 
more true if a leaves the interval [ c2, c3] by crossing one of its end-
points. The effect of crossing e.g. c3 may be described by comparing 
the topological properties of the se t /^ with those of the set j ^ where 
c2< a2< c3< a3< c4. 

FIGURE 2 

REMARK 2. In Fig. 2, pY is a minimum point for f p2 and p3 are 
saddle points, and p4 is a maximum. Consequently by the preceding 
discussion concerning Problem I, the indices j of these critical points 
are respectively 0,1,1,2. Thus if Mj denotes the number of critical 
points of index j we see that M0 = 1, Mx = 2, M2 = 1. But the in
tegers at the right of these equalities are just the "Betti number" 
Bo, Rl9 R2 resp. of the torus (see e.g. [1, p. 212] ). Thus 

(1.5) M^Rq, 9 = 0,1,2. 
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FIGURE 3 

However, if we deform the torus to look like Fig. 3 [22, p. 8] , 
then the Betti numbers remain unchanged while M0 = 2, Mx = 3, 
M2 = 1. Thus 

(1.6) Mq ^ Ft«, 9 = 0,1,2. 

These inequalities, in contrast to (1.5), are true under rather general 
conditions as are the celebrated Morse inequalities 

(1.7) 

M o ^ R o , 

Ml - M0 ^ Rx - flo, 

Mq - Mq_! + • • • + ( - 1)«M0 

^Rç- «C-1+ • • ' + (-WH* q = 0,1,2, • • • , 

which imply (1.6). They were proved by Morse under proper as
sumptions in the case that the domain V of / is of finite dimension n. 
In this case the equality holds for q = n. The validity of (1.6) and 
(1.7) will be discussed later on. 

In our discussion of Problem I as well as in that of Problem II we 
were led to compare the members of a couple (B, A) of sets where A is 
a subset of B. This observation gives a plausible reason for the im
portant role which the "relative homology groups Hq(B, A) of B 
modulo A" play in the Morse theory (cf. Definition 2.1 and (3.1)), for 
— speaking crudely — these groups afford a topological comparison of 
the sets A and B. 
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Since in general there is no triangulation in Hilbert space we will 
use the singular relative homology groups. For the precise definition 
of these groups we have to refer to topology books (see e.g. [5, 
Chapter VII] ). Here we confine ourselves to the following more or less 
intuitive remarks: 

A singular q -simplex aq in E is a map into E of the simplex AQ 

whose vertices are the unit points on the coordinate axes of Euclidean 
(q + l)-space. The support \crq\ of <rq is the point set aq( Aq) C E. A 
singular q-chain with coefficient group G (a module over a principal 
ideal domain — integers and fields are the most frequent cases) is a 
finite "linear combination" 

CQ = E gi< 
i 

of singular simplices aq
{ with coefficients g{ G G. The support \cq | of 

cq is defined by 

M= UM. 
i 

If S is a subset of E we often write "cq C S" for \cq\ C S. 
Starting from the elementary definition for the boundary dAq of 

the simplex Aa, the boundary daq of the singular simplex <rq is de
fined as a (q — l)-chain in such a way that 

(1.8) dd = 0 

(see [5, p. 186] ), and this definition of d is extended by linearity to 
singular chains. 

We recall that a "couple" (B, A) in E consists of two subsets B and A 
of £ with A C B. A singular qf-chain zq with ^ C B and dzq C A is 
called a relative q -cycle on B modulo A. With an obvious definition 
of addition these relative cycles zq form an abelian group Zq = 
Z„(B, A). 

A singular qf-chain zq is called bounding on B mod A if there exist a 
(q + l)-chain c q + 1 C ß and a qf-chain aq C A such that dcq + 1 = 
zq + aq. It follows from (1.8) that such a zq is necessarily a cycle on 
B modulo A. Thus the group Bq of chains bounding on B modulo A 
is a subgroup of Zq. 

The qth homology group Hq(B, A) of B modulo A is then defined as 
the quotient group ZJBq. An element zq of this group is thus a coset 
modulo Bq of Zq; i.e., it is a class of relative cycles on B modulo A any 
two elements zq

l, zq
2 of which satisfy the equivalence relation 

"zq ! ~ zq
2 if and only if zq

l — zq
2 is a bounding cycle on B modulo A". 

We now state a few properties of the relative homology groups 
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which are basic for their application to Morse theory. 
Let (B, A) and (D, C) be two couples in E for which 

(1.9) (B, A) D (D, C) 

(which means: B~D D and A D C), and let I denote the closed unit 
interval. We then say that a map 

6(x,t):(BX I, AX I ) -»(B,A) 

deforms (B, A) into (D, C) if 

8(x ,0)= x l (orxŒB Rnd8/X n e C f o r x G A . 
8(x, 1) G D / 

Property Hx (homotopy property). Let 8(x, £) deform (B, A) into 
(D, C) in such a way that the restriction of 8 to (D X I, C X /) maps 
this couple into (D, C). Then Hq(B, A) « Hq(D, C) where the symbol 
"ÄS" denotes group isomorphism. 

Remark to Property H^ The assumption just made on the deforma
tion 8 is in particular satisfied if 8(x, i) = x for (x> i) G (D X Z). In this 
case (D, C) is called a deformation retract of (A, B) (see [5, p. 30] ). 

Property H2 (Addition theorem (see [5, Theorem I. 13.2])). Let 
the subsets Bl9 B2 of E have a positive distance and suppose that 
AiCBi{ori= 1, 2. Then 

Hq(Bi U B2, Ax U A2) - »„(B!, Aj) + Hq(B2, A2), 

where the symbol " + " denotes "direct sum/' 
Property H3 (Excision theorem (see [5, §§VII.9 and IV.9] )). 

Hq(B, A) « Hq(B — U, A — U) if U is a set whose closure (in B) is 
contained in the interior of A. 

Property H4. Hq(A, A) = 0 for every subset A of E [5,1.8.1]. 
Property H5. Let A C B C C C E with a nonempty A. It is asserted; 
(a) if Hq(C, B) = 0, then Hq(C, A) « H(B? A); 
08) if Hq(B, A) = 0, then Hq(C, B) « ffQ(C, A) [5,1.10.4]. 
Property H6. Let A, B, C be as in H5. It is asserted: 
(a) if B is a deformation retract of C, then Hq(C, A) ~ Hq(B, A); 
08) if A is a deformation retract of B, then Hq(C, B) « Hq(C, A). 
This follows easily from H1? H4, and H5. 

2. Problem I, the local problem. Let B be a closed ball in the Hil
bert space E with the zero element 6 as center. L e t / b e a real valued 
function with domain B for which $ is the only critical point. For the 
sake of simplicity we assume that 

(2.1) / ( 0 ) = O. 
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DEFINITION 2.1. The 9th critical group Cq(0) attached to the 
critical point 0 off is defined by 

(2.2) C,( 9) = C,( 0;f) = Hq(f0U { 6},f0) 

where/o is given by (1.3) (with a = 0 and V = B). 
It is easily seen from the excision theorem H3 of the introduction 

that this definition is independent of the radius of B as long as 0 is the 
only critical point in B. Actually one could replace the spherical 
neighborhood B of 6 by an arbitrary one. 

Our first goal is to determine Cq( 6) if / is a "nondegenerate quad
ratic form" (Theorem 2.1). For later use we define the notion of form 
and nondegeneracy for the case when the degree of the form is an 
arbitrary integer p i= 2. 

DEFINITION 2.2. Let Q(xl,x2, * * *,xp) be a function from EX E 
X * • • X E (a product of p factors) to the reals which is linear in each 
Xp symmetric, and bounded in the sense that, for some constant K, 

(2.3) |Ç(*i,*2,-",*p)I^K||*i|| IKII---IWI 

where || || denotes the norm in E. Then, for xx = x2 = xp = x, 

(2.4) Q(x) = Q(xl9 x2, • • % Xp) 

is called a p-form on E. If p = 2, Q is called quadratic. 
DEFINITION 2.3. The p-form Q(x) is called nondegenerate if there 

exists a positive constant m such that, for all x E £ , 

(2.5) | |gradÇ>(x) | |^m| |x | |*- i . 

LEMMA 2.1. Let p = 2, i.e., let Q be a quadratic form, and let 
K(X) = grad Q(x). Then 

(a) K is a linear bounded symmetric map of E into E, 
(ß) Q is nondegenerate if and only if K is nonsingular, i.e., ific has a 

bounded everywhere-defined inverse. 

PROOF. The differential of Q at x with "increment h" equals 2Q(x, h). 
Therefore, by the definition of K, 

(2.6) (K(x),h) = 2Q(x,h). 

This equality together with (2.3), (2.4) and the symmetry of Q(x, h) is 
easily seen to imply (a). 

We turn to the proof of (ß). That the nonsingularity of* implies the 
nondegeneracy of Q is trivial since the boundedness of K~1 obviously 
implies (2.6). To prove the converse part of (ß), we remark first that 
the range R(#c) of K is closed as is easily seen from the fact that if 
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Yn = #c(xn) is a Cauchy sequence then, by (2.6) and the linearity of 
/e, the sequence xn is likewise a Cauchy sequence. But, as is well 
known, the closedness of R(K) together with the symmetry of K implies 
that E is the direct sum of R(K) and the nullspace N(K) of K. NOW 
N(K) = { 0} as is clear from (2.6). It follows that E = R(K) and that K 
has an everywhere-defined inverse X. The boundedness of X follows 
again from (2.6). 

We will need the following lemma which was proved by Hestenes 
( [6, Theorem 7.1] ; see also [12, §2.5] ). 

LEMMA 2.2. Let Q be a quadratic form on E. Then there 
exists a direct decomposition of E into the linear subspaces E = 
E + + E~ + E° with the following properties: 

<x°,x+> = <x°,x->= (x\x~) = Q(x+,x~) 
= 0 / o r x + £ E + , . x - £ E - 3 x ° £ £ 0 ; 

Q(x+)>0 forx+ E E + - 0; 
Q(x-)<0 forx-GE-- (9, 

Q(x~,x) = 0 forx~ G E~ and all x G E. 

IfÇ is nondegenerate then E0 = { 6}. 

DEFINITION 2.4. The index j of the quadratic form Q(x) is the 
maximal dimension of linear subspaces L of E such that Q(x) < 0 for 
x G. L — {$}. (j may be a finite integer or oo.) 

Without proof we state 

LEMMA 2.3. The index j of the quadratic form Q equals the dimen
sion of the space E~ (see Lemma 2.2). 

The linear space E~ should not be confused with the set Q0 = 
{x Œ. B \ Q(x) < 0}. In Fig. 1, E~ is the x raxis while Q0 is the shaded 
area. 

THEOREM 2.1. Let Q be a nondegenerate quadratic form on E and 
letj be its index. Then 

<") <**«- {G fttì 
where the left member is defined by (2.2) and where G is the co
efficient group. 

PROOF. By Definition 2.1 (with / = Ç), 

(2.8) Cq(e;Q)=Hq(QoU{0},Qo). 
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We set B~ = B C\ E~ with E~ as in Lemma 2.2 and claim 

(2.9) Hq(Q0 U { 0}, Ço) « Hq(B- U { 0], B). 

For the proof of (2.9) it will, by the homotopy theorem H1? be suf
ficient to show that the couple occurring at the right member of (2.9) 
is a deformation retract of the couple occurring at the left. Let x G Q0. 
By Lemma 2.2, 

x = x- + x+ where x" G E~ fi B and x+ G E + Pi B. 

For O g ^ l we set 8(x, *) = x" + (1 - £)x+. Using Lemma 2.2, 
we see that 

Q(6(x,t)) = Q(x-) + (1 - t)ZQ(x+) 

g Ç(x-) + Ç(x+) = Ç(x) < 0. 

This inequality together with the convexity of B obviously proves that 
B ~ = B H E~ is a deformation retract of Q0. Since the deformation 8 
also retracts Ç)0 U {6} onto B~ U {6} the validity of (2.9) is 
established. Now by Lemma 2.3, E~ is a Hilbert space of dimension j . 
Therefore we see from (2.8) and (2.9) that 

(2.10) Cq(0;Q)~Hq(&,BJ-6) 

where Bi' = B O E~, a closed ball in £~ with center $. But the sphere S 
forming the boundary of W is a deformation retract of & — 0. Therefore 
(2.10) together with Property H6 implies that 

(2.11) C , ( « ; Ç ) « H , ( B i , S ) . 

Now in case of a finite j it is well known that the right member of 
(2.11) is isomorphic to the right member of (2.7) (see e.g. [5, §1, 
Theorem 16.4] ). 

It remains to consider the case j = <». Then & is a ball in an infinite-
dimensional Hilbert space and the boundary S of & is a deformation 
retract of B> as was proved by Kakutani [7] in the separable case; 
for the general case, see [3]. It follows that the right member of 
(2.11) is isomorphic to Hq(S, S) = 0 if/ = oo (cf. Property H4). Since q is 
finite and therefore q j£ j , the proof of (2.6) is complete. 

The importance of Theorem 2.1 lies in the fact that, for a large class 
of functions / , a "first approximation" in the neighborhood of a critical 
point is given by a quadratic form. To make this point clear we recall 
Taylor's formula 
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(2.12) 

/(*)-/(*)= f,±d'f(0;x) + Rn, r\ 

\ 

Rp= -i- J1 d"+1/(fcr;x)(l - t)pd*' 

which holds in some neighborhood of 0 iff G Cp+1( 0), i.e., if / h a s con
tinuous differentials up to and including order p + 1 in some neighbor
hood of 0 (see e.g. [2, p. 186] ). 

Thus if 0 is a critical point of a function / G 0 + 1 ( 0) and if / ( 0) = 0 
then the quadratic form 

(2.13) d2/( 0; x)/2 

is the first term in the Taylor formula. The problem arises to reduce 
the computation of the critical group Cq( 0; / ) to that of Cq( 0; Q) 
where Q is the quadratic form (2.13). To discuss this problem we need 

DEFINITION 2.5. The critical point 0 of / is called nondegenerate 
if / G C2( 0) and if the quadratic form (2.13). is nondegenerate in the 
sense of Definition 2.3. The index of 0 as critical point of / is then 
defined as the index of the quadratic form (2.13). 

The following lemma, due to Morse, solves our problem for finite-
dimensional spaces. 

LEMMA 2.4. Let E be n-dimensional with points x = (xi9 x2, • * •, xn) 
and let f G C3( 0) be a real valued function for which 6 is a critical 
point. Then for a small enough neighborhood N of 0 the following state
ments hold: 

(a) There exist functions aik(x), symmetric in i, k, such that 

1 d2f n 

2 dxidxk f£ 

(ß) Under the additional assumption that the critical point 0 is non-
degenerate, there exists a differentiable invertible map $ : N—» E with 
i/f( 0) = $ such that 

(2.14) f(<f>(y))=- É ì / i 2 + È Vi2 where<f,= ^-h 

£/i£ irafex j of this quadratic form equals the index of the quadratic 
form (2.13). 

(y) The critical group at 0 of fis isomorphic to that of the quadratic 
form (2.14). 
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That (y) follows from (ß) is obvious since <f> is a homeomorphism. For 
the proof of (a) and (ß) we refer the reader to [14, §§9 and 10] ; we 
only note that the proof of (ß) is based on (a) and a procedure which 
is quite analogous to the Lagrange method of bringing a quadratic 
form to the diagonal form by a linear transformation. 

The above "Morse lemma" 2.4(/3) was generalized to an arbitrary 
Hilbert space by Palais [ 13, pp. 307, 308] in the following form: 

LEMMA 2.5. Let the assumptions of Lemma 2A(ß) be satisfied with 
E being an arbitrary Hilbert space. Then there exists an orthogonal 
projection P in E, and N, $, <f> of the properties described in Lemma 
2A(ß) with the right member of (2.14) replaced by —\\y — P(y)\\2 + 
||P(t/)||2. The dimension of(l — P)E equals the index of the form (2.13). 

There is another method of reducing the investigation of the critical 
group of / at the critical point 0 to that of the quadratic form (2.13) 
which is based on the fact that the function (2.13) is a "good" approxi
mation of / if 0 is not degenerate. Such a method was employed by 
Seifert and Threlfall [22, p. 34] in the finite-dimensional case. 
Since this procedure is not based on diagonalization, we may admit 
nondegeneracy of higher order as defined in 

DEFINITION 2.6. Let p be an integer i? 2, and let f Œ Cp+1(0). 
Then 0 is called a nondegenerate critical point of order p for f if 
df(0;x) = d2f(6;x) = • • • = dp~lf(0;x) = 0 while the p-form 
dpf( 0; x) is nondegenerate (cf. Definition 2.3). 

We note that, by (2.12), 

<2.i5, M-M-±*fiw\l**,**f-t>'*. 
if 0 is a nondegenerate critical point of order p. We also note the fol
lowing: 

LEMMA 2.6. Letf G 0 + 1 ( 0), and suppose thatf 0) = 0. Then 6 is a 
nondegenerate critical point of order p for f if and only if there 
exist positive constants k, K and R such that 

% | | " - ^ | | g ( x ) | | ^ K W " - i for\\x\\<R 

where g = grad / (for a proof see [21, Lemma 4.3] ). 

Our goal is to prove under suitable assumptions that 

(2.16) Cq( 0; f) = Cq( 0; d»f( 0; x)lp\). 

The proof of (2.16) may be based on N. H. Kuiper's generalization of 
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the Morse lemma 2A(ß) to the case of nondegeneracy of order p > 2 
[7a, p. 202, Corollary], or on the following approximation theorem. 

THEOREM 2.2. Let 6 be a nondegenerate critical point of f of 
order p. Let f{ 6) = 0. Let m and R be two positive constants such that 
||g(x)|| ^ 2m||x||p_1 for ||x|| < R {such constants exist by Lemma 2.6). 
About the "approximation' iff to f we make the following assump
tions: 

(1) ijß EC»+ 1(0),*M0) = O> 
(2) y = grad \jß has the following property: to each positive rj there 

corresponds a positivep = p(yj) < Rsuch that ||g(x) — y(x)\\ < v\\x\\p~l 

for \\x\\ < p. 
Then 6 is a nondegenerate critical point of order pfor \fß, and 

(2.17) C „ ( * ; / ) = C „ ( » ; * ) . 

COROLLARY TO THEOREM 2.2. The assumptions on f in Theorem 
2.2 are sufficient for the validity of (2.16). 

The complicated proof of Theorem 2.2 is given in [21, §6]. It 
is based on a generalization to Hilbert space of the concept of a 
"cylindrical neighborhood" of an isolated critical point introduced by 
Seifert and Threlfall [22, §9] in the finite-dimensional case. For 
the proof of the corollary one has to show that tfß = dpf( 6; x)lp\ 
satisfies the assumptions made on ijß in Theorem 2.2. Note that, by 
(2.15) (with / ( 6) = 0), \f{x) - i/i(x)| is of order ||X||P+I from which it 
may be proved that ||grad (/— ifß)\\ = ||g — y\\ is of order ||x||p. But for 
7) > 0 given, \\x\\p < T7||x||p-1for ||x|| small enough, and thus the inequality 
in assumption (2) of Theorem 2.2 is verified. For details see [21, 
§4, last paragraph]. 

In the above application of Theorem 2.2 the approximating function 
\\t was a Taylor approximation to / . Under more restrictive assumptions 
Theorem 2.2 can also be applied with \jß being a finite-dimensional 
approximation to f More precisely, the following theorem holds. 

THEOREM 2.3. Let f satisfy the assumptions of Theorem 2.2. In 
addition it is assumed that, in some neighborhood of 6, 

(2.18) f(x) = 11*11 "/p 4- F(x), p even and ^ 2, 

with G(x) = grad F(x) being completely continuous. For a given 
n-dimensional linear subspace En of E let xn denote the orthogonal 
projection of the point xofE into En, and let 

/„(*) = ||x||p/p + F(x»). 
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Then there exists a subspace En<> such that for En<> C En the following 
statements hold: 

(a)C,(f l ; / )«C„(ft /„) , 
08) C(6;f)=Cq(e;l), 

where fn denotes the restriction of fn to the projection of its domain 
into En. 

Functions / of the above form appear in the theory of nonlinear 
integral equations. See e.g. [23, §21.2] and [21, beginning of 
§6]. For die proof of Theorem 2.3 we refer to [21, Theorems 7.1 
and 7.2]. We only remark that the lengthy proof of (a) is based on 
showing that ^ = fn satisfies the assumptions of Theorem 2.2 while 
(ß) is an easy corollary to (a). 

We conclude this section on the local problem with a theorem which 
establishes a connection between the Morse numbers Mq, i.e. the ranks 
of the groups Cq( 0; / ) (over the coefficient group G) and the Leray-
Schauder index d(g, 6) [8, p. 54] of g = g r a d / at 0. By the original 
definition as given in [8, p. 54], the index d(g, 6) is defined only for 
p = 2 since, by (2.18), g(x) = x||x||p~2 + G(x). However, by Lemma2.6, 
||g(:x;)|| is bounded away from zero on every (small enough) sphere with 
center 0. This makes it possible to define the index in terms of the 
definition of the order as given in [15, p. 375] in spite of the fact that 
the factor of x in the expression for g vanishes at 0. Cf. [ 16, footnote 
on p. 459]. 

THEOREM 2.4. Let f satisfy the assumptions of Theorem 2.3. 
Moreover we assume that f Ê. Cp+2( 0) and that g is uniformly dif-
ferentiable in some neighborhood of 0. Then 

(2.19) d(g,0)= S f - l W , . " 

For the proof see [16, Theorems 6.1, 7.1], [2, Lemma 7.27] 
and [18, Lemma 2.3]. We note that the sum in (2.19) is finite as 
follows from the reduction to the finite-dimensional case established 
in Theorem 2.3 (ß). 

3. Problem II, the problem in the large (see the introduction). M. 
Morse started his investigations with the domain V of / being finite-
dimensional. The following cases were treated (see [10] and the 
papers listed in the bibliography ofthat book): 

(a) V is the closure of an open bounded domain in E = En the 
dimension n being finite. It is supposed that g = grad / is outwardly 
directed at the boundary V of V (regular boundary condition). 
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(b) V is as in (a) but there are a finite number of points on V in 
which g has the direction of the interior normal (general boundary 
conditions). 

(c) y is a finite-dimensional Riemannian manifold. 
(d) The problem of the geodesies joining two given points p and q 

on a finite-dimensional Riemannian manifold V. Here the function 
f(x) is the length of the curve x on V joining p and q, and the 
domain V of / is the properly metrized space of such curves called 
the loop space. Thus V is infinite-dimensional. Morse treated this 
problem by an approximation procedure using finite-dimensional 
problems of type (c) above as approximations. 

In all these cases the following "condition C" introduced by Palais 
and Smale (see e.g. [13, p. 300] ) plays a basic rule for the general
ization to a Hilbert space £: 

DEFINITION 3.1. A real valued function / with domain V C E 
satisfies condition C if for every set S whose closure S is contained 
in V the following is true: if on S, | / | is bounded but | |grad/ | | is not 
bounded away from zero then grad / vanishes in some point of S. 

Condition C is automatically satisfied in the following special cases: 
(i) V is compact, therefore in particular in the finite-dimensional case 
if V is closed and bounded; (ii) V is a closed bounded set in the Hil
bert space E and the gradient g off is of the form g(x) = x 4- G(x) with 
a completely continuous G; (iii) V C E is a small enough neighborhood 
of the nondegenerate critical point 6 of order p ^ 2 (as can be seen easily 
from Lemma 2.6). 

In all three cases (a), (b), (c), one wants to attach to an isolated 
critical level c a critical group Cq(c) by setting 

(3.1) Cq(c) = Hq(fb, fa) (/„ = {x G V | /(*) =1 a}), 

where a < c < b and where c is the only critical value in the closed 
interval [a, b]. The first task then is to show that (within the restric
tions of a and b indicated) the right member of (3.1) is independent of 
the choice of a and b. The proof for this is, except for the use of con
dition C, essentially the same as the one given by Pitcher [14] in 
the finite-dimensional case. To be more concrete we will give an 
outline of the generalization to Hilbert space for case (a) which is the 
simplest among the three cases in question. 

Let V be a bounded open set in the Hilbert space £, and let / be 
a real valued function whose domain is the closure V of V. The fol
lowing assumptions (A)-(E) are made: 

(A) This is an assumption on the geometry of V for whose technical 
details we refer to [21] and [20]. Suffice it to say that this 
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assumption guarantees the existence of a unique "exterior" unit normal 
n(x) to the boundary V of V at every point x of V. 

(B) / is not constant in any ball, and its differential df(x; h) is 
uniformly bounded in V. 

(C) The condition C of Definition 3.1 holds. 
(D) The critical levels are isolated. 
(E) <n(x),g(x)> > 0 f o r x G V. (g(x) = grad/(*).) 

THEOREM 3.1. Let the levels a, b, c, be as specified in the two lines 
following (3.1), and let Assumptions (A)-(E) be satisfied. Then the 
right member of (3.1) is independent of a and b. 

Now it is easily seen that Theorem 3.1 is a consequence of 

LEMMA 3.1. If the closed interval [a,ß] contains no critical level 
then fa is a deformation retract offß and 

(3-2) Hq(f-,fa) = 0. 

To show that this lemma implies Theorem 3. l i e t a < a' < c < b' < b 
where a, b, c are as in Theorem 3.1 and apply the lemma to the inter
vals [b',b] and [a, a'] which are free of critical levels. We then see 
from Property H6 of the introduction that 

Hq(fb,fa) = Hq(fb,,fa) = Hq(fb,,fa,) 

which proves Theorem 3.1. 
We now sketch the proof of the first assertion of Lemma 3.1, the 

second one being a consequence. For x0 G fb — fa let x(t) = x(t, x0) 
be the solution of the initial value problem 

(3.3) dxldt = — g(x), x(0, x0) = x0. 

It can be proved from Assumption (E) that x(t, x0) G V for all positive 
t [21, Theorem 2.1]. Now by the chain rule, df(x(t))ldt = 
(gradf dxldt)y and therefore, by (3.3), 

(3.4) d / (x ( t ) ) /dt=- | |g | | a . 

Thus f(x(t)) S /(xb) â H o r t g O , and 

(3.5) f(x(t))G[a,b] 

as long as f(x(t))i^a. But by Assumption (D) the interval [a, b] 
has a positive distance from the set of critical levels. From this it can 
be proved that an x(t) satisfying (3.5) has a distance from the set of 
critical points which is not smaller than a positive constant m = 
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m(a, b). But by condition C this implies the existence of a positive 
constant m = m(a, b) such that ||g(*(£))|| = m f° r x(t) satisfying (3.5). 
This allows us to conclude from (3.4) that f(x(t)) ^ /(*o) — m2t ^ 
b — m2t. It follows the existence of a unique positive T(x0) ^ (b — a)lm2 

such that f(x(t)) = a for t = T(x0). Therefore a deformation 8(x0, t) 
retracting fb onto/ a is given by 

*(*o, *) = 

x(t, xo), for x0 G fb - /fl, 0 ^ * ^ T(xo), 

x(T(*0), *o) for x0 G fb - fa, T(x0) < t^(b- a)lm2, 

[x0 forx0Gfa,0^t^(b — a)lm2. 

In the theorem just proved, the numbers a and b occurring in the 
definition of the critical group Cq(c) (equation (3.1)) may be chosen 
arbitrarily close to c but different from c. It is natural to ask for con
ditions under which Cq(c) can be expressed in terms containing only 
the level c. To this end we introduce 

Assumption (F). Let b > c, and let c be the only critical value in 
[b, c]. Then there exists a deformation 8(x,t) of fb into fc for 
which points of fc stay in fc during the deformation. We say 
Assumption (F) is strictly satisfied if there exists such 8 for which 
each point of fc stays fixed during the deformation (i.e. if fc is 
a deformation retract of fb). 

THEOREM 3.2. Let Assumptions (A)-(F) be satisfied, the last one 
strictly. Letcr(c) denote the set of critical points at level c. Then 

(3.6) Cq(c) = Hq(fc,fc - a(c)) = Hq(fc U <r(c), fc). 

We omit the proof (see [21, Theorem 3.4 and remark to Theorem 
3.4 on p. 37] ). However we will give an outline of the proof of the 
next theorem. 

THEOREM 3.3. Let assumptions (A)-(E) be satisfied and suppose 
that the set <r(c) defined in Theorem 3.2 consist of a finite number of 
points. Then Assumption (F) is strictly satisfied. 

The proof is based on the solution x(t) = x(t, x0) of the initial value 
problem 

Similar to the derivation of (3.4) from (3.3) we derive from (3.7) the 
relation df(x(t))ldt= -(f(x0) - c), or /(*(*)) = /(x0) - (f(x0) - c)t 
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which implies that lim,_> \-f(x(t)) = c. But since the denominator of the 
right member of (3.7) approaches 0 as x approaches a critical point it is 
not obvious that limt_+i-x(t) exists. However this limit relation can 
be proved under the assumptions of our theorem [19, Theorem 5.1]. 
Using this fact one obtains the desired retracting deformation 8(x0, i) 
by setting 

8(*o, t) = J 

x(t,x0) forxoGft- fc,0^t< 1, 

lim x(t, XQ) for x0 G. fb - fc, t = 1, 

x0 for x0 G fc, 0 ^ t ^ 1. 

This establishes Theorem 3.3. (For the proof that 8(x0, t) is con
tinuous jointly in (x0, t) see [21, Appendix].) Under the assumptions 
of this theorem, 

= CU(c) (3.8) a(c)= U<rp(c) 

where <Ti(c), <T2(C), • • -, <rr{c)(c) denote the critical points at level 
c. Our next goal is to find the connection between the critical group 
Cq(c) at level c and the critical groups Cq(ap(c)) of the critical points 
crp(c) as defined in Definition 2.1 (with 6 replaced by <rp(c) and the 
level 0 by the level c). 

Our first step is to "localize" the expression (3.6) for Cq(c); let W(c) 
be an open neighborhood of a(c) whose closure contains no other 
critical points than those of <r(c). The existence of such W follows 
easily from [21, Lemma 2.3]. We excise the set fc U <r(c) — W(c) 
from the couple at the right member of (3.6). Using the excision 
property H3 of the introduction we see from (3.6) that 

(3.9) Cq(c) « Hq(fc H W(c) U a(c), / , D W(c)). 

Let now Wp(c) be a spherical neighborhood of crp(c) whose closure 
contains no critical point except <rp(c). Then, for W(c) = Up-ì Wp(c), 
(3.9) holds. Assuming the Wp[c) to be disjoint we see from the addition 
theorem H2 of the introduction that 

r(c) 

Cq(c) = 2 Hq(fc H Wp(c) U ap(c\fc H Wp(c)) 
p = l 

where the symbol 2 denotes the direct sum. Comparison with (2.2) 
yields 
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He) 

(3.10) Cq(c) = ± Cq(*p(c)). 
P = I 

This formula gives the desired relation between the group attached 
to a critical level and the groups attached to the critical points at that 
level provided there are only a finite number of such critical points. 
We now make the assumption that this is true for every critical level. 
Now under Assumptions (A)-(E) the number of critical levels can be 
proved to be finite (see [21, Lemma 2.3] ). We denote them by 
cu c2, ' ' ', cN, and set 

(3.11) n = r(Ci), *; = aß(c{\ W; = W;(Ci), p = 1, 2, • • -, r,. 

We now introduce "Morse numbers" Mqipj), Mq\ Mq by setting 

(3.12) M > / ) = rank Cq(ap% Mj = rank Cq(d), Mq = £ Mq\ 
i = l 

(Here "rank" means rank over the coefficient group.) 
The following theorem gives an interpretation of the number Mq

l 

and Mq in the "nondegenerate" case: 

THEOREM 3.4. Let Assumptions (A)-(E) be satisfied. In addition 
it is assumed that each critical point of f in V is nondegenerate of 
order p = 2 (see Definitions 2.5 and 2.6). Then 

(a) the number of critical points in V is finite (the proof shows this 
to be true if the critical points are nondegenerate of arbitrary order 

(ß) Mq
l equals the number of critical points in V of index q at level 

Ci, 

(y) Mq equals the number of critical points in V of index q. 

PROOF. The set of critical points in V is compact (see [21, Lemma 
2.3] ). On the other hand, a nondegenerate critical point is isolated as 
is easily seen from Lemma 2.6. Moreover there are no critical points 
on the boundary V of V. These three facts together imply assertion 
(a) in an obvious manner. 

But on account of Theorems 3.3 and 3.2, assertion (a) implies the 
validity of (3.6) and, therefore, of (3.10). It also implies that the 
assumption made in the paragraph above (3.11) is satisfied. Thus 
definitions (3.11) and (3.12) make sense. But by the Corollary to 
Theorem 2.2, C^aJ), the </th critical group at a J for / , is isomorphic 
to the qth critical group of the second differential of / at ap\ and by 
Theorem 2.1 this group equals the coefficient group G if q equals the 
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index jj of this differential as quadratic form and is 0 otherwise. Its 
rank is therefore 1 if q = j p \ and zero otherwise. Since by Definition 
2.5, jj is the index of ap

{ as critical point o f / w e see from (3.12) that 

Ml i\ = J 1 Ì f ^ = Ì n d e X °i(TP' 
MqVr) \ 0 i f 9 ^ index of a / . 

Summing over p from 1 to r{ we obtain (ß) by using (3.10) and (3.12). 
Assertion (y) is an obvious consequence of (ß) and (3.12). 

We now turn our attention to the inequalities (1.6) of the introduc
tion. 

THEOREM 3.5. Let the Assumptions (A)-(F) be satisfied. Let Rq 
denote the Betti numbers of V (i.e. the ranks of the groups Hq(V)) and 
let Mq be defined by (3.12). Then (1.6) holds. 

In this theorem no nondegeneracy assumptions are made. Thus 
Mq

l and Mq may be infinite numbers. 
A proof of this theorem based on ideas of Seifert and Threlfall [22, 

§5] is given in [21, §3]. 
We turn to the Morse inequalities (1.7) with Rq, Mq defined as in 

Theorem 3.5. Assuming that the critical values ci9 c2, ' ' ',cN are 
ordered by magnitude, let a{ be numbers such that 

(3.13) OQ < Ci < aY < • • • < ai-i < c{ < a» < • • • < aN_Y < cN < aN 

where aN > sup x G vf(
x) > ^% e vf(x) > ao a n d let A{= fa f~i V. 

(As already mentioned, Assumptions (A)-(E) imply that N is a finite 
number. Moreover f is bounded [21, Lemma 2.1].) Now the 
purely algebraic proof given by Pitcher [14, §11] in the finite-
dimensional case for (1.7) shows that (1.7) holds if each group A» is 
finitely generated provided N is finite and f(x) is bounded so that 
the above choice of aN and a0 is possible. Since these two conditions 
are realized under assumptions (A)-(E) we can state 

LEMMA 3.2. Let Assumptions (A)-(E) be satisfied, and suppose 
that the groups AQ, A1? • • -, AN defined above are finitely generated. 
Then (1.7) holds. 

We now make the following assumptions (a), (ß) and (y) in addition 
to (A)-(E). 

(a) Each critical point is nondegenerate of some order p è 2. 
As already mentioned this implies that the number of critical points 

is finite. We denote again by aj (p = 1, 2, • • -, r^ the critical points 
at level Q. 
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(ß) Each critical point (rj(i = 1, 2, • • -, N; p = 1, 2, • • -, r{) is non-
degenerate of even order P^, and in some neighborhood Wp* of <jp\ f 
is of the form 

/(*) = (P*,)-1«* - <vll''> + F*(* - <v) 
where the gradient of F^ is completely continuous (cf. the assumption 
for Theorem 2.3). 

(y) Hq(V) is finitely generated. 

THEOREM 3.6. Le£ Assumptions (A)-(E) and (a)-(y) be satisfied. 
Then the Morse relations (1.7) hold. 

PROOF. By Lemma 3.2 it will be sufficient to prove that the groups 
Hq(Ai) are finitely generated for i = 0 ,1 , • • -, N and all q. Now 
Hq(AN) = Hq(V) is finitely generated by assumption (y). Moreover 
HqiAn, A ^ ) is finitely generated. For by (3.1), (3.13) and (3.10), 

rN 

Hq(AN, AN_,) = Cq(eN) = ± Co«)-
P = I 

But it follows from Theorem 2.3(0) that each Cq(ap
N) is finitely gen

erated. Thus Hq(AN) and Hq(AN, AN_X) are finitely generated for all 
q. But this implies that Hq(AN_l) is finitely generated as can be shown 
from the exactness of the homology sequence 

Hq+\(AN, AN_i) —> Hq(AN_l) —> Hq(AN). 

Replacing N by N — 1 one proves that Hq(AN_2) is finitely generated. 
Continuation of this procedure proves our assertion. 

So far we treated the generalization to Hilbert space only in the 
first of the cases (a)-(d) listed at the beginning of §3. We now con
tinue with some remarks concerning the remaining cases. 

REMARK ON THE CASE (b) (general boundary conditions). We make 
the following change in the assumptions made in case (a); Assumption 
(A) is strengthened by some additional differentiability conditions on 
the boundary V of V. Moreover, the function f is defined in an 
open bounded domain V2 containing V and satisfying the strengthened 
Assumption (A) made for V. The boundaries V and V2 are supposed 
to have a positive distance. 

Assumption (B) holds in V2 and is strengthened by the require
ment that the second differential of / is also uniformly bounded in 

v2. 
Assumption (C) is replaced by the stricter condition that g(x) = 

grad/(x) = x 4- G(x) with completely continuous G in V2. Moreover 
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if, for x E V , gt(x) denotes the component of g tangential to V then 
||gt|| is supposed to be bounded away from 0 on any closed set 
S C V which contains no zero of gt. 

Assumption (E) is replaced by the condition that g(x) / Ö on V, 
and there exist a finite number of points xl9 x2, • • •, ocr on V at 
which g has the direction of the interior normal to V. 

In addition we assume that all critical points of / in V are non-
degenerate of order 2, and that the same is true of the points x1? 

x2, • • *,xr considered as critical points of the "boundary function" 
<k i.e. of / restricted to V. (The critical points of <j> are the zeros of 
gt [20, Lemma 6.3].) Finally, it is assumed that Hq(V) is finitely 
generated. 

THEOREM 3.7. Under the above assumptions the Morse relations 
(1.7) hold if, in these relations, Mq is replaced by Mq

l = Mq + Mq~ 
where Mq~ denotes the number of those of the points xx, x2, ' ' ',xr 

defined above which are of index q. 

As in the finite-dimensional case [11], the proof consists in reduc
ing the present case (b) to case (a) by constructing a modification f 
off which satisfies regular boundary conditions. 

In fact it can be proved [20] that 
there exists an open set V1 with V C Vx C Vx C V2, and a function 

fx of the following properties: 
( i) /1(x) = / f x ) f o r x G V ; 
(ii) / satisfies regular boundary conditions on V1? i.e. (nL(x), gi(x)) 

> 0 for x G Vi where nx(x) is the exterior unit normal to V1? and 
where g! = g r ad / i ; 

(iii) to each of the points xp €E V defined above corresponds a 
unique point xp* G VY — V which is a critical point of / l 5 and these 
points xp* are the only critical points of f in Vx — V; 

(iv) each of the critical points xp* is nondegenerate, and the index 
of xp* equals the index of xp as a critical point of the boundary of 
function <f>. 

(v) Hq(V) ~ //„(Vi). 
It is obvious from these properties that the function fY with domain 

V\ satisfies the assumptions of Theorem 3.6. Therefore by this theorem 
the relations (1.7) hold if the Morse numbers Mq of / are replaced by 
the Morse numbers Mq

l of f. Theorem 3.7 now follows from proper
ties (iv) and (v) above together with Theorem 3A(y). 

Generalization of case (c) (see the beginning of §3). Here we con
fine ourselves to a short description of some of the methods and 
results of Palais' paper [13] frequently referring to analogies with 
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the above treatment of case (a). Let V be a "complete Riemannian-
Hilbert manifold" and let / b e a real valued function with domain 
V. The term "Hilbert manifold" refers to the fact that the parameter 
spaces U which parametrize small enough open sets D C V can be 
chosen to be (separable) Hilbert spaces. For such a fixed representa
tion (or chart) x = <j>(u) where x G D, u G U, differentials of f°(f>(u) 
can be defined. Since the first differential is invariant under change of 
parameters the notions of critical point and gradient can be defined 
as in the Introduction. The second differential is not invariant in 
general. However it is invariant at points which correspond to critical 
points. Thus nondegeneracy of a critical point can be defined 
analogously to Definition 2.5. 

It is supposed that all critical points are nondegenerate, that con
dition C (Definition 3.1) holds, and that / is at least three times dif
ferentiate. Under these assumptions our previous Assumption (D) 
that the critical values are isolated is automatically true, and each 
critical level contains only a finite number of critical points [ 13, p. 
314]. Moreover the analogue to Lemma 3.1 holds [13, p. 310]. 
Consequently the critical group Cq(c) at the critical level c can again 
be defined by (3.1). If Mq(c) denotes the number of those critical 
points at level c whose index is finite then Cq(c) equals the direct sum 
of the coefficient group taken Mq(c) times [13, p. 336]. (As to the 
reason for the fact that the critical points of infinite index do not 
contribute to Cq(c), see the last paragraph of the proof for Theorem 
2.1.) 

Let X be a topological space, B a ball, S its boundary and g a map: 
S —» X. Then the space obtained from X by "attaching B with attach
ing map g" is by definition constructed as follows: Take the topologi
cal sum of X and B and identify y in S with g(y) in X. 

If a,b,c are as in the definition of Cq(c) (equation (3.1)) then the 
following relation holds between the sets fb and fa: Letji,j2, * * ',jr 

denote the indices of those critical points at level c whose index is 
finite and let fa

+ denote the space fa with r balls of dimensions 
ji>jz> ' * 'yjr disjointly attached. Then / / is a deformation retract 
of fb [13, p. 336]. (Cf. [9, Theorem 3.2] for the finite-dimensional 
case.) 

Turning to the Morse relations (1.7) we remark first that under the 
present conditions the number of critical levels is not necessarily 
finite. However since these levels are isolated there can be only a 
finite number in any given finite interval [a, b], and since there are 
only a finite number of critical points at each critical level, the number 
Mq(a, b) of critical points at levels in [a, b] is finite. 
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Suppose now that a and b are not critical levels. Then the Morse 
relations (1.7) hold if the Mq are replaced by Mq(a, b) and the Rq by 
the Betti numbers Rq(a, b) of the couple (fb, fa) [13, p. 338]. 

Case (d), the problem of geodesies on a complete finite-dimensional 
Riemannian manifold V. Let p and q be fixed points on V, and let 
(V; p, q) denote the set of all curves x = x(t) (0 ^ t^k 1) on V joining 
p and q. Then, under certain smoothness assumptions on the manifold 
V and the curves x(t), the "loop space" (V; p, q) can be interpreted as 
a complete Riemannian-Hilbert manifold V ([4] and [13, §13]). 
Let now the function f on V be defined by 

(3.14) /(*)= £ ||x'(t)||2<fc 

Then it can be shown that the assumptions for the validity of the 
theory described in the preceding case (c), in particular condition C, 
are satisfied [13, §14]. 

Moreover the point x G V is a critical point of / if and only if 
the curve x on V is a geodesic parametrized proportionally to arc 
length [13, p. 330, Corollary]. Thus the existence problem for 
geodesies on V is identical with the existence problem for critical 
points on the Hilbert manifold V of the function / defined by (3.14). 

REFERENCES 

1. P. S. Alexandroff and H. Hopf, Topologie, Springer, Berlin, 1935. 
2. J. Dieudonné, Foundations of modern analysis, Pure and Appi. Math., vol. 

10, Academic Press, New York, 1960. MR 22 #11074. 
3. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 

353-367. MR 13, 373. 
4. J. Eells, Jr., On the geometry of function spaces, Sympos. internacional de 

topologia algebraica, Universidad Nacional Autonoma de Mexico and UNESCO, 
Mexico City, 1958, pp. 303-308. MR 20 #4878. 

5. S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, 
Princeton Univ. Press, Princeton, N. J. 1952. MR 14, 398. 

6. M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert 
space to the calculus of variations, Pacific J. Math. 1 (1951), 525-581. MR 13, 759. 

7. S. Kakutani, Topological properties of the unit sphere of a Hilbert space, 
Proc. Imp. Acad. Tokyo 19 (1943), 269-271. MR 7, 252. 

7a. N. H. Kuiper, C-equivalence of functions near isolated critical points, 
Ann. of Math. Studies, no. 69, Princeton Univ. Press, Princeton, N. J., 1972, pp. 
199-218. 

8. J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. 
École Norm. Sup. (3) 51 (1934), 45-78. 

9. J. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. 
Press, Princeton, N. J., 1963. MR 29 #634. 

10. M. Morse, Calculus of variations in the large, Amer. Math. Soc. Colloq. 
Pubi, vol. 18, Amer. Math. Soc, Providence, R. I., 1934. 



274 É. H. ROTHE 

11. M. Morse and G. B. Van Schaack, The critical point theory under general 
boundary conditions, Ann. of Math. (2) 35 (1934), 545-571. 

12. R. Nevanlinna, Über metrische lineare Räume. III. Theorie der Ortho
gonalsysteme, Ann. Acad. Sei. Fenn. Ser. A I Math.-Phys. No. 115 (1952), 27 pp. 
MR 14, 658. 

13. R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-
340. MR 28 #1633. 

14. E. Pitcher, Inequalities of critical point theory, Bull. Amer. Math. Soc. 
64 (1958), 1-30. MR 20 #2648. 

15. E. H. Rothe, The theory of topological order in some linear topological 
spaces, Iowa State Coll. J. Sci. 13 (1939), 373-390. MR 1, 108. 

16. , Leray-Schauder index and Morse type numbers in Hilbert space, 
Ann. of Math. (2) 55 (1952), 433-467. MR 14,185. 

17. , Correction to the paper "Leray-Schauder index and Morse type 
numbers in Hilbert space", Ann. of Math. (2) 58 (1953), 593-594. MR 15, 236. 

18. , A remark on isolated critical points, Amer. J. Math. 74 (1952), 2 5 3 -
263. MR 13, 755. 

19. , Some remarks on critical point theory in Hilbert space, Proc. 
Sympos. Nonlinear Problems (Madison, Wis., 1962), Univ. of Wisconsin Press, 
Madison, Wis., 1963, pp. 233-256. MR 28 #2424. 

20. , Critical point theory in Hilbert space under general boundary 
conditions, J. Math. Anal. Appi. 11 (1965), 357-409. MR 32 #8361. 

21. , Critical point theory in Hilbert space under regular boundary con
ditions, J. Math. Anal. Appi. 36 (1971), 377-431. 

22. H. Seifert and W. Threlfall, Variationsrechnung im Grossen, Teubner, 
Leipzig, 1938. 

23. M. M. Vaìnberg, Variational methods for the study of non-linear operators, 
GITTL, Moscow, 1956; English transi , Holden-Day, San Francisco, Calif., 1964. 
MR 19, 567; MR 31 #638. 

UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104 


