
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 3, Number 2, Spring 1973 

BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS1 

D. SATHER 

CONTENTS 

§1. Introduction 
§2. Some results on branching of solutions 

A. Unbounded operators 
B. Bounded operators 

§3. Solution of the branching equation in Cn 

A. Algebraic methods and Newton's polygon for several variables 
B. Topological degree methods 

§4. Solution of the branching equation in Rn 

A. Algebraic methods and Newton's polygon for several variables 
B. Topological degree methods 
C. Gradient operators 

1. Introduction. Many problems in analysis and applied mathe
matics involving a parameter 17 require that, for (z, 77) near (0, 0), one 
determine the number of nontrivial solutions w = w(z, 17) near w = 0 
of an equation of the form 

(I) g w + JH(w, Z) = i)w, w,zG S3, 

where S3 is a Banach space, 8 is a linear operator, and JA is a non
linear operator satisfying Ji/((0, 0) = 0. This basic problem of deter
mining the number of such nontrivial solutions near to = 0 has been 
considered by many authors since the early papers of Lyapunov [45] 
and Schmidt [61] on nonlinear integral equations, and has led to an 
entire theory of branching of solutions of nonlinear equations. For a 
historical and mathematical introduction to the theory of branching of 
solutions of nonlinear equations as well as an overall view of recent 
developments in the subject, the reader is referred to the books of 
Krasnosel'skiï [40], Vainberg [68], Pimbley [52], and Keller and 
Antman [35], and the survey articles of Krasnosel' skii [39], Vainberg 
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and Trenogin [73], Prodi [54], Vainberg and Aizengendler [69], and 
Stakgold [63]. 

The present paper may serve as a supplement to the above-men
tioned books and articles in so far as it is devoted mainly to the study 
of equations of the form ($ ) where the null space of 8 has dimension 
n = 2, and g and J\ are, in general, unbounded noncompact operators. 
In particular, as indicated in the above listed contents, the major 
portion of the present article is concerned with the solution of the 
associated "branching equation" in the finite-dimensional spaces O 
(n-dimensional unitary space) or Rn (n-dimensional Euclidean space); 
the emphasis here is on constructive ways of solving the "branching 
equation" so that the indicated algebraic or topological degree 
methods are used mostly to complement more constructive analytic 
methods. 

2. Some results on branching of solutions. In this section we con
sider some classes of nonlinear equations in a (real or complex) Hilbert 
space cH and show how the basic problem of determining nontrivial 
solutions of such equations in JJ- can be reduced to the problem of 
determining sufficiently small solutions of certain "branching equa
tions" in the spaces Cn or Rn. In §A we consider some classes of 
nonlinear equations involving unbounded operators, and in §B we 
consider the same equations in the special situation of bounded 
operators. 

A. Unbounded operators. The following approach is a generaliza
tion of the method of Lyapunov and Schmidt referred to above and 
is based upon a paper of Gustafson and Sather [30] which is in turn 
a generalization of some earlier work of Cesari [16], Locker [43], 
and Reeken [55]. For the sake of simplicity we take Ji to be a Hilbert 
space (see [30] for a treatment of nonlinear operators on a Banach 
space) and consider an equation of the form 

(*) Lw + N(w, z) = rjiu, w,z E. Ji, 

where TJ is a scalar. Our initial hypotheses on the operators L and N 
are as follows: 

(LF) L : th(L) —» cH is a linear (not necessarily bounded) Fredholm 
operator, i.e., L is a closed linear operator such that 

(a) the domain th(L) is dense in J/, 
(b) the range <fi(L) is closed in J/, 
(c) the null space Sfi(L) of L and the null space $l(L*) of the ad

joint operator L* are finite-dimensional with dim 0t(L) = ft and 
dim$R(L*) = m; 
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(NC) there exists an open set O C cH such that 
(a) N : (£>(L) H L O ) X ( 9 - » J / i s a nonlinear operator with ZV(0, 0) 

= 0, 
(b) N satisfies a local Lipschitz condition of the following form: 

ifwi, w2 G
 (ML) fì ® a n d zE. O then 

\\N(wl9 z) - N(w2, z)\\ ^ Ç(| |K| | | , |K«I , ||z||) | | K - w2\\\ 

where || • || denotes the norm derived from the inner product ( -, •) in 
Ji, Q : fl3 -> [0, oo ) satisfies lim,x|_*oÇ>(zi> *2> *a) = 0, and | H | | = 
||Lif|| + ||u;||, W G 1LÒ(L), denotes the L-norm on !£>(L), 

(c) | |N( t i ; ,z ) - N(w,0)\\ - * 0 as ||z|| -* 0, uniformly for |HII = <* 
(a > 0), u; G £>(L) Pi (D . 

The particular form of equation (*) and the above hypotheses on L 
and N were chosen with certain applications in mind to nonlinear 
eigenvalue problems, and nonlinear problems involving perturbations 
of unbounded linear operators. For example, if 7) = k — k0

 a n d L is 
of the form L = A — k0I, where \ 0 is an isolated real eigenvalue of 
A such that 3t (A — k0I) and 31 (A* — A0Z) are finite-dimensional, 
then finding solutions of equation (*) near rj = 0 is equivalent to find
ing solutions of Aw -f N(w9 z) = kw for k near the eigenvalue A0 

of the linearized problem. 
Let us also remark here that we are interested mainly in the case 

where n ̂  2 and m §^ 1 in part (c) of hypothesis (LF). The special 
cases of either n = 1 and m = 0, or n = 0 and ra = 1 are considered 
for bounded operators in [73], whereas the special case when 
n = m = 1 has been considered in recent years by a great many 
authors (e.g., see [4], [39], [40], [52], [54], [63], [73]). 

Let us now assume that L satisfies (LF). Let {uÌ9 • • *, un} be an 
orthonormal basis for 3*1 (L) and let {Wi*, * * -, wm*} be an orthonormal 
basis for 3t(L*). Let F be the orthogonal projection operator of J / 
onto Sfl(L*)L, where SH(L^)± denotes the orthogonal complement of 
3t(L*) in Ji, and let Q be the projection operator of Ji onto 31 (L). 
Then 

(2.1) P * ^ S K w > j 
i = i 

and, since J?(L) = 31 (L*)1 (e.g., see [26, p. 95] ), 
ra 

(2.2) (I-P)w= X ( « , i 4 V 
i = i 

is the projection operator of J / onto 3{(L*), and J / may be written as 
the orthogonal direct sum of 3t(L*) and cR(L). 

Let us next note that the restriction of L to £*(L) fi 31 (L) 1 is a 



206 D. SATHER 

one-one mapping of 2>(L) H ^t(L)1 onto ^?(L) so that K = 
(L| ^)njt(L)1 ) _ 1 is well defined, and 2>(K) = < ?̂(L) and J?(K) = 
£>(L) n^l(L)1. Moreover, since K is a closed operator from (the 
Hilbert space) <ß(L) into Sft(L)1, it follows from the closed graph 
theorem that K is continuous (e.g., see [26, p. 94] ). Hence KP is a 
continuous linear operator defined on all of J/. The following lemma 
summarizes some useful properties of K (see also [16], [43, p. 405] 
and [50, p. 72]). 

LEMMA 2.1. The linear operators K, P and Q satisfy 
(a) KLw = (I - Q)wforallwG £>(L), 
(b) LKPw = PwforallwŒ J+. 

The proof of property (a) follows by direct calculation, i.e., if 
w G £>(L) then (J - Q)w G 2>(L) Pi 91 (L)1 and 

KLw = KL[(I - Q)w + Qw] = KL(I - Q)w = (I - Q)w, 

and property (b) is just the statement that K is a right inverse for L 
oncR(L). 

Let us assume for the moment that w; G Î^(L) is a solution of equa
tion (*). Then, since *R(L) = 9l(L*) x , an application of property (a) 
yields the relationship 

(1) v + KP[ -r)(u + v) + N(u + ü, z)] = 0 

where we have set v = (I — Q)w and u = QK;. This relationship 
suggests the following natural question: For which u, z and rj does a 
solution v=v(u>z,r)) in Sl(L)1 of equation (1) yield a solution 
u; = u + t$ of equation ( * )? A complete answer to this question is 
furnished by 

LEMMA 2.2. Suppose that rj is a scalar, z G Ö and u G 9l(L), and 
v = v(u, z,t)) in 3l(L) is a solution of equation (1). Then w = u + v 
is a solution of equation ( * ) if and only ifu, z and rj satisfy the equation 

(2) (i-P)[ —n(u + t3) + M " + £, z)] = o. 

It is clear that if v = Ü(M, 2,17) is a solution of (1) then v G £>(L) fi 
9l(L) . Thus, by property (b) of Lemma 2.1, 

0 = Lo + LKF[ -rj(u + t3) + N(u + t5, z)] 

(2.3) = L(tt + t3) - T)(W + t3) + N(w + t5, z) 

- ( / - P)[-y(u + t3) + N(w + t5,z)] 

which implies Lemma 2.2. 
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REMARK 2.1. An equation such as (2) is usually referred to as a 
"branching equation". Let us observe that if we set u = 2)7= i £juj> 
where {ux, • • ',un} is an orthonormal basis for 9t(L), then equation 
(2) is equivalent to the system 

( - ^ ( E ^ + « ) + t f ( S &J + à,z ) , ut ) = 0 
(2)* 

( i = 1, • • -,m) 

so that the "branching equation" is actually a system of m nonlinear 
equations in the n + 2 variables f 1? £2> ' ' S £n> V a n d 2. 

The following theorem provides a solution of equation (1) in the 
space ^ ( L ) n g i ( L ) 1 . 

THEOREM 2.1. Suppose that L and N satisfy hypotheses (LF) and 
(NC). Then there exists a positive constant b = a/2 and positive con
stants c and d such that, for each u G 9l(L), z G O and each -q satisfy
ing \\u\\ =É b, \\z\\ ̂  c and \q\ ^ d, equation (1) /ias a unique solution 
v — v(u, z,rj) belonging to ^>(L) Pi §fl(L)L. Moreover, for \\u\\ ̂  b, 
||z|| = c and (17! S d, £/ie solution v satisfies \\\v\\\ ^ j|w|| + 
2(1 + ||K||)||N(0, z)\\, and v depends continuously in the L-norm on 
u, zand rj. 

PROOF. Let us note first of all that, since L is a closed operator, the 
linear space £>(L) Pi 0l(L) is complete in the L-norm, so that we 
may use the contraction mapping principle in the Banach space 
(2>(L)nsR(L)\||| HI). 

Let v G Lò(L) fi Sft(L)1 and u G 9l(L), and define the mapping 

(2.4) <KÜ, w, z, rj) = KP[r)(u + v) - N(u + u, z)]. 

Then, by the definition of K and property (b) in Lemma 2.1, for each 
fixed u G. $l(L) and z G.O, and each fixed 17, we have <I> : !£>(L) D 
9KL) 1 -* !Ù(L) n gi(L)1 and 

P>(Ü! , M, z, rj) - Q(v2, «> z, 17)III 

= | |P[IJ(Ü, - t>2) + N(u + v2, z) - N(u + »!, z)] U 

+ IKP[7,(0, - v2) + N(u + v2, z) - N(u + vu z)] || 

^ (1 + ||K||)[M + Q(\h + «lilMII« + o2|||, ||«||)] IIb! - o2|||, 

where ||K|| denotes the norm of K Let d = 1/8(1 + ||K||) and let 
c > 0, b > 0 be such that Ç>(|||u + c|||, 0, ||z||) g 1/8(1 + ||K||) and 
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Qdlu+v.l \\\u + v2\\\, \\z\\) g 1/4(1 + ||K||) whenever ||u|| ^ |||u||| 
^b, Ululila b, I IMI^fc, and \\z\\^c. Let c^c be such that 
HMO, 2)|| ^ bl2(l + \\K\\). Then, for ||u|| S b, \\z\\ g c and H g d, 
<t> maps the ball B = {|||t)||| S £>} into itself, and<ï> satisfies 

(2.6) IH^K, u, z,V) - *(o2 ) M, z,i,)||| S | Hü! - t>2|||, vu v2 G B. 

Therefore, by the contraction mapping principle, there is a unique 
fixed point v = v(uyz,rj) of 4> such that v satisfies equation (1) and 
|||i5HI ^ ||u|| + 2(1 + ||K||)||N(0, 2)|| whenever ||u|| S b, \\z\\ ̂  c 
and \q\ ^ d. The desired continuity of the function v(u, z,y)) in u, z 
and rj for \u\ = b,\z\fk c, and \n\ ̂  d is now immediate; namely, if 
u = v(u, z, 17) and u* = u(t/*, £*, 17*) then 

| | | I > - Ü * | | | = |||KPfo(u + t>) - i,*(«* + »*) 

+ N(u* + v*, z*) - N(u + 13, z)] I 
(2 '7) S 2fo(i + \\K\\)\n - v*\ + HI« - «*|| + I lb - 0*||| 

+ ( 1 + ||K||)||N(ti + o , z * ) - N ( u + 0 ,z) | | . 

This completes the proof of the theorem. 
As a consequence of Lemma 2.2 and Theorem 2.1, finding solutions 

of equation (*) in J / is now reduced to finding sufficiently small solu
tions (u, z, 17) of a finite-dimensional problem; it is convenient to state 
this relationship as 

THEOREM 2.2. Let the operators L and N satisfy the hypotheses of 
Theorem 2.1 and, for \\u\\ ^ b, \\z\\ ̂  c and \q\ ^ d, let v be the unique 
solution of equation (1) as determined in Theorem 2.1. If in addition, 
there exists a solution û = u(z, 17) of the branching equation (2) then 
ib = u + v is a solution of equation ( * ). 

Before turning to the study of the branching equation (2), let us 
remark that our particular hypotheses on the operators L and N were 
chosen for the sake of convenience and with certain applications in 
mind to problems involving nonlinear perturbations of unbounded 
linear operators. Other related approaches are to be found in the 
work of Cesari [14], [15], [16], Hale [31], [32], [3],Trenogin [67], 
Vainberg and Trenogin [72], Locker [43], [44], Reeken [55], and 
Gustafson and Sather [30], and the references cited therein. A com
pletely different approach may be found in some recent papers of 
Gustafson and Sather [28], [29] wherein the problems considered 
are such that certain results in monotone operator theory may be used 
rather than the contraction mapping principle. 
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Let us now consider the branching equation (2). It is, of course, 
well known that finding solutions of equation (2) may be a very dif
ficult problem because the explicit form of v may not be known. In 
fact, in the case of a real Hilbert space cH the complete solution of (2) 
is usually quite difficult even when m = n. 

In order to simplify somewhat the study of the branching equation 
(2) we introduce the following stronger hypotheses on N: 

(NS) N is a smooth operator of the form 

N(w, z) = Fxz + ]T Frs(wy z) + G(w, z\ 

where F{ : Ji —> Jt is a bounded linear operator, Frs : 2*(L) X J / —» Ji 
is a homogeneous polynomial of degree r in w and degree s in z which 
satisfies a local Lipschitz condition of the form stated in hypothesis 
(NC) for some Qrs, and G : (£>(L) Pi O) X £> -* J / is a "higher order" 
nonlinear operator such that || G(w, z) || = o(|||a>|||Q + || z ||^) as 
HI«; HI + ||% || —» 0, G satisfies also a local Lipschitz condition of 
the form stated in (NC), and G is continuous in z as in (NC). 

It is clear that if L and N satisfy (LF) and (NS) then the existence of 
a unique solution v = v(u,z,rj) of equation (1) is a consequence of 
Theorem 2.1. Moreover, if N satisfies (NS) then several of the lower 
order terms of v may be calculated as in Barde [4, p. 373] and 
Pimbley [52, pp. 24-28] by successively substituting 

KP[7)(u + v) - N(w + v,z)] 

for v. In this way one obtains more detailed information about the 
branching equation (2) which allows one in some cases to carry out 
the solution of (2) near ||w|| = ||z|| = ij = 0; such an approach is con
sidered in some detail in §2B for the special case when !2>(L) = J / 
and m = n in (LF), and -q = 0 in equation (*). 

On the other hand, since the calculations in the method of succes
sive substitutions are very involved, one would like instead an 
approach which does not require detailed information about v. Such 
an approach may, in fact, be developed in the case where, in addition 
to (LF), L is an operator having ascent a(L) = 1 (e.g., see [64] ). For 
the sake of simplicity, let us consider in the present paper only the 
special case where L is a selfadjoint operator; the reader is referred 
to Gustafson and Sather [30] for a more general branching analysis 
of equation (*) for unbounded operators L with a(L) = 1, and to 
Pimbley [52, p. 120] and Stakgold [63] for the case of bounded 
operators. 
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The basic equations (1) and (2) above assume an especially conve
nient form when L satisfies the following stronger hypothesis: 

(LSA) L is of the form L = A — X07, where A is a (not necessarily 
bounded) selfadjoint operator and À0 is an isolated eigenvalue of A 
of finite multiplicity. 

Then, since SK(L) = 9t(L*) implies <R(L) = SR(L)1, $l(L) and cR(L) 
are complementary orthogonal subspaces of Ji so that the projection 
operators P and Q in (2.1) and (2.2) satisfy Q = I — P, and the equa
tions (1) and (2) reduce to 

(l)sa v + K[-7)v + PN(u + v, z)] = 0, 

(2)sa -jfu + QN(u + v,z) = 0. 

It will be seen in §4 that this reduction is especially useful when Ji 
is a real Hilbert space and N is a smooth operator, in that one can 
determine solutions u = u(z, i)) of the branching equation (2)sa without 
detailed information about the function v = v(u, z, rj) arising from the 
solution of equation (l)sa. 

Let us now consider some applications of the above method to non
linear partial differential equations. 

Elliptic equations. Let ii be an open bounded set in Rn and let 
d û denote its boundary. Let x = (x1? x2, ' ' ', xn) denote a point of fl 
and let ||w;||p = (Sa\w(x)\p dx)llp where dx denotes n-dimensional 
Lebesgue measure. If a = (a1? * • *, a^) is any n-tuple of nonnegative 
integers, we set |a| = 2 i = i °i'> &* = î**1 ' ' ' %r?n, a n d Da = 

D^i • • • Dn« • where Dj = (lli)(dldXj) (j = 1, 2, • • -, n). Let_ E 
be the partial differential operator of order 2ra defined by E = 
Xl«l^2m#a(x)Da, where the a^(x) (|ß| = 2m — 1) are complex-valued 
functions on il and (for the sake of simplicity) the aa with \a\ = 2ra are 
real-valued functions on fl. The operator E is elliptic on ft if its char
acteristic polynomial P(x,£) = ^\a\=2maa(x)€a does not vanish in (1 
for any real n-vector £ ^ 0. It is uniformly elliptic on il if there 
exists a constant c > 0 such that \P(x, £)| = c|£|2m for every point 
x in Ü and for any real n-vector £ 

Let W*'2(fl) be the set of functions u in 82(îl) which have generalized 
derivatives D^i belonging to fi2(fì) for |a| = I. Let £> be defined by 
! £ = {w : w G W2™'2(ft), D<*i/ = 0 on a n for \a\ < m] and let E 
(the Dirichlet operator with zero boundary conditions on d(] of order 
m) be defined by £>(E) = £ò and Eu = Eu for w E £>(E). Then 
E : £>(E) —> -82(Ó) is linear with £>(E) dense in g2(n) . Under reason
able assumptions on the coefficients aa and the open set lì, it can then 
be shown (e.g., see Browder [12, p. 46 and p. 62] and Agmon, 
Douglis and Nirenberg [1, §12] ) that if É is uniformly elliptic on Cl 
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then E is a Fredholm operator; thus, by Theorem 2.2, the existence 
of solutions of an equation of the form Eu + N(u, z) = TJU (with zero 
Dirichlet boundary conditions on dft of order m) can be reduced to a 
finite-dimensional problem provided that N satisfies (NC). However 
the problem of determining classes of such N can be resolved in 
several ways by means of the Sobolev inequalities and some "a priori" 
bounds for elliptic operators. 

For example, if lì is sufficiently regular, one can show (e.g., see 
[12, p. 44] and [1, p. 694]) that there exists a constant Kx such 
that if u G !à(E)then 

(2.8) £ ||I>u||2 ^^(IHIa+HEiilla). 
|a| ^2ra 

Moreover, there exists a constant K2 (e.g., see Sobolev [62, p. 56] ) 
such that if u G (J-*(E) and \l\ and n satisfy n + 2\l\ < 4m, then, for 

(2.9) \\Deu\\„^K2 £ ||D«u||2, 

where ||w;||oo denotes the S^-norm on fi of w. Thus, combining (2.8) 
and (2.9), we see that if n + 2\l\ < Am and N is of the form N(u) = 
F(u, Du, • • -, Dlu), where F is a polynomial satisfying F(0, 0, • • -,0) 
= 0, then N is defined on £>(E) and N satisfies a local Lipschitz con
dition of the type given in (NC). 

As some indication of another possible use of the Sobolev in
equalities in determining suitable nonlinear operators N, let us con
sider the simple boundary value problem 

— Aw — uw + act + ßw2 = r\w in O, 
(2.10) 

w — 0 on oil, 

where a and ß are real-valued functions that are continuous on the 
closure of the square il = {(x1? x2) : 0 < JC2 < TT and 0 < x2 < 7r}, a 
and a are real parameters, and A is the Laplacian in R2. Let 
Co°°(n) denote the set of infinitely differentiable functions with com
pact support in ft. Let the operator A be defined by £>(A) = C0 °°(ft) 
and Äu = — Au for u G £>(Ä). In particular then £>(Ä) is dense in 
the real Hilbert space g2(ft). Let A be the selfadjoint Friedrichs ex
tension of A (e.g., see [33] ). Then !à(A) C \ÏÏl>2(il) (the closure of 
C0°°(ft) in the norm of the real Hilbert space W12(fì)), and A has 
eigenvalues fikl = k2 + I2 and corresponding eigenfunctions ukt = 
(2/7r) sin kxY sin lx2 (k,l = 1,2, • • •). Thus, for example, the eigen-
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value /A = 5 has multiplicity two and the eigenvalue /x = 65 has 
multiplicity four. Clearly, equation (2.10) can be written in the form 
of equation (*) with L= A — ixktI, and N(W,(T) = era + ßw2. Let 
us now show that N satisfies hypothesis (NC). If w G £>(A) then 
w G \ ^ 1 2 ( n ) and (Aw, w) = ||Vu>||2 V u ; = gradu;, so that one of 
the basic Sobolev inequalities (e.g., see [62, p. 57] ) implies 
w G g4(n) and 

H| 4
2 ^ KiflHIf + ||Vu;|||} = K^IHIf + (Aw, w)} 

(2.11) 
^ 2 KAMI + IIAH|2}> 

where KY is independent of w. Hence, if u, v G 5^(A) then (2.11), 
together with Schwarz's inequality, yields 

(212) ^N(U,<T) ~ N ^ ° - ) H 2 = K 2 ( H | 4 + | |f | |42) | |"- «Ht 

^(MII+IMI)2«!«-««!2 

where |||a>||| = ||i£>|| + \\(A — /jtwl)tx;||. Thus, the existence of (general
ized) solutions of problem (2.10) reduces to solving the appropriate 
branching equation (2)sa in Rn; this latter problem will be considered 
in §4A and §4B. 

The Hartree equation for the Helium atom. As a second application 
of the above method let us consider a branching analysis of the 
Hartree equation for the Helium atom. This particular nonlinear 
equation, namely 

(He) - J A i ü — iü + u) f ^y\dy = \w, w(x) G g(R3), 
2 |*| J I * - y\ 

where A is the Laplacian in R3, arises naturally in the self-
consistent field method of quantum mechanics. In this method ap
proximate solutions w0, / w0

2(x) dx = 1, and X0 of equation (He) 
provide approximations to the first eigenvalue and corresponding 
eigenfunction of the Schrödinger equation for the Helium atom. 

Recently, the existence of an actual solution pair (w, X) of equation 
(He) has been investigated by Reeken [55] who extended the analysis 
of Bazley and Zwahlen in [6] so as to apply to equation (He). The 
basic idea in [6], [55] is to first determine a branch of small 
solutions w = w(X) of equation (He) near X = — 2 (the first eigen
value of the operator — \ A — 2/|x|) and then continue this local 
branch to a solution w = w(k) of equation (He) satisfying 
!(w(x))2dx = 1. 

The branching analysis presented below is related to that of Reeken 
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[55]. On the other hand, an entirely different and independent 
approach to the problem of determining a local branch of solutions of 
equation (He) has also been given by Gustafson and Sather [28] who 
based their analysis instead upon certain results in monotone operator 
theory. 

Let us note first of all (e.g., see [33, pp. 301-303] ) that the operator 
A = — IA + q, with q = — 2l\x\ and £>(A) = W2'2 consisting of 
functions in $2(R3) which have generalized derivatives belonging 
to g2(R3) up to the second order, is selfadjoint and the lower part 
of its spectrum consists of isolated eigenvalues Am = —21m2 of multi
plicity m2 (m = 1, 2, • • •). Thus, if for fixed Am one sets L = A — \ml, 
then L satisfies hypothesis (LSA) with J/ = g2(fl3) and dimSR(L) = 
m2. 

Let W1'2 denote the set of functions in g2(R3) having generalized 
first order derivatives belonging to g2(R3). Then the fundamental 
inequality (e.g., see [42, p. 16] ) 

(2-13) lv^dy - 4|1 VW|12 (VU) = grad W)' 
together with Schwarz's inequality, implies 

(2.14) | w2(x) ( J ™y} dyy dx^ 4\\w\\4 || VHI2 . 

Thus, if we set N(w) = w / (w2(y)l\x — y\) dy then N is defined on 
WU2Z) (J^(A) and equation (He) may be written in the form of 
equation (*) with h— A — kmI and i) = A — Am. 

Let us now show that the nonlinear operator N satisfies hypothesis 
(NC). First of all, by applying (2.13) and Schwarz's inequality, one 
obtains 

| |JVK) - N(w2)\\ 

(2.15) S 2(11^11^^11 + M llVt̂ ll 
+ K||||V«;2|| + K||||Vu>1||}|K-«J2||. 

Thus, in order to show that N satisfies the local Lipschitz condition in 
(NC), it suffices to show that, for some constant C, 

(2.16) ||Vu>|| g C(||Ltu|| + H ) , w G <HL). 

However, since q is relatively bounded with respect to —A (e.g., 
see [33, p. 303] ) in the sense that 

(2.17) ||<HI § a\\w\\ + b\\ - Aw\\, wG £>(A), 
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where a and b are constants and b may be chosen arbitrarily small, 
one easily sees for b = \ that 

(2.18) \\qw\\ ^ 2<z||u?|| + \\Aw\l w G £>(A). 

Moreover, since (e.g., see [13] ) 

(2.19) | |Vu; | | 2= \\(-Ayi*w\\2 = (-kw,w\ u> G 23(A), 

it follows for w G £>(L) = 23(A) that 

(2.20) || Vu;||2 = 2(Aw9 w) - 2{qw, w) ^ ||Au;||2 + \\qwf + 2||u;||2 

which together with (2.18) and the definition of L implies the desired 
inequality (2.16). 

Thus, if we now consider instead of equation (He) the equivalent 
system (l)sa and (2)sa then, by Theorem 2.1, equation (l)sa can be 
solved for a unique v = v(u,r)) whenever ||u|| = b, u G 9l(L), and 
\q\ = d,so that by Theorem 2.2 finding nontrivial solutions of equation 
(He) in 82(R3) reduces to finding nontrivial solutions u= u(k) of 
the corresponding branching equation (2)sa. This latter problem is 
solved, for example, in [28, §4] for km = AX and d i m 0 l ( L ) = 1; 
in particular, one can show that there exists a positive constant ô such 
that for AX < A < Xx 4- ô equation (He) has a continuous nontrivial 
solution branch w = u(k) + v(u(k), k) satisfying limx^x + w(k) = 0. 
Some techniques which may apply in the general case of dim $l(L) = 
m2 to determine nontrivial solutions of equation (2)sa are developed 
in §4B. 

B. Bounded operators. In the special case when 2>(L) = J /so that 
L is a bounded operator, some results closely related to Theorems 2.1 
and 2.2 are derived in the articles of Friedrichs [23], [24], Cronin 
[18], [19], Bartle [4], Graves [27], Trenogin [65], [66], Nirenberg 
[50, p. 83], and Vainberg and Trenogin [73], all of which are general
izations of the methods used by Lyapunov [45] and Schmidt [61] in 
their work on nonlinear integral equations. Most of the approaches 
just mentioned employ projection operators similar to the operators 
P and Ç introduced above. However, under additional assumptions, 
some of these approaches lead to other types of associated branching 
equations (e.g., see [19] and [50]) as well as more detailed descrip
tions of the associated finite-dimensional problem. 

In order to obtain a more detailed description of the branching 
equation in the case of bounded everywhere defined operators, we 
introduce the following hypotheses on L and N: 

(LFB) L satisfies (LF) with <h(L) = Ji and m = n; 

file:////Aw/l
file:////qwf
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(NSB) N is a smooth operator of the form 

N(w, z) = F{z+ J Frs(w, z) + G(w, z) 
r+s=2 

where Fx : J / —> J / is a bounded linear operator, Frs : J / X J / —> J / is 
a continuous homogeneous polynomial of degree r in w and degree 
5 in z, and G : (D X (D —> J / i s a continuous operator which is higher 
order in the sense that \\G(w, z)\\ = o(\\w\\q + \\zp) as ||u;|| + ||z|| -» 0, 
and satisfies a Lipschitz condition of the form stated in hypothesis 
(NC) with Lò(L) = J / and the L-norm replaced by the norm in J{. 

It can then be shown (e.g., see [4, p. 373] ) that if N satisfies (NSB) 
then N satisfies (NC) with th(L) = Ji and the L-norm replaced by 
the norm in <M. Thus, if L and N satisfy (LFB) and (NSB) then the 
existence of a unique solution v = v(u, z,r)) of equation (1) is a conse
quence of Theorem 2.1. 

Let us consider in some detail the special situation where f) = 0 
in equation (*), and L and N satisfy (LFB) and (NSB). Then equation 
(* ) reduces to 

(**) Lw + N(w, z) = 0, w,zE. J/, 

and equations (1) and (2) reduce to 

(1°) t>+ KPN(u+ v,z) = 0 

and 

(2°) ( I - P)N(u + Ü,Z) = 0. 

It is convenient to study the case when z is of the form z = a£o where 
a is a scalar and z0 is a fixed unit vector. If we now set 
u = ^Tj = i£jUj as in Remark 2.1 then equation (2°) is equivalent to 
the system 

(2°)* ( N ( S tu + !>(£a),azo ) , « < * ) = 0 (i = 1, • • -, n), 

where v = u(£ or) denotes the unique continuous solution of (1° ). 
Moreover, by using the method of successive substitutions as in [4], 
[52, p. 24], the system (2° )* may be written in the special form 

<p\è,o)=a«a+ ± o° S < . . , „ ^ •••£„'» 
(2.21) r + s = 2 l ' l = r 

+ p i (£a ) = 0 (i=l,--;n) 
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where the second sum is over all nonnegative integers l{ such that 
]Tt

n
=1 l{ = r, and the coefficients af.. #/ are calculable constants. Also 

the pl (i = 1, • • -, n) are continuous near |£| = a = 0 and satisfy 
the conditions 

(2.22) p%ta) = o(\€\"+ Ieri«), 

(2.23) |p<(£a) - p < ( f » | g o>(|£|, | f |, |a|)l* - f |, 

where CÜ : R3 —» [0, <*> ) satisfies irni\x^0o)(xi, x2, x3) = 0. Thus, in 
the case when L and N satisfy (LFB) and (NSB), the problem of find
ing solutions of equation (**) in <=H reduces to the finite-dimensional 
problem of solving a system of the form (2.21). A fairly complete solu
tion of this finite-dimensional problem in the case where J / is a 
complex Hilbert space will be given in §3. The more difficult problem 
when cH is a real Hilbert space will be considered in §4. 

Let us consider also the case when N is an analytic operator and 
determine the special form of the branching équation (2° ). Suppose 
that L satisfies (LFB) and that N satisfies the following analyticity 
assumption (the case when ïb(N) is only dense in J± is considered in 
Trenogin [67] and Vainberg and Trenogin [72] ): 

(NAB) N has a Taylor series representation, convergent in an open 
set <Jf C Ji X J/, 

N(w, z) = Fxz+ 51 Frs(w, *), (u>, *) £ <Ay 

where Fx : J / —» J4 is a bounded linear operator, and Frs : J / X Ji —> 
J / is a continuous homogeneous polynomial of degree r in w and 
degree s in z. 

Then, under the above assumptions on L and N, Vainberg and 
Trenogin [73, §4] (see also [69, p. 41]) show that if z = az0 

then the unique solution v = v(tj,a) of equation (1°) is given by a 
convergent series of the form 

(2.24) v(€, a) = A& + £ £ .. ^ i • • • £ > " , 
|l|+p£2 

where the summation is over all nonnegative integers l{ and p such that 
51/Li ij-f p = 2, and the coefficients Ap

ll... /„b elong to J / and are 
uniquely determined by certain recurrence formulas. Therefore, upon 
substituting the above series for v into (2°)*, one obtains, at least 
theoretically, a system of the form 
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(2.25) 4- £ ft'i • • • fn'- £ eft..,.*" = 0 (< = 1, • • -, n) 
|l|*0 p e l 

where the coefficients fo/, i and c*p , are calculable scalars and 
the 4>* are analytic in a neighborhood of |f | = cr = 0. Thus, in the 
case when L and N satisfy (LFB) and (NAB), the basic problem of 
finding solutions of equation (**) in J / reduces to a finite-dimensional 
problem involving analytic functions of n + 1 variables. This finite-
dimensional problem will be studied in considerable detail in §§3A 
and 4A. 

REMARK 2.2. In connection with our study of the branching equa
tion in §§3 and 4, it is convenient to point out here that if w = 0 is an 
isolated solution of the equation Lw + N(w, 0) = 0 then, under the 
appropriate smoothness assumptions on N, £ = 0 is an isolated 
solution of either the equation <p(£, 0) = 0 resulting from (2.21), or 
the equation 4>(£ 0) = 0 resulting from (2.25). 

3. Solution of the branching equation in Cn. The results of this 
section together with Theorem 2.2 provide a fairly complete solution 
to the basic problem of the existence of branches of equation (**) in 
a (complex) Hilbert space J/. Some of these results on analytic func
tions of several complex variables were obtained in the early part of 
this century whereas others were obtained only in the last several 
years. 

The points of Crn will be denoted by m-tuples such as f = 
(£i> ' ' " , 0 a n d the norm in Cm will be given by |£|2 = |£i|2 + 
" • ' + |£m|2. In addition, if £ = (xi + iyiy • • -, xm + iym) then its 

conjugate f is given by f = (Xl - iyu • • -, xm - iym). 

A. Algebraic methods and Newtons polygon for several variables. 
Let us recall first of all that if the operators L and IV in equation 

(**) Lw + N(w, z) = 0 

satisfy (LFB) and (NAB) in a complex Hilbert space J/, then the 
branching equation is equivalent to a system of the form 

* ' ( £ a ) = S fcj,-iJi1' • ••£. '» 

(3-D 

l'I SO p B l 
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where the <!>' are analytic in a ball |£|2 H- a 2 < a2 in Cn + 1 , and 
z = <rzot || Zo|| = 1. Thus, it is natural for our purposes to consider 
the problem of the existence of solutions £ = f(o-) in Cn of such 
systems or, more generally, to study the problem of the existence of 
solutions x = X(LL) of systems of the form 

(3.2) ¥*(*, IL) = 0, x G O , LL G C« (î = 1, • • -, p), 

where the^* are analytic in a ball |x|2 + | / i |2 < a2 in Cp+<?. 
Let us suppose throughout the first part of this section that x = 0 

is an isolated zero of the system ^'(x, 0) = 0 (i = 1, • • -, p). Since 
the functions ty' do not vanish identically near x = 0, let us denote by 
ty[ (x) the homogeneous polynomial in ^ ( x , 0) of lowest degree 
fcj which does not vanish identically, and let K(i/i) denote the resultant 
of the i//*ki (i = 1, • • -, p). Then, by employing the Weierstrass prep
aration theorem, one can establish the following result due to Mac-
Millan [46] and Bliss [11]. 

THEOREM 3.1. Suppose that the resultant ft(i//) of the homogeneous 
polynomials \\f\. does not vanish. Then there exist positive constants 
b and c such that, for |£| < h and |/x| < c, the system (3.2) has exactly 
M =Y\^=lki solutions X1(LL) (counting multiplicities) such that the 
X1(LL) are continuous functions with xl(0) = 0 (I = 1, 2, • • -, M). 

Since the t/^. are homogeneous polynomials, it is well known [73, 
p. 15] that the system \\s{. (x) = 0 (i = 1, • • -, p) has nontrivial solu
tions if and only if R(ifß) = 0. Thus, one may also state Theorem 3.1 
in terms of the condition that the vector field {*/>!, * * ', </>£ } 
vanishes only at x = 0. 

A somewhat related result, which may apply when R(i/r) = 0 but 
(p — 1 of the i/j[ are linear and) the rank of the Jacobian matrix 
(dtyldx) at (0,0) is p — 1, is the following theorem due to Clements 
[17]. 

THEOREM 3.2. Suppose that the Jacobian ]x = \<Wldx\ = 0 at 
(0,0), Jt = 0 at (0,0) ( / = 2,3, • • - , f c - 1), and Jk ^ 0 at (0,0), 
where 

(3.3) h = * ( / ' - ! ' * » • • • , * , ) (J = 2, 3, • • -, k). 
0{Xi, X£, , Xp) 

Then there exist positive constants b and c such that for |£| < b and 
|/A| < c the system (3.2) has exactly k solutions X1(LL) such that the 
X1(LL) are continuous functions with xl(0) = 0 (I = 1, 2, • • -, k). 
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Let us remark here that in the simple case when \Wldx\ jt 0 
at (0, 0), either of the above theorems yield the existence of a unique 
solution x(/x) of the system (3.2) which is, in addition, analytic near 
fi= 0. 

The following theorem due to Osgood [51, p. 194] requires only 
that x = 0 is an isolated zero of the system ^(x, 0) = 0 (i = 1, • • -, p), 
and is apparently one interpretation of a result stated by Poincaré [53, 
p. 14]. 

THEOREM 3.3. Suppose that x = 0 is an isolated zero of the system 
ty'(x, 0) = 0 (i = 1, • • -,p). Then there exists a neighborhood ^U of 
ix = 0, a set E C Cq of q-measure zero, and an integer M such that 
to each /x (E (li — E) there correspond M points xl(fx) such that the 
pairs (x'(/x), /x) are solutions of the system (3.2). 

As pointed out by Osgood, this last theorem is somewhat deficient 
in the sense that certain values of /LL near /ut = 0 are excluded and, in 
general, the integer M is unknown; both of these deficiencies can, of 
course, be overcome by placing more restrictive assumptions on the 
^* as in Theorems 3.1 and 3.2. Some related but less definitive results 
for smooth vector fields will be obtained in §3B by means of topological 
degree theory. 

A stronger result (see MacMillan [47] ) than that given in 
Theorem 3.1 can be obtained in the special case when q = 1; namely, 
in the case of a single parameter fx, the solutions x(tt) obtained in 
Theorem 3.1 can be expanded in a power series of integral or fractional 
powers of /x. The knowledge of such an expansion, or even the lowest 
term, is of course of great importance in certain applications. On the 
other hand, the restriction to a single parameter fx, or several param
eters fji^ tt2, ' ' *, fxq related to a single parameter /x by relations of the 
form ixi = fxSi (I = 1, • • \q) is necessary since, as pointed out by 
MacMillan, the equation x2 — 2/u^x + tt2

2 = 0 has solutions x = 
Lt1 ± Vi t i 2 — tt2

2 which do not have power series expansions in terms 
of ttj and fx2. 

Let us consider therefore a system of the form (3.1). Let ^. .(f) 
denote the homogeneous polynomial in O ^ , 0) of lowest degree k{ 

which does not vanish identically, and let R(<p) denote the resultant 
of the <£>{ (i = 1, • • -, n). Then, under the assumption R(<p) ^ 0, 
there are exactly M = f [ f= i K continuous solutions £(cr) of the system 
(3.1) which satisfy £(0) = 0. The problem of expanding such a solu
tion f(a) in a power series of integral or fractional powers of a was 
considered by MacMillan in a second paper [47] and, in doing so, 
he was apparently the first to systematically make use of a Newton 
polygon method for several variables. 
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As some indication of the method developed by MacMillan, let us 
consider the simple example [47, p. 181] 

«Hfccr) = (£i6 + &6) + (£i4 + & > + (3£i - ^>2 + <*A = 0, 
( 3 ' 4 ) **(&a) s ^ 8 + (^ _ ^ 2 + a 3 = o. 

First of all, since the vector field {<p6
l, <P82}— {£i6 + 2̂6> £i8} van

ishes only at fL = £2
 = 0, it follows from Theorem 3.1 that there are 

exactly M = 48 continuous solutions of (3.4) near a = 0. In order to 
determine expansions for these solutions, it is useful to rewrite the 
system (3.4) as 

O 1 = ^e 1 + ^ + «Pi^2 + ^o1^4 , 
(3.5) 

4)2 = ^ 2 _|_ ^ ^ 2 + ip^tr\ 

where each <£>/ denotes the appropriate homogeneous polynomial of 
degree j . Let us now construct a Newton polygon (e.g., see [73, §5] ) 
for each of the equations O i = 0 (i = 1, 2) such that each term <pfcj\ 
which does not vanish identically, corresponds to a point on the 
polygon for <J>fc = 0 having Cartesian coordinates (i,j); for example, 
consider the equation O 1 = 0 and construct a polygonal line joining 
the point (0,6) with the point (4, 0) such that the (negative) slopes of 
the line segments are increasing, and the polygonal line forms a 
boundary between the region in which points (i,j) exist and that in 
which they do not. Let ll9 l2, and l3 denote the line segments having 
slopes — 7/2, —5/2, and — 1 , respectively. Corresponding to lx one 
now makes the substitution ^ = <72/7t/i (i = 1, 2) in (3.4) and, after 
dividing the first equation by a12/7, the second by (j16 /7 , and 
letting cr —» 0, one obtains the equations 

(3.6) y,e + yf = 0, 

(3.7) yi8 + y i - y 2 = o.-

By eliminating y2 one obtains the equation 

(3.8) y i 6 [ ( y i 7 + i ) 8 + i ] = o 

which has 48 solutions, 6 of which are yx = 0 and 42 of which are non-
trivial and distinct from one another. Therefore, by the usual implicit 
function theorem for a system of analytic equations, each of the 42 
nontrivial solutions of (3.8) generates a solution £l5 £2 of (3.4) which 
can be expanded as a power series in the fractional power a117. 
Similarly, corresponding to the lines l2 and l3 one makes the substitu-
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tions ^ = (j2/5t/i and ^ = crt/i? respectively, and proceeds as 
above to determine five solutions of (3.4) each of which can be ex
panded as a power series in the fractional power cr1/5, and one solu
tion of (3.4) which can be expanded as a power series in cr. Thus, 
the method of MacMillan [47] yields a complete solution of the 
system (3.4) when a is sufficiently small. 

Let us remark here that the example (3.4) is a particularly simple 
one in that certain "intermediate resultants" do not vanish so that all 
of the solutions are obtained by means of substitutions derived from 
the corresponding Newton polygons. The solution of a problem in 
which this is not the case is illustrated by the example [47, p. 197] 

* l = £ i 3 + ( £ i 2 - £2
2)<7 + a 4 = 0, 

(3.9) 
3>2 = & + (£i2 - & V - a* = 0. 

Clearly, there are nine continuous solutions of (3.9) near cr = 0. By 
constructing a Newton polygon for each equation, one easily sees as 
above that there are two substitutions £ = (jy{ and £ = cr3/2j/i 
which are derived from the polygons. However, due to the vanishing 
of the resultant R of the coefficients of cr in (3.9), the substitution 
involving cr yields only two nontrivial solutions of (3.9) whereas the 
substitution involving cri/2 does not yield any solutions. Thus, there 
are seven solutions of (3.9) whose order in cr lies between a and 
cr3/2. By using additional substitutions related to the vanishing of 
R, one can, in fact, show that there are four solutions of (3.9) 
of order cr5/4 and three solutions of (3.9) of order a413; the reader is 
referred to the paper of MacMillan for the details required to complete 
example (3.9) as well as for a general discussion of the problem of 
vanishing "intermediate resultants". 

Let us remark here that a related Newton polygon method for 
functions of several variables has been formulated more recently by 
Graves [27] ; this method and related results will be considered in 
§4A. 

Clearly, as a consequence of Remark 2.2, all of the above results in 
this section have applications to the problem of solving the branching 
equation as given in (3.1) and, thus, together with Theorem 2.2 they 
provide a partial solution to the basic problem of the existence of 
branches of equation (**) in the case where J-f is a complex Hilbert 
space. A more complete theoretical solution of this basic problem has 
been given in some recent papers of Aizengendler [2] and Vainberg 
and Aizengendler [70] wherein an algebraic approach is developed 
which does not require w = 0 to be an isolated solution of the equation 
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Lw + N(w, 0) = 0; in fact, by employing the Weierstrass preparation 
theorem, the elimination method of Kronecker, the Newton polygon 
method for a single equation, and some results from the theory of 
commutative algebra, a method can be developed which theoretically 
determines all small solutions of a system of the form (3.1). For the 
sake of simplicity we outline the method for the case n = 2 as pre
sented in [2], [69, p. 36]; the reader is referred to Vainberg and 
Aizengendler [70] for the general case n = 2. 

By means of a nonsingular linear transformation and the Weierstrass 
preparation theorem, the system (3.1) in C2 is replaced with a 
system 

&(ZI,Z2,<T)= feì,z1'<+ ^ z^H* j(zz,a) = 0 
(3.10) i=i 

( t = l , 2 ) 

which is equivalent with respect to small solutions. Here s{ is the 
degree of the lowest order homogeneous polynomial in ^(zi, z2, 0) 
which does not vanish identically, b\ j^ 0, H\ _j (0, 0) = 0, and the 
Hi. _j are analytic in a neighborhood of (0,0). 

Let R(£2,(T) = R(Gl> G2) denote the resultant of the distinguished 
polynomials G1 and G2. Then the elimination of zY from the system 
(3.10) leads to the equation R(z2,<r) = 0. If R(z2,cr) ^ 0 and (after 
possibly eliminating certain powers of a) R(0, 0) = 0, then Newton's 
polygon method can be used to find all small solutions of Rfa, o") = 0 
as convergent power series z2

a(t) (a = 1, • • *,p), where t = a11^ 
is some determined fractional power of o\ Substituting such a solu
tion into (3.10) one obtains the system 

(3.11) gj(zu t) = G'(Zl, z2"(t), H = 0 (i = 1,2), 

where the gj are distinguished polynomials in zx. Let da = (ga
!, ga

2) 
be the greatest common divisor of ga

l and gj1. Then da is also a dis
tinguished polynomial and Newton's polygon method can again be 
used to find all small solutions of da(zly t) = 0 as convergent power 
series Zißa(a) (ßa = 1, * * ',qa) in fractional powers of a. Each pair 
(zi

ßociz2
a) then determines a solution of the system (3.10) which is a 

power series in fractional powers of a. 
Therefore, (after possibly eliminating certain powers of a) one has 

the following results [2] : 
(a) If R(0, 0) T^ 0 then the system (3.1) has no small solutions. 
(b) If R(* 2 ,o - )^0 and R(0,0) = 0, then the system (3.1) has a 

finite number of small solutions each of which can be expanded in a 
power series of integral or fractional powers of a. 
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On the other hand, if R(22,o") — 0 then the system (3.10) (and 
hence the system (3.1)) has, of course, an infinite number of solutions 
(see also [2], [69, p. 39] ). 

In addition to the above results, an important algorithm for deter
mining the explicit form of the greatest common divisor da is also 
proposed in [2], [70]. Finally, for an application of the above 
method to nonlinear ordinary differential equations, the reader is 
referred to Vainberg and Aizengendler [ 71]. 

B. Topological degree methods. Let us suppose throughout the 
remainder of this section that the operators L and N are such that the 
branching equation (2° ) is equivalent to a system of the form 

^ ( £ a ) = a f c + J a* S < . . . I n f i l 1 • • •É„ ï " 

(3.12) r + ' - a lll~-r 

+ p*(£cr) = 0 ( t = l , - - M I ) , 

where the p{ are continuous in a neighborhood ^U of |£| = a = 0 and 
"higher order" in the sense of (2.22). Moreover, as observed in Remark 
2.2, if w = 0 is an isolated solution of the equation Lw 4- N(w, 0) = 0 
then the vector field 4>0(f) = {<pl(£,0)y • • -,<pn(£0)} has an isolated 
zero at f = 0 so that (regarding $ as a mapping of a subset of R2n 

into R2n which can be described in terms of functions of n complex 
variables) the topological index of <J>0

 a* 0 is defined; i.e., for some 
open ball B centered at f = 0 of sufficiently small radius, i(4>0, 0) = 
d(4>o, B, 0) is defined where d(4>0, B, 0) denotes the topological degree 
of <ï>0 at 0 relative to B. Thus, it is natural to study the existence of 
solutions of a system of the form (3.12) by means of topological degree 
theory. 

The following basic lemma on calculating the (topological) index of 
certain vector fields is due to J. Cronin [20], [21, pp. 45-46]. 

LEMMA 3.1. Suppose that a vector fields = {I/J1, • • -, ijjn} mapping 
a neighborhood of£=0 into Cn is of the form \\i\C) = /£(£) + 
Q*(f), where P£ is a homogeneous polynomial of degree /c, and Ql is 
a continuous function such that \Qi{S)\l\è\ki —» 0 as |£| —> 0, and 
suppose that the vector field P = {P^ , • • -, P£ } vanishes only at 
f = 0. Then ty has an isolated zero at £ = 0 and the index ofty at 0 
is given by i(y, 0) = JJ "= t kj. 

Since the functions <p'(£ 0) defined by (3.12) are of the form 
P{. + Q\ the above lemma implies 

THEOREM 3.4. Suppose that the vector field <I> = {cpl, • • ',<pn} 
defined by (3.12) is such that <p% 0) = Pfc.(£) + Ç*(f), where the 

file:////i/C
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Pi and Çl satisfy the conditions of Lemma 3.1. Then there exists a 
positive number b such that for each a satisfying \a\ < b the system 
(3.12) has at least one solution f(a) in Cn. 

PROOF. AS a consequence of Lemma 3.1, the index of 4>o(£) = 
{ipl(€, 0), • • -, <p»& 0)} at 0 is defined and i(<D0, 0) = [^=1 h 

Let B be an open ball centered at £ = 0 with radius so small that 
4>o has no zeros on B except at £ = 0, and let dB denote the boundary 
of B. Since the <p* are assumed to be continuous near |£| = a = 0, 
there exists a constant b such that <I> does not vanish on dB when 
|cr| < b. The following well-known argument now provides solutions 
of (3.12). Since the functions <pl are continuous on B X {|cr| < b}, it 
follows for each fixed a satisfying \a\ < b that 4> is homotopic to 4>0 

so that (e.g., see [21, p. 31] ) 

d ( * , B , 0 ) = d ( * o , B , 0 ) . = n fc;^°; 

therefore, by the basic existence theorem of topological degree theory 
(e.g., see [21, p. 32]), for each fixed a satisfying |cr| < b there is 
at least one point £(<r) in B such that4>(^(o-), a) = 0. 

The following stronger result in this direction is due to J. Cronin 
[20], [21,p. 47]. 

THEOREM 3.5. Suppose that the vectorfield® = {(p1, • • -, <pn} defined 
by (3.12) is such that £ = 0 is an isolated zero of the system ^*(£0) 
= Pl(i) + QKd) = 0 (i = 1, • • -, n), where P[ is a homogeneous 
polynomial of degree k{ and Ql is a continuous function such that 
|Q*(f)|/|f|fci!-* 0 AS \i\ —>0. Then there exists a positive number b 
such that for each a satisfying \a\ < b the system (3.12) has at least 
one solution f(a) in Cn. 

The proof of this theorem is an immediate consequence of a 
stronger version of Lemma 3.1 also due to J. Cronin [20], [21, p. 47] ; 
namely, under the hypotheses in Theorem 3.5, the index at 0 of the 
vector field ^ = {P* +Q 1 , • • -,P*n + Qn} satisfies the inequality 

t(*, 0)̂ 117=1**- ' 
Let us observe here that, as a consequence of Remark 2.2, both of 

the above theorems together with Theorem 2.2 provide additional 
information concerning the existence of solutions of equation (**) in 
the case of a complex Hilbert space J/. However, not only do the 
solutions obtained in this manner fail, in general, to be continuous 
near a = 0, but also the number of such solutions obtained is, in 
general, too small. In order to partially overcome this latter difficulty, 
J. Cronin [19, p. 212] defined the concept of a "good many points" 
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and established a result for a restricted class of equations of the form 
(**) which says, roughly, that for a "good many" points z near z = 0 
the absolute value of the topological index provides a lower bound 
for the number of distinct solutions of (**) (see also Theorem 3.3). 

A different method of counting the number of solutions of some 
nonlinear equations in J / is presented in §§4B and 4C wherein one 
relates the number of solutions in J / to the number of certain kinds 
of fixed points of the nonlinear operator N. 

4. Solution of the branching equation in Rn. In this section we are 
concerned with the solution of the branching equation in Rn. The 
emphasis is again on constructive ways of solving the branching 
equation, however, due to the inherent difficulty of determining only 
real solutions of such an equation, the results obtained are not as 
definitive as the results of §3. 

A. Algebraic methods and Newtons polygon for several variables. 
Let us assume initially that the operators L and N in equation 

(**) Lw + N(w, z) = 0 

satisfy (LFB) and (NAB) in a real Hilbert space Ji. Then the branch
ing equation is equivalent to a system 

1*1 £2 

( 4 , 1 ) + S £'i -..&1» S c * . . . z a» 

= 0 (i= 1, • • -,n), 

where the 4>* are analytic in a ball |f |2 + cr2 < a2 in Rn+1, and 
z = az0, \\ZQ\\ = 1. Let (p[ denote the homogeneous polynomial in 
4>*(£ 0) of lowest degree k{ which does not vanish identically, and let 
R(<p) denote the resultant of the ^\, (i = 1, • • -, n). The following 
result is a consequence of Theorem 3.1. 

THEOREM 4.1. Suppose that the resultant R(<p) of the homogeneous 
polynomials <p£ (i = 1, • • -, n) does not vanish, and that M = f [ f = i ^ 
is an odd integer. Then there exist positive constants b and c such 
that for |f| < b and |or| < c the system (4.1) has at least one continu
ous real solution f (a) with f (0) = 0. 

In order to establish the result, one considers the system (4.1) as a 
system of equations in Cn with real coefficients. Since R(<p) ^ 0, 
it follows from Theorem 3.1 that for |£| < b and |a| < c there are 
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exactly M = Y\?=i ̂ » continuous solutions ijl(cr) satisfying £*(0) = 
0 (/ = 1,2, • • -, M). However, since the coefficients of 4> are real, 
if a is real and (£(a),a) is such a solution of (4.1), then ({(a),a) is 
also a solution of (4.1) so that for real cr the complex solutions occur 
in pairs. Thus, since M is odd, there must be at least one continuous 
real solution £(cr) of (4.1) satisfying f(0) = 0. 

Clearly, if k is odd in Theorem 3.2, one again obtains the existence 
of at least one continuous real solution f(cr) of (4.1) satisfying 
&0) = 0. 

On the other hand, the Poincaré-Osgood theorem of §3A is not 
directly applicable since the number of solutions obtained thereby is 
not, in general, odd (i.e., if M is an even integer there may or may not 
be real solutions of (4.1)). Thus, since in some applications showing 
that a solution of (**) does not exist is also of importance, the above 
algebraic methods by themselves are not sufficient to resolve the 
problem so that one needs other supplementary methods. One such 
supplementary method, which can sometimes be used to determine 
the exact number of real solutions of the branching equation, is the 
following Newton polygon method for several variables. 

Let us assume for the remainder of §4A that L and N satisfy only 
(LF) and (NS), so that the branching equation is equivalent to a 
system 

<p%<j) = ai<j+ J ^ V + p ^ a ) 
r+s=2 

(4.2) 
= 0 (i = 1, • • -,n), 

where the <pl
rs(Ç) are homogeneous polynomials of degree r in £, and 

the p* are continuous in a neighborhood ^li of |f | = a = 0 and satisfy 
(2.22) and (2.23). The following Newton polygon method for such a 
system is due to Graves [27]. We consider here only the case 
cr > 0; the case cr < 0 is treated in a similar way by first replacing 
cr by —a in (4.2). 

Suppose that <prs = {<p\s, • • *, <£?*}, that the <prs satisfy <pr0(£) = 0 
(r = 2, 3, • • -, k - 1) and <pk0(Ç) ^ 0 for è ^ 0, and that at least one 
of the <prs with r < k and s > 0 does not vanish identically. Then the 
line joining the point (fc, 0) to the point (r, s) has negative slope. De
noting the maximum such slope by — plq, substituting 

(4.3) £ = ßpß and a = 6« 

into (4.2), and dividing by 6kp, one obtains the system 
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(4.4) + e*. S <p}8(ß) + • • • + p ^ ^ ^)/tf*p 
( r , s ) G / 2 

= 0 ( t = 1, • • • , n ) , 

where /0 is the line through the point (fc, 0) with slope — p/g, /2 is the 
closest parallel line containing plotted points, l2 is the next closest 
parallel line, etc. The following theorem is useful in determining the 
exact number of real solutions of (4.2) (see [27, p. 152] ). 

THEOREM 4.2. (a) Every continuous solution ß = ß( 6) of (4.4) yields 
a continuous solution £ = £(a) of (4.2) hy means of the substitutions 
in (4.3). (b) If the system 

(4.5) £ <pUß) = 0 ( f = l , - - s n ) 
( r , . v ) G / 0 

has only a finite number of solutions, then every solution £ = f(a) 
of (4.2) continuous near a = 0 (cr = 0) tfif/i f(0) = 0 is obtained 
by means of the substitutions (4.3) from a solution ß = ß( 6) of (4.4) 
continuous near 6 = 0 ( 0 = 0 ) . 

The proof of a related result is sketched in §4B. 
As an application of this last theorem, let us consider the boundary 

value problem 

— Aw — ULÌOW + a a 4- ßw2 = 0 in fi. 
(4.6) 

w = 0 on òli, 

which was discussed also in §2 (see (2.10)); a detailed analysis of 
essentially the same example is to be found in [27]. We recall that, 
by Theorem 2.2 and the discussion of this boundary value problem in 
§2, finding small solutions of (4.6) is equivalent to finding sufficiently 
small solutions of the system 

*><(£ a) = (era + ß^u, + t2u2 + v(£ a))2 , u{) = 0 

(<=1 ,2 ) , 

where {uuu2}= {(2/7r) sin xl sin 2x2, (2Jir) sin2x! sin x2} is an ortho-
normal basis for the two-dimensional null space 91 of L = A — /JL12I. 

By the method of successive substitutions, (4.7) can be written as 

<pK&<r) = <K«>"i) + Woté) + <^>ii(£) 

+ crVcfeté) + P* = 0 ( i = l , 2 ) , 
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where <p2\)(£) = (ß(f \UX + £2
W2)2> u{). Let us now consider the 

following two special cases (see also [27, p. 157] ). 
Case I. Suppose that a = (2/7T)U1 sin xY sin 3x2 and ß = 4772u1. 

Some simple calculations yield <p̂ 0 = 9£x
2 + 4£2

2, <pio = 8fî 2> 
( a , u x ) = a2 = 29/63TT3 and (a,u2) = 0. Thus, the system (4.8) be
comes 

9^2 + 4|22 + cfrj + <j<p\x + aVo2 + P1 = 0, 
(4.9) 9 

8f !& + (Tifi ! + (72^02 + p 2 = 0. 

The line l0 contains the points (2,0) and (0,1) so that, under the 
substitution d = (Tll2ßi {a > 0), the system (4.9) reduces to 

W + W + a2 + cTli%l = 0, 
(4.10) 

8Él£2 + < 7 ^ 2 = 0 . 

Setting a = 0 in (4.10) we see that there are no real solutions and, 
hence, no continuous real solutions of the boundary value problem 
(4.6) for small positive values of a. On the other hand, since the sub
stitution tji= \v\mßi (or < 0) changes a2 into —a2 in (4.10), the 
elementary implicit function theorem now determines four real solu
tions of (4.10) which, in turn, generate four real solutions of the 
boundary value problem (4.6) for sufficiently small negative values 
of a. 

Case II. Suppose that a= (2/77-)w2 sin x*! sin 3x2 and ß = An2uv 

Then the ^>2
l
0 are the same as in Case I, (a, uY) = 0, and (a, w2) = h, 

b > 0, so that in this case (4.9) is replaced by 

9 ^ 2 + 4£2
2 4- *<ph + o-Vo1, + p 1 = 0, 

8 ^ 2 + feu + <7<pl
n + 0*Vo2 + p 2 = 0. 

Since (4.11) has no real solutions under the substitution £ = \cr\ll2ßi, 
the boundary value problem (4.6) has no real solutions for a near 
( 7 = 0 . 

The above example suggests that finding real solutions of an equa
tion such as (**) is, in general, a difficult problem; that is, by varying 
somewhat only the coefficient a in (4.6), this simple boundary value 
problem may have no solutions or it may have as many as four solu
tions. However, we will see in the next section that some of the 
difficulties which arise in solving (4.6) apparently do so because one 
is seeking solutions right at the eigenvalue /m12 of the linearized prob
lem rather than at a nearby value of JLL ^ p,12. 
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B. Topological degree methods. Let us assume initially that the 
operators L and N in equation 

(*) Lw + N(w, z) = y)W 

satisfy (LSA) and (NS) so that the branching equation (2)sa in §2 
is equivalent to a system of the form 

( - ^ î tjuj + N ( S £juj + v> azo J , ui ) = ° 
(4.12) 

( i= 1, • • -,n), 

where {w1? • • -, un} is an orthonormal basis for £ft (A — A 0 J ) , 2; = 
o^o (|No|| = 1 )> anQl u = v(€,°'>r)) is the unique solution of (l)sa as 
determined in Theorem 2.1. 

Although the methods of this section can be applied also to systems 
such as (4.12), for the sake of simplicity we consider here only the 
special case corresponding to a = 0 (however, see [38], [58]). In 
fact, since the hypothesis (NS) implies 

(4.13) N(w, 0) = £ Fr0(w, 0) + G(w, 0), 

we consider in this section an equation of the form 

(t) (A - k0I)w + T(w) + R(w) = 7)W 

where rj = \ — X0, L = A — A0J satisfies (LSA), and the nonlinear 
operators T and R satisfy the following hypothesis: 

(TH) T: Lò(A) —> J / is a homogeneous polynomial of degree 
k(k^2) such that if Wi G £>( A) and 6 G Rm then 

/ m v 

where Tlr. lm is a mapping from (jb(A) X • • • X £>(A) into JJ- which is 
independent of 0 b • • -, 0m; 

(TD) for each element w G ^>(A) there exists a linear transforma
tion Dw and a transformation Ew, both mapping £>(A) into J / and 
satisfying 

(a) T(w +h)- T(w) = Dw(h) + EJh), h G 2>(A), 
(b) there is a constant <f such that | |DJft)|| g ^HWIIIMII» 
(e) I^Wl^Cdll^llUII^IIDIIIhlll where <> : R2 -> [0, oo) satisfies 
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rmi|X|^0 Q(xl,x2) = 0 and |||u;||| = \\Lw\\ + ||u;||, w G £>(A), denotes 
the L-norm on £>(A); 

(RH) R : 2 (̂ A) H cD —> J/ is a higher order operator in the sense that 
|| K M || = o(||M||*) as | | M | | - » 0 , and R satisfies also a local 
Lipschitz condition on 2>(A) of the type described in (NC). 

Let us remark in connection with these last hypotheses that (RH), 
in particular, is assumed throughout the remainder of this section. 
Also, the nonlinear term in the Hartree equation discussed in §2 
provides a nontrivial example of an operator satisfying (TH) and (TD). 

Under these assumptions, the equation (l)sa of §2 becomes 

(l)sa v + K[-7)v + PT(u + v) + PR(u + v)] = 0, 

where P is the projection operator of Jt onto $i(A — kol)1, and the 
branching equation (2)sa is equivalent to the system 

(4.14) - r > £ + ( T ( S €juj)9ui)+r%7i) = 0 ( î = l , • • - , n ) , 

where 

rK€,v)=( r ( 2 l i u , + ü ) - r ( i £Ä) 

<4 1 5» + » ( i ««+.).«.) 
(i = 1, • • -,n) 

and u = v(€, ri) is the unique solution of (l) sa as determined in Theorem 
2.1. The following lemma shows in what sense t;(£, 17) is a higher order 
term. 

LEMMA 4.1. There exist constants b, d and C such that, for |£| = 
H < b f l f i d H < ^ l l | ü | | | ^ c | f | f c . 

The proof is immediate. If v satisfies (l)sa then v G £>(A) and 

Wt,|||̂ (i +||K||)[hi|H| + 0(iH|. HI) «HI 
+ <rH*-i|Ho|H+||r(«)|| + ||B(« + 0)||]. 

Hence, if one now chooses b and d sufficiently small then 

(4.17) | | N | ± i 2 ( l + ||K||)[||T(fi)||+ \\B(u + v)\\]. 

Since T and R satisfy (TH) and (RH), the inequality |||t>|||.== \\u\\ and 
(4.17) imply the desired bound for |||i;|||. 
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REMARK 4.1. As a consequence of Lemma 4.1 and the above hypo
theses on T and ft, one easily sees that the functions ^(£,17) in (4.15) 
are continuous near |£| = r\ = 0, and are also higher order in the 
sense that if \q\ < d then r*(£ yj)l\£\k -» 0 as |f | -» 0. 

The form of the system (4.14) and the homogeneity of T suggest for 
j] > 0 the substitution 

(4.18) 6 = irft, a = l / ( f c - l ) (t = 1, • • -, n) 

under which one obtains the system 

(4.19) j = 1 

+ y-kayifaaß^ = 0 (t = 1, « ' ' , n). 

This last system is, of course, the analog of (4.4). For negative 77, one 
sets £ = \rj \°ß and proceeds in an analogous way. 

In order to simplify the statement of some of our results, it is con
venient to recall that Q = I — P is the projection of J / onto 
Sî(A — XQI) and introduce the following additional hypothesis on T: 

(Tnd) ÇT is nondegenerate on 91 (A - X0I); i.e., if u G SR (A - A0J) 
and u / 0 then ÇT(w) f 0. 

The following result (e.g., see [58, p. 51] ) is a supplement to 
Theorem 4.2 and is useful in determining the exact number of real 
solutions of (4.14). 

THEOREM 4.3. (a) Every continuous solution ß = ß(rj) of (4.19) 
yields a continuous solution of (4.14) by means of (4.18). (b) Suppose 
that T satisfies (TH), (TD), and (Tnd), and suppose that the system 

(4.20) f(ß) = -ß, + ( T ( E ßjuj ) t u. ) = 0 (f = 1, • • -,n) 

/wzs on/t/ a finite number of solutions. Then every solution £ = £(17) 
0/ (4.14) continuous near 17 = 0 (17 è 0) u>i£/i f(0) = 0 is obtained by 
means of (4.18) from a solution ß = £(17) 0/ (4.19) continuous near 
ri = 0(TÌ=:0) with ß(0) /0. 

PROOF. Our proof of part (b) closely parallels Graves' proof [27] 
of Theorem 4.2 except for the important first step of showing that, 
under our assumptions on T, if £ = £(77) is a nontrivial continuous 
solution of (4.14) with f(0) = 0, and if ß = ß(rj) is defined by (4.18), 
then ß(r)) is bounded as rj —»0+. Let us suppose for the sake of 
contradiction that ß(*n) is unbounded as 17 —»0+. Then there is a 
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sequence {r)t} such that r)i - » 0 + and W I ^ O P - 1 -* 0- If one now 
sets tjfa) = |f(ifo)|0', where 0' = { 0/, • • -, 0n'} is a unit vector in 
Rn, then there is a subsequence {O1} such that 6l —> 0 in Rn, 
| 0 | = 1, and the corresponding subsequences {rji} and {f(ift)} satisfy 

(4.21) 1,6 = ( r ( J fyii, ) ,tü ) + r ^ r ? ) (i = 1, - • -, n). 

The homogeneity of T now implies 

(4.22) 

(i = 1, • • -, n). 

Therefore, letting / —> °°, one finds by the use of Remark 4.1 that 

(4.23) 0 = ( r ( J 0Ä- ) , u f ) ( i = l , " - , n ) . 

The last equation and assumption (Tnd) imply ^ " = i OjUj = 0 which 
is a contradiction. 

As in the proof of Graves [27] one now sees that the compact set 
S of limiting values of ß(r)) as 77 —» 0 + is connected and, by (4.19) and 
Remark 4.1, the points ß in S satisfy (4.20). Therefore, S consists of a 
single point ß° and if we set ß(0) = ß° then ßfa) is continuous at 0+ . 
Finally, ß(0) = ß° cannot be zero because (4.22) and \im7ì^o+vl\^\k~ì 

= 00 would imply that ( T(w), w) is unbounded on the unit sphere 
in SK(A - XQI). 

REMARK 4.2. A similar result holds for 77 ^i 0 with (4.20) replaced 
by 

(4.24) g\ß) = ßt + ( T ( f ßjUj ) , m ) = 0 (i = 1, • • -, n). 
j = l 

As a consequence of Theorem 4.3 we have the following 

COROLLARY. Suppose that the hypotheses of part (b) in Theorem 4.3 
are satisfied. Then (4.14) has a nontrivial solution € = £(77) continuous 
near 77 = 0 (77 = 0) with f(0) = 0 onZy if £foe operator QT has a non-
trivial isolated fixed point. 

In fact, if £ = £(77) is a continuous nontrivial solution of (4.14) satisfy
ing f (0) = 0, then it is necessarily of the form £ = 77̂ 8, where ß = ß(r)) 
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is a solution of (4.19) which is continuous near rj = 0 (TJ i^ 0) with 
j8(0) = (01°, * ' ;ßn°) / 0. Since (4.19) is equivalent to 

( T ( 2 ßto ) " 2 &%"i ) + v^rK^ßivlv) = 0 
j = \ j = i 

(4-25) 
(1 = 1, • • -, n), 

letting 7) —>0 + and using Remark 4.1 and (4.20) one easily sees that 
QT(U) = U where (7 is isolated and U = 2 " - i £ /% 7̂  0. 

In view of the above corollary, a natural question which motivates 
our approach throughout the remainder of this section is the following: 
When is this "necessary" condition on QT also a "sufficient" one for 
the existence of a non trivial real solution of (4.14) near rj = 0 (17 = 0)? 

Since (4.20) can be rewritten as 

(4.20) ' f(ß) = ( ÇT ( 2 ßjuj) - J ßjiij, Ui ) = 0 (f = 1, • • -, n), 
J = I ' i = i ' 

one of the more useful answers to the above question appears to be 

THEOREM 4.4. Suppose that T satisfies (TH) and (TD), and suppose 
that ß° is a nontrivial isolated zero off in (4.20) [resp., g in (4.24)] 
such that the (topological) index off at ß° [resp., g at ß°] does not 
vanish. Then there exists a positive number 8 such that for each 17 
satisfying 0 < t) < 8 [resp., — 8 < rj < 0] the system (4.14) has at 
least one nontrivial real solution £(17) satisfying \£(r))\ -» 0 as t] —» 0 + 

[resp.,i) —> 0~]. 

The proof is similar to that of Theorem 3.4. Namely, since for each 
fixed i) satisfying 0 < r) < 8 (8 sufficiently small) the continuous vector 
field F = {F1, • • % Fn} defined by (4.19) is homotopic to fi the 
basic existence theorem of topological degree theory implies that there 
is at least one point 8̂(17) near ß° such that ß(rj) is a solution of (4.19) 
and f(ij) = r)°ß(r)) = 0(i)a) is a solution of (4.14). 

REMARK 4.3. If the vector field / in (4.20) has a zero at ß° and 
the Jacobian \dfldß\ does not vanish at ß°, then it is well known 
that ß° is an isolated zero of / and the index of / at j8° does not 
vanish. On the other hand, since the index of / at ß° may be defined 
and nonvanishing even though \dfldß\ vanishes at ß°, the last 
theorem provides a useful extension of the implicit function theorem 
in Rn. 

The following result on calculating the topological index of certain 
vector fields in Rn is implicitly contained in J. Cronin [21, pp. 42-50]. 
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LEMMA 4.2. Suppose that a vector fields = {i//1, • • -, i//n} mapping 
a neighborhood of £ = 0 into Rn is of the form <^(£) = f*,(£) + 
Ql(Ç), where Pl

k is a homogeneous polynomial of degree k{ and Q{ 

is a continuous function such that Q7|£|fel —> 0 as |£| —» 0, and 
suppose that the vector field P = {P^ , • • •, F^n,} vanishes only at 
£ = 0. 77i£n P̂ /ias an isolated zero at £ = 0 and £/i£ index ofty at 0 
satisfies i(V, 0) = J I ^ i fci ( m o d 2)-

As an application of Theorem 4.4 to finding solutions of equation 
(f ) we have the following branching theorem which is a generalization 
of a result of V. M. Krasnosel 'skiï [41]; the result in [41] imposes 
a certain "simple root" condition and also complete continuity assump
tions on L, T and R. 

THEOREM 4.5. Suppose that $l(A — \0I) is two-dimensional and 
that T satisfies (TH), (TD) and (Tnd) with k even in (TH). Then 
there exists a positive number 8 such that for 0 < |A — X0| < 8 the 
equation (f) has at least one nontrivial solution w = w(k) satisfying 
\\w(k)\\ -+0ask —»A0. 

REMARK. If k is odd there may be no nontrivial solutions of an 
equation of the form (f) as in the example [40, p. 193] where J / = 
R2, A = I, A0 = 1, R = 0 and 

r(*l> X2) = {-X2(X1
2 + X2

2), X ^ 2 + X2
2)}. 

PROOF. It will be sufficient to consider only the case 7) = \ — \0 = 0 
as the proof in the case r) = 0 is similar. 

In order to obtain a nontrivial fixed point of the operator QT, it is 
convenient to first construct a special orthonormal basis {viyv2} for 
$l(A — X0Z) which satisfies also (T(vi),v2) = 0. Let {ux,u2} be any 
orthonormal basis for 91 (A — k0I) and set 

(4.26) g(t) = (T(Ul + tu2\ tuY - u2). 

Since (TH) implies that g is a polynomial of odd degree (k + 1), there 
is a real zero t0 of g such that 

(4.27) g(t) =(t- toyG(t), 

where I is odd and G(to) ^ 0. If we now set 

»1 = (tt! + «„U2)/(l + <o2)"2, 
(4.28) 

V2 = (toUi -U2)l(l + t0
2)112, 
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then {vx,v2} is a ls° a n orthonormal basis for 51 (A — X0I) and 
(T(0 l),o2) =( l+to 2 ) - ( ' c + 1 ) / 2g(<o) = 0. 

In terms of the special orthonormal basis {vÌ7 v2} the basic system 
of equations (4.20) becomes 

(4.29) /(/S) = - f t + ( T ( 2 /Syü, ) , t>, ) (i = 1, 2), 

and similar changes occur in (4.14) and (4.19). If we now set ß2 = 0 
in (4.29), it follows that f2(ßi,0) = ß1

k(T(vl),v2) vanishes for all 
ßi so that the system (4.29) reduces on/32

 = 0 to 

(4.30) f(ßh 0) = -ßy + ßAUvJ, Vl). 

Since (Tnd) and (T(vi), v2) = 0 imply (T(vi), Vi) ^ 0, we see that 
ß° = (p, 0) is a nontrivial solution of (4.29) where p — (T(vi), Vi)~a 

and a = l/(fc — 1). Thus, in order to complete the proof by means 
of Theorem 4.4, it will be sufficient to show that the index i(f, ß°) 
of/at /8° is defined and i(f, 0°) / 0. 

Let us first transform / into a vector field <I> = {<pl
9 <p2} under the 

change of variables ßx = xx + p and ß2 = x2. Then (TH) and some 
elementary calculations yield 

(4.31) <p\x) = fix, + p, x2) = (fc - l)Xl + ax2 + Çi(x), 

where a is a constant and Ql is a continuous function such that 
Ç>V|x| -» 0 as |x| -» 0. Similarly, (TH) and (Tfa), v2) = 0 imply 

A: 

(4.32) <p%x) = - x 2 + S km*2m(*i + p) f c--
m = l 

where the fom are constants. Clearly, if the index i(4>, 0) at x = 0 is 
defined and i(4>, 0) / 0, then i(f, ß°) is defined and i(f, ß°) jt 0. 
However, since the vector field <I> may have a degenerate linear part 
at x = 0, i(4>, 0) may also be somewhat difficult to calculate. 

Let us therefore introduce another vector field W = {i/j1, </J2} 
defined on \x\ < p where ifj1 = (pl and 

(4.33) **(x) = ^ ( x ) - * ^ >(*)/(*! + P). 

We note first of all that <£> has an isolated zero at x = 0 if and only 
if ^ does. Moreover, since O = — dty (c > 0) implies <pl = 0, which 
together with (4.33) implies i/i2 = <̂ 2 so that <p2 = 0 also, it follows that 
if 4> has an isolated zero at x = 0 then <I> and ^ are nowhere opposing 
near x = 0. Therefore, by the Poincaré-Bohl theorem (e.g., see [21, 
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p. 32] ), the indices of 4> and ty at x = 0 are equal whenever they are 
defined. 

In order to calculate i(ty, 0) we observe that (4.27) and some ele
mentary calculations yield [60, Lemma 2] 

(4.34) (r(t>! + TO2), TOx - t>2) = T'H(T) 

where I is odd and H is a polynomial of degree (k + 1 — I) with 
H(0) 7̂  0. Therefore 

(4.35) 

so that ijj2 is, in fact, of the form 

(4.36) i p = bx2
l + Q2(x) 

where I is odd, b = —pk~lH(0) ^ 0, and Q2 is a continuous function 
such that Q2/|x|* —> 0 as |oc| —> 0. Since the vector field {(k — l)xL + 
ax2, bx2

1} vanishes only at x = 0, it now follows from (4.31), (4.36) and 
Lemma 4.1 t h a t ^ has an isolated zero at x = 0 and i(^, 0) = I (mod 2) 
7̂  0. Thus i(f ß°) j£ 0 which completes the proof. 

Since the above reasoning may be applied to each real zero of odd 
order of the polynomial g defined in (4.26), we have, for example, the 
following 

COROLLARY. Suppose in addition to the hypotheses in Theorem 4.5 
that the polynomial g in (4.26) has M (distinct) real zeros of odd order. 
Then there exists a positive number 8 such that for 0 < |X — X0| < ô 
the equation (f) has at least M nontrivial solutions which tend to 
to = 0 ask tends toX0-

In the case where k is odd in (TH), one may again formulate a 
branching theorem in terms of the number of real zeros of odd order 
of the polynomial g in (4.26); however, as shown by the example in 
the remark following Theorem 4.5 where g(f) = — (t2 + l)2 , the poly
nomial g in this case does not necessarily have any real zeros. 

Finally, let us remark that a result such as Theorem 4.5 is of some 
interest because even in the case of compact operators A and T it is 
not a direct consequence of other standard theorems seeing as the 
dimension of the null space 'St(A — k0I) is not odd and T is not 
assumed to be a gradient operator. 

ft , \ 
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C. Gradient operators. We consider in this section an equation of 
the form 

(f ) (A - \0I)w + T(w) + R(w) = 7}w, 

where r) = A — A0, L= A — k0I satisfies (LSA), and, in addition to 
(TH), (TD) and (RH), T satisfies the following hypothesis: 

(TG) T is the (strong) gradient on 2>(A) of the functional 
(II(k -f l))(T(w),w); i.e., there exists a functional r such that, for all 
w,hG Iò(A), 

(T(w + h)9w+h)- (T(w\ w)= (k+ l)(T(w), h) + r(w, h) 

where r(w, /i)/|||/i||| -» 0 as |||/i||| -> 0. 
By the usual "Euler Identity" for homogeneous polynomials (e.g., 

see [56, p. 272] ), hypothesis (TG) is equivalent to assuming that T 
is the (strong) gradient of some functional r which is homogeneous 
of degree (k + 1). 

Although we assume throughout this section that T is the (strong) 
gradient of some functional r, we do not assume that r is weakly con
tinuous (or even everywhere defined) so that those variational methods 
based on Ljusternik-Schnirelmann category theory (e.g., see [8] ), the 
genus of a set (see [40] ), and Morse theory in Hilbert spaces (e.g., 
see [48], [57] ) would not necessarily apply to equation (f). 

Instead of the more restrictive nondegeneracy assumption (Tnd) it is 
convenient to assume that the set Cs = { « E S : (T(u), u) > 0} is non
empty where here and in the sequel S denotes the unit sphere in 
9t == $l(A — A()7). Let us remark that if (T(u), w) ^ 0 on S and k is 
even in (TH), then Cs is always nonempty so that Theorem 4.6 below 
holds whenever (T(u), w) ^ 0 on S. On the other hand, if (T(u), u) â 
0, M G S, and k is odd, then Theorem 4.7 below continues to hold but 
with the interval \ 0 < X < A0 + ò replaced by A0 — 8 < X < A0-

The following lemma [58, Lemma 3] will be useful in determining 
nontrivial fixed points of the operator QT (i.e., nontrivial zeros of / 
in (4.20)). 

LEMMA 4.3. Suppose that $lis n-dimensional, that T satisfies (TH), 
(TD) and (TG), and that (T(vi), ux) = a is a positive relative maximum 
of(T(u),u)\s (the restriction of the junctional (T(u),u) to S). Then 
there exists an orthonormal basis {vl7 * • -,vn}for 91 which satisfies 

(4.37) (r(ü1),ü i) = 0 (7 = 2 > 3 > ' " > * ) > 

(4.38) (DVl(vv),vq) = 0 (p^q\ 
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(4.39) 
^(DVl(v2)9v2)^a. 

Let us note in connection with Lemma 4.3 that since 01 is finite-
dimensional and the set Cs is nonempty, (T(u),u)\s has at least one 
positive relative maximum so that such an element vY G. S always 
exists. A similar lemma holds if (T(vi), vx) is a positive relative mini
mum of (T(u), u)\s except that the inequalities in (4.39) are reversed. 

REMARK 4.4. In terms of the special basis {vu • * -, vn} the basic 
equations (4.20) become 

(4.40) f(ß) = - f t + ( T ( J ßjvj ),Vi) (t = 1, • • -, n). 
i = i 

Therefore, since (4.37) implies that fj(ß) = 0 (J = 2, • • -, n) on 
)32 = ß 3 = * * * = j3n = 0, the system (4.40) reduces to the single equa
tion 

(4.41) f\ßlt 0, • • -, 0) = - ßx + ßMTivJ, ux) 

and, hence, the system (4.40) always has at least one nontrivial solu
tion (a~a, 0, • • -, 0) [if k is odd there are at least two nontrivial solutions 
(±a - " ,0 , • • •,())]. 

REMARK 4.5. Let ß° = (a~a, 0, • • -,0) be a nontrivial zero of / as 
determined in Remark 4.4. Then Lemma 4.3 and some calculations 
using the differential Dw of T(w) imply [58, p. 54] 

(4.42) | | 1 | o = ft [(DVl(vj)9vj)-a]. 

Thus, as a consequence of (4.39), / has a degenerate linear part at 
ß = ß° if and only if there is an integer 1,2 ^ I ^ n, such that 
(DVi(vs), vs) = a (s = 2, 3, • • -, I). The integer I is a convenient mea
sure of the degeneracy of /a t /3 = ß°. 

In view of Lemma 4.3 and Remark 4.4, it is clear that each positive 
relative extrema of (T(u\ u)\s generates a nontrivial fixed point of the 
operator QT. Thus, it is natural to ask the question: Does the number 
of nontrivial fixed points of QT that correspond to positive relative 
extrema of (T(u), u)\s give a lower bound for the number of nontrivial 
solutions of equation (f) near X = A0? Some partial answers to this 
question are obtained in the present section. For example, as indi
cated by the following two theorems, the answer is "essentially yes" 
when the null space 91 is two-dimensional [59, §3]. 
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THEOREM 4.6. Suppose that 91 (A — k0I) is two-dimensional, that 
T satisfies (TH), (TD), and (TG), and that k is even in (TH). Suppose 
that there are M points at which (T(u),u)\s has a positive relative 
extremum. Then there exists a positive number S such that for 
0 < |X — A0 | < 8 the equation (f) has at least M nontrivial solutions 
Wi = Wi(k) satisfying limA_A) m(A.)|| = 0 (f = 1, • • -, M). 

PROOF. Let us indicate the main points of the proof in the case 
when k = 2 to illustrate, in particular, the role played by the positive 
relative extrema values of (T(u), u)\s; a proof of the general case may 
be found in [59]. It will be sufficient to consider the case when 
7] = A — A() = 0 and Vy corresponds to a positive relative maximum of 
(T(u), w) |s, as the proof in the other cases is similar. In particular then 
we may introduce the special basis {vh v2} of Lemma 4.3 and deter
mine as in Remark 4.4 a nontrivial solution ß° = (a~l,0) of the basic 
system (4.40). Thus, in order to complete the proof by means of 
Theorem 4.4, it will be sufficient to show that the index i(f ß°) is 
defined and does not vanish. 

It is convenient to first transform / into a vector field 4> = {<pl, <p2} 
under the change of variables ßx — xx + a~l and ß2 = x2. Then (TH), 
(TG) and some simple calculations yield 

<Pl(x) = f(xl + a-Kx2) 

= xx + axi2 + | (DVi(v2), v2)x2
2, 

^2(x) = /2(x1 + a-1 ,x2) 

+ (Dv1(v2),v2)xlx2 + bx2
2, 

where b = (T(v2), v2). As a consequence of Remarks 4.3 and 4.5, it is 
clear that if (DVl (v2), v2) < a then x — 0 is an isolated zero of <ï> and 
i(4>, 0) ^ 0. Thus, we need consider only the case where (DVi(v2), v2) 
= OSO that 

(4.45) <pl(x) = x{ 4- axY
2 +{ax2

2, 

(4.46) <p2(x) = axxx2 + bx2
2, 

and 4> has a degenerate linear part at x = 0. 
Let us introduce another vector field ^ = {i//1, ijj2} where xjj1 = (pl 

and 

(4.47) t|f2(x) = <p2(x) — ax2<pl(x) = bx2
2 —\a2x2

3 — a2xx
2x2. 

(4.43) 

(4.44) 
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Since 4> has an isolated zero at x = 0 if and only if ^ does, and, by 
an argument similar to that in the paragraph following (4.33), <ï> and 
ty are nowhere opposing near x = 0, it follows from the Poincaré-Bohl 
theorem that the indices of <1> and ^ are equal whenever they are 
defined. However, by (4.45), (4.47) and Lemma 4.2, if b = 0 then the 
index i(^, 0) is defined and i(^, 0) ^ 0, whereas if b ^ 0 then 
i(^, 0) may be zero. Thus, in order to complete the proof, we now 
show that b necessarily vanishes. 

By employing the given assumptions on T, and the conditions 
(T(vi), v2) = 0 and (DVl (v2), V2) = a, one first obtains the identity 

(4.48) (T(Ü! + av2), vx + av2) = a + f aa2 + ZXJ3. 

The inequality (1 + <r2)3/2 < 1 + f (7 2 + |<7 4 (a ^ 0) then implies 

(4.49) (T(Ü! + <rv2), vx + crv2) > a(l + a2)3'2 + a3(b - f o r ) . 

Hence, if b / 0 then for all a sufficiently small and satisfying 
ba > 0 we have (T(vi + CTÜ2), UI + O"Ü2) > a(l + a2)3/2. But, since 
(vi + <JV2)I(\ + (72)1/2 belongs to S and a = ( T ^ ) , t^) is a relative 
maximum for ( T(u\ u) on S, this is a contradiction. Thus, fo = 0 which 
completes the proof. 

REMARK 4.6. Suppose that k is even in (TH) and (T(u), u)\s attains 
a positive relative maximum at vit Then (T(u), u)\s assumes a negative 
relative minimum at — vx and (T( — Vi), — Vi)~a = — ( T ^ ) , t^) -", 
a = l/(fc - 1). Thus, since ( T ^ ) , t ^ ) - ^ ! = ( ^ - i ^ ) , -VJ-^-VJ, 

the solutions constructed in Theorem 4.6 corresponding to Vi and 
— Vi may not be distinct so that we count there only the number of 
positive relative extrema points. 

THEOREM 4.7. Suppose that 9 1 = 0l(A — \0I) & ftüo dimensional, 
that T satisfies (TH), (TD) and (TG), and that k is odd in (TH). 
Suppose that 

(T(U),U)\Q ^ constant 
(4.50) l W / , s r 

(i.e., (T(a), w) ^ constant ||w||fc+1, w G 31) 

and £na£ £nere are M points at which (T(u), u)\s has a positive relative 
extremum. Then there exists a positive number 8 such that for 
k0 < A < Ao + Ô ^ e equation (f) foas at teasf M nontrivial solutions 
Wi = Wi(X) satisfying limx_>X(+ ||wi(A)|| = 0 (i = 1, • • -, M). 

A proof of Theorem 4.7 in the general case of odd k (k = 3) may be 
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found in [59] ; a somewhat different proof of the case k = 3 may be 
found in Knightly and Sather [38, p. 73]. 

REMARK 4.7. Suppose that k is odd and (T(u), u)\s attains a relative 
extremum at v{. Then (T(u),u)\s attains a relative extremum at —V\ 
also so that M in Theorem 4.7 is always an even integer. Moreover, if 
(T(u),u) ^ 0 and (T(u), u) = 0 only if t* = 0, then condition (4.50) 
implies that the (absolute) maximum and minimum are distinct posi
tive extrema of (T(w), u)| s so that the integer M in Theorem 4.7 
satisfies also M = 4. 

REMARK 4.8. Suppose that the higher order operator R in equation 
(f) is "analytic". Then, under the assumptions of either Theorem 4.6 
or Theorem 4.7, one can also show that a solution w = w(\) of (f ) 
corresponding to a relative extrema (T(vi),Vi) of (T(u),u)\s is con
tinuous in À for A{) < A < Ao + 8 (e.g., see Theorem 4.1). Therefore, 
as a consequence of (4.18), Lemma 4.1 and Remark 4.4, such a solution 
also satisfies \imK ^K+rj~aw = (T(vi),Vi)~aVi so that, near À = A0 

(À > A0), w is the form ^ ( T ^ ) , vl)~
avl + W(TJ) where W = o(r)a) as 

Due to the more involved analysis required, the results for n > 2 are 
less definitive than those obtained above for n = 2. However, one can 
establish some special results for k = 2 and k = 3 (see [59] ). 

As an application of Theorem 4.6 let us consider once again a 
boundary value problem of the type 

— Aw — UQW -f w2 = (a — IIQ)W in lì, 
(4.51) 

w = 0 on dû, 

where ji0 = 5 and 0 = (0, w) X (0, IT). By using the inequality 
(2.11) and some direct calculations, one can easily show that T(w) — 
w2 satisfies the hypotheses of Theorem 4.6. Thus, it follows from 
Theorem 4.6 (the space 9l(A — jigl) is 2-dimensional here) that the 
boundary value problem (4.51) has at least as many solutions near 
li = /x<) as the number of positive extrema of the functional ( T(u), u) 
on S; in particular then there is always at least one solution of the 
problem. 

Some results which are closely related to Theorem 4.6 and Theorem 
4.7 have been obtained recently by Kirchgässner [36, Theorem 4] ; in 
addition, Kirchgässner [36] has obtained other results for k ^ 3 and 
n = 2 provided that a certain "simple degeneracy" condition holds, 
and has also announced a result for k = 2 and n = 2. The approach 
used in [36] is a constructive one and is based upon certain fixed 
point theorems. 
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The von Karman equations and buckling problems. The nonlinear 
von Karman equations have been the subject of a number of mathe
matical investigations during the last thirty years. These investigations 
have included the study of buckling problems as in the papers of 
Friedrichs and Stoker [25], Keller, Keller and Reiss [34], Bauer and 
Reiss [5], Berger and Fife [9], [10], Berger [7], Wolkowisky [75], 
and Knightly and Sather [38], as well as the study of various existence 
problems as in the papers of Morosov [49], Fife [22], and Knightly 
[ 37]. The reformulation of such problems as a single nonlinear oper
ator equation in some appropriate Hilbert space as in Berger and 
Fife [9], [10] and Berger [7] has proved to be especially useful, and 
is the approach adopted for the buckling problems considered below. 

(a) Buckling of a clamped plate. As an application of the above 
results, let us study the nonlinear deflections of a thin elastic plate that 
is clamped at the edges and subjected to certain edge loadings; the 
material outlined below is contained in Knightly and Sather [38] 
wherein the effects of normal loading are also considered. 

Let O be a bounded region in the xj/-plane (representing the shape 
of the plate) with boundary dfl consisting of a finite number of 
smooth arcs but no cusps. We consider the following version of the 
von Karman equations (e.g., see [37] ): 

(vKa) A 2 / = -i[w,u>], 

(vKb) A2w = k[F,w] + [f,w], 

where A is the Laplacian with respect to x and y, and 

(4.52) [u, v] = uxxvyy + uyyvxx - 2uxyvxy. 

Here w = w(x, y) is a measure of the deflection of the plate out of 
its plane, X is a parameter measuring the edge loadings acting on 
d il, and / = f(x, y) is a certain stress function in the plate. 

We assume throughout the application that the given function 
F = F(x, y) satisfies F G C3(fì), and that F and the first and second 
partials of F are all uniformly bounded in ft. 

The determination in Ü of solutions w, f G C4(0) Pi Cx(â) of the 
two coupled nonlinear partial differential equations (vK) together with 
the "clamped plate boundary conditions" 

(4.53) w = wx = wy = / = fx = fy = 0 on dfl 

will constitute a classical solution of problem CP. 
Let W= \#2'2(fì) be the (real) Hilbert space obtained by the 

completion of C0 °°( £1) in the norm induced by the inner product 
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(4.54) (u9 v) = J (uxxvxx + 2wx{/t;xî/ + uyyvyy) dx dy. 

In order to reformulate problem CP as an operator equation in W, we 
note first of all that for smooth functions (p and ijj in W an integration 
by parts yields 

(4.55a) ( / » = -\b{w,w9ip\ 

(4.55b) (u;, ip) = b(f, w; *) + AC(U>; </0> 

where 

(4.56) b(u9 v; <p) = J^ [(uyVxy - uxvyy)<px + (uxvxy - uyvxx)<py] dxdy, 

(4.57) c(u; <p) = [F,u](p dx dy. 

The equations (4.55) suggest defining a generalized solution of 
problem CP to be a pair of functions w,f in W which satisfy (4.55) 
for all <p, iff in W. It can then be shown (e.g., see [7], [9] that every 
classical solution is a generalized solution and, conversely, every 
generalized solution is a classical solution in fi and at all sufficiently 
smooth portions of d[i. Thus, it will be sufficient for our purposes to 
determine a generalized solution of the problem CP. 

Let us now indicate how the system of equations (4.55) can be 
reformulated as two uncoupled operator equations in W; the necessary 
details and the appropriate Sobolev inequalities may be found in [7], 
[9]. Since the functional b(u,v;<p) and c(u;<p) are bounded and 
linear in <p, it follows from the Riesz representation theorem that there 
exists a bounded symmetric bilinear operator B : W X W —» W, and 
a bounded linear operator A : W -> W such that, for all <p in W, 

(4.58) b(u, v; if) = (B(ti, v), *>), u,vGW, 

(4.59) c(u; <p) = (Au, <p), uŒW. 

Using these equations one now easily sees that (4.55) can be rewritten 
as 

(4.60) /= - \B{w,w\ 

(4.61) w - KAw + T(w) = 0, 

where the nonlinear operator T : W —» W is given by 

(4.62) T(w) = \B(B(W,W),W). 
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Thus, in order to determine a generalized solution of problem CP, it 
will be sufficient to determine a solution in W of the single operator 
equation (4.61). 

Let us remark here that one can even show that B (and hence T) 
is a compact operator on W; however, although the compactness of 
T plays an important role in obtaining the global branching results of 
Berger [7] and Berger and Fife [9], [10], it is not required for the 
local branching analysis given below. 

The linearized eigenvalue problem associated with the generalized 
problem CP is 

(4.63) w - \Aw = 0, w£W. 

Here, A is a selfadjoint compact linear operator so that the spectrum 
of A consists of an infinite number of discrete real eigenvalues Xm of 
finite multiplicity with |Xm| tending to infinity as m —» °°. Thus, for 
any such Xm, the linear operator I — kmA satisfies hypothesis (LSA) 
with £>(A) = W. 

Although the operator equation (4.61) is not of the same form as 
equation (f), the associated branching equation in £R(I ~~ XmA) does 
have the same form as (2)sa with 

(4.64) rf=±-l, 

so that the above analysis applies also to operator equations such as 
(4.61). Therefore, in order to obtain nontrivial solutions of (4.61) near 
A = Am > 0, when $1(1 — XmA) is two dimensional, we need to show 
only that the nonlinear operator T defined by (4.62) satisfies the 
hypotheses of Theorem 4.7. Clearly, since T is generated by a bounded, 
symmetric, bilinear operator B, T satisfies (TH) with £>(A) = W and 
k = 3. The operator T satisfies also (TD) with the A-norm replaced 
by the norm in W and 

(4.65) Dw(h) = 2B(w, B(w, h)) + B(h, B(w, w)\ 

(4.66) Ew(h) = Dh(w) + T(h). 

In order to show that T is the (strong) gradient of the functional 
\(T(w), w)7 one first uses the "divergence structure" of the nonlinear 
term [u, v] (e.g., see [7, p. 692] ) to show that the form (B(u, v), w) = 
Jn [u,v]wdxdy is symmetric for u,v,w in W, and one can then 
verify (TG) by direct calculation (see also [7, p. 696] ). Since in 
addition one can show that (T(w), w) = \\B(w, w)\\2 and that (T(w), w) 
— 0 only if w = 0 (see [7, p. 699] ), it then follows from Theorem 4.7 
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and Remark 4.7 that there are at least four nontrivial generalized 
solutions of problem CP for \ m < A < km + ô provided that 
(T(u), u)\s f^ constant (i.e., (T(u), u) ^ constant \\u\\k+\ u G St). 
Thus, under certain assumptions, the methods of this section yield 
nontrivial generalized solutions of problem CP (i.e., buckled states of 
the clamped plate). 

(b) Buckling of a simply supported rectangular plate. As a second 
application to buckling problems, let us study the nonlinear deflec
tions of a thin elastic simply supported rectangular plate that is sub
jected to a constant compressive thrust applied normal to its two 
short edges; the formulation of the problem used is that of Bauer and 
Reiss [5]. 

Let ft = {(x, y) : 0 < x < 2, 0 < y < 1} and let dft denote the 
boundary of ft. We consider the following special case of the von 
Karman equations (vK) (e.g., see [5, p. 607] ) 

(vKa)' A 2 / = -{[w,v>], 

(vKb)' àho =[w,f] -kwxx, 

subject to the appropriate boundary conditions for f (see [5, p. 607] ), 
and the "simply supported boundary conditions" for w given by 
to = Aw = Oon dft. 

The determination in ft of solutions w, f G C4( fi) H C2( 11) of 
the coupled nonlinear equations (vK) ' together with the appropriate 
simply supported boundary conditions will constitute a classical solu
tion of problem S SP. 

Let V^ be the (real) Hilbert space obtained by the closure in the 
norm of the space W2'2(I1) of the set of smooth functions defined in 
ft and vanishing on dfl. Then, by using the approach in Berger 
and Fife [ 10], one can define a "generalized" solution (pair) of 
problem S SP which is a classical solution in ft and on d fi except at 
the corners. In addition, one can show [10, p. 231] that, in order to 
obtain a generalized solution of problem SSP, it is sufficient to deter
mine a solution w in W of a single operator equation 

(4.67) w - \Aw + C(w) = 0. 

Here A : W —» W is a selfadjoint compact linear operator, and 
C : W —» W is a smooth nonlinear gradient operator such that C 
satisfies (TH) with k = 3, and (C(w), to)* = 0 with equality only if to 
= 0, where (u, v)* denotes an appropriate inner product inW. The 
above indicated formulation of the generalized problem SSP is con
siderably more involved than that of the generalized problem CP, and 
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for the details the reader is referred to [5], [10]. 
The linearized eigenvalue problem associated with the generalized 

problem SSP is 

(4.68) w - XAw = 0, w G W. 

Since the linearized eigenvalue problem associated with the classical 
problem SSP is 

A2w + kwxx = 0 in iï, 
(4.69) 

w = Aw = 0 on dfl, 

which can be solved explicitly (e.g., see [5, p. 608] ), one easily sees 
that A has eigenvalues Xmn = (7r2/4)(ra + 4n2/ra)2 and correspond
ing eigenfunctions umn = sin (rrarx/2) sin rnry (m, n = 1, 2, • • •). In 
particular then X41 = 25TT2I4 is a double eigenvalue so that the null 
space of 01(1 — X41A) is two-dimensional. 

It now follows from Theorem 4.7 and Remark 4.7 that for X41 < X 
< X41 + Ò there are at least four nontrivial generalized solutions of 
problem SSP provided that (C(w), w)~ |s ^ constant, where S is the 
unit circle in 91(1 — X41A). Thus, for X41 < X < X41 + 8 the methods 
of this section yield at least four buckled states of the simply sup
ported rectangular plate provided that (C(ü), u)* |s ^ constant. 

REMARK 4.9. Let us take the potential energy of a buckled state of 
problem SSP to be (e.g., see [5, p. 608] ) 

(4.70) E = J [(Aw;)2 - Xu;,2 + (A/)2] dx dy. 

In terms of a generalized solution of problem SSP and the operators 
A and C, the energy E becomes (e.g., see [10, pp. 230-232] ) 

(4.71) E(w) = (w, wy - k(Aw, wy + \ (C(w), w)* 

so that the potential energy of an unbuckled state is E(0) = 0 whereas 
the potential energy of a buckled state w0 satisfies E(w0) = 
— \ (C(w0), W0)* < 0. Let vx in S be defined by 

(4.72) S = (0(1)!), vxy = min (C(w), w)\ 
we s 

where S is the unit circle in Sî(7 — X41A), let Vi in S be such that 
0 = (C(Vi), Vi)" is any other relative extrema of (C(o>), wy |s satis
fying © > 6, and let u and U be the corresponding buckled states as 
determined in Remark 4.8 which satisfy 
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rç-i/% _ * 0 - 1 / 2 ^ a n d ^ -1 /2 (7 ^ © - i / 2 V i a s X - ^ X t i -

Then, since $ < S implies 

(4.73) (c(fl-1'2^), e-^v.y = ne> 1/0 = (Cfe-1'2^),«-1'2^)-, 
it follows that, for A sufficiently close to X41, 

(4.74) E(u) < E(U). 

Thus, if one now assumes that the "Principle of Least Energy" holds 
(i.e., the plate selects a buckled state with minimum potential energy) 
then the results of this section may predict that the "preferred" buckled 
states of the plate are the states ± u which correspond to the absolute 
minimum of (C(w), w)* over the unit circle S in the null space 
91(7 - X41A). 

REMARK 4.10. By using some techniques which are related to, but 
somewhat simpler than, those in [ 10], it can even be shown that, 
for \ 4 1 < A. < X41 + ô, there are exactly eight buckled states of 
problem SSP which depend analytically on (X — X4i)1/2. This last 
result, as well as some other constructive results on the existence of 
buckled states of cylindrical panels and spherical caps, will appear 
in some forthcoming joint work of the author with George H. Knightly. 

REFERENCES 

1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for 
solutions of elliptic partial differential equations satisfying general boundary con
ditions. I, Comm. Pure Appi. Math. 12 (1959), 623^-727. MR 23 #A2610. 

2. P. G. Aïzengendler, Some problems in the theory of the ramification of 
solutions of nonlinear equations, Uspehi Mat. Nauk 21 (1966), no. 1 (127), 
182-184. (Russian) 

3. S. Bancroft, J. K. Hale and D. Sweet, Alternative problems for nonlinear 
functional equations, J. Differential Equations 4 (1968), 40-56. MR 36 #3184. 

4. R. G. Bartle, Singular points in functional equations, Trans. Amer. Math. 
Soc. 75 (1953), 366-384. MR 15, 436. 

5. L. Bauer and E. Reiss, Nonlinear buckling of rectangular plates, SIAM J. 
Appi. Math. 13 (1965), 603^626. 

6. N. Bazley and B. Zwahlen, A branch of positive solutions of nonlinear 
eigenvalue problems, Manuscripta Math. 2 (1970), 365-374. MR 42 #3628. 

7. M. S. Berger, On von Karmans equations and the buckling of a thin 
elastic plate. I. The clamped plate, Comm. Pure Appi. Math. 20 (1967), 687-719. 
MR 36 #4860. 

8. , On nonlinear perturbations of the eigenvalues of a compact self-
adjoint operator, Bull. Amer. Math. Soc. 73 (1967), 704-708. MR 35 #3494. 

9. M. S. Berger and P. C. Fife, On von Karmans equations and the buckling 
of a thin elastic plate, Bull. Amer. Math. Soc. 72 (1966), 1006-1011. MR 34 #3072. 

10. , Von Kârmân s equations and the buckling of a thin elastic plate. 
II. Plate with general edge conditions, Comm. Pure Appi. Math. 21(1968), 227— 
241. MR 37 #5544. 



248 D. SATHER 

11. G. Bliss, A generalization of Weierstrass' preparation theorem for a power 
series in several variables, Trans. Amer. Math. Soc. 13 (1912), 133-145. 

12. F. Browder, On the spectral theory of elliptic differential operators. I, 
Math. Ann. 142 (1960/61), 22-130. MR 35 #804. 

13. A. P. Calderón and A. Zygmund, Singular integral operators and differential 
equations, Amer. J. Math. 79 (1957), 901-921. MR 20 #7196. 

14. L. Cesari, Sulla stabilità delle soluzioni dei sistemi di equazioni differen
ziali lineari a coefficienti periodici, Atti Accad. Italia Mem. CI. Sci. Fis. Mat. Nat. 
(6) 11 (1940), 633-695. MR 3, 41. 

15. , Asymptotic behavior and stability problems in ordinary differen
tial equations, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., 
Band 16, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 27 #1661. 

16. , Functional analysis and Galerkins method, Michigan Math. J. 11 
(1964), 385-414. MR 30 #4047. 

17. G. Clements, Implicit functions defined by equations with vanishing 
Jacobians, Trans. Amer. Math. Soc. 14 (1913), 325-342. 

18. J. Cronin, Branch points of solutions of equations in Banach space, Trans. 
Amer. Math. Soc. 69 (1950), 208-231. MR 12, 716. 

19. , Branch points of solutions of equations in Banach space. II, Trans. 
Amer. Math. Soc. 76 (1954), 207-222. MR 16, 47. 

20. , Analytic functional mappings, Ann. of Math. (2) 58 (1953), 175-181. 
MR 15, 234. 

21. , Fixed points and topological degree in nonlinear analysis, Math. 
Surveys, no. 11, Amer. Math. Soc, Providence, R. I., 1964. MR 29 #1400. 

22. P. Fife, Non-linear deflection of thin elastic plates under tension, Comm. 
Pure Appi. Math. 14 (1961), 81-112. MR 23 #B1735. 

23. K. Friedrichs, Lectures on advanced ordinary differential equations, New 
York University, 1948/49. 

24. , Special topics in analysis, New York University, 1953/54. 
25. K. Friedrichs and J. J. Stoker, The non-linear boundary value problem of 

the buckled plate, Amer. J. Math. 63 (1941), 839-888. MR 3, 223. 
26. S. Goldberg, Unbounded linear operators. Theory and applications, 

McGraw-Hill, New York, 1966. MR 34 #580. 
27. L. M. Graves, Remarks on singular points of functional equations, Trans. 

Amer. Math. Soc. 79 (1955), 150-157. MR 16, 933. 
28. K. Gustafson and D. Sather, A branching analysis of the Hartree equation, 

Rend. Mat. 4 (1971), 723-735. 
29. , Large nonlinearities and monotonicity, Arch. Rational Mech. Anal. 

(to appear). 
30. , Large nonlinearities and closedness, MRC Technical Summary Report 

#1304, Mathematics Research Center, University of Wisconsin, January 1973. 
31. J. K. Hale, Periodic solutions of non-linear systems of differential equa

tions, Riv. Mat. Univ. Parma 5 (1954), 281-311. MR 17, 1088. 
32. , Oscillations in nonlinear systems, McGraw-Hill, New York, 

1963. MR 27 #401. 
33. T. Kato, Perturbation theory for linear operators, Die Grundlehren der 

math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. 
34. H. B. Keller, J. B. Keller and E. L. Reiss, Buckled states of circular plates, 

Quart. Appi. Math. 20 (1962/63), 55-65. MR 25 #1704. 
35. J. B. Keller and S. Antman, Bifurcation theory and nonlinear eigenvalue 

problems, Benjamin, New York, 1969. MR 39 #2555. 



BRANCHING OF SOLUTIONS OF NONLINEAR EQUATIONS 2 4 9 

36. K. Kirchgässner, Multiple eigenvalue bifurcation for holomorphic mappings, 
Sympos. on Nonlinear Functional Analysis, Math. Res. Center, University of 
Wisconsin, Madison, Wis.; Contributions to Nonlinear Functional Analysis, 
Academic Press, New York, 1971, pp. 69-99. 

37. G. H. Knightly, An existence theorem for the von Karman equations, Arch. 
Rational Mech. Anal. 27 (1967), 233-242. MR 36 #3532. 

38. G. H. Knightly and D. Sather, On nonuniqueness of solutions of the von 
Karman equations, Arch. Rational Mech. Anal. 36 (1970), 65-78. MR 41 #6446. 

39. M. A. Krasnosel'skii, Some problems of nonlinear analysis, Uspehi Mat. 
Nauk 9 (1954), no. 3 (61), 57-114; English transi., Amer. Math. Soc. Transi. (2) 
10 (1958), 345-409. MR 17, 769; MR 20 #1243. 

40. , Topological methods in the theory of nonlinear integral equations, 
GITTL, Moscow, 1956; English t ransi , Macmillan, New York, 1964. MR 20 
#3464; MR 28 #2414. 

41. V. M. Krasnosel'skii, Small solutions of a class of nonlinear operator equa
tions, Dokl. Akad. Nauk SSSR 180 (1968), 22-24 = Soviet Math. Dokl. 9 (1968), 
579-581. MR 37 #4680. 

42. O. A. Ladyzenskaja, Mathematical problems in the dynamics of a viscous 
incompressible fluid, Fizmatgiz, Moscow, 1961; English transi., Gordon and 
Breach, New York, 1963. MR 27 #5034a,b. 

43. J. Locker, An existence analysis for nonlinear equations in Hilbert space, 
Trans. Amer. Math. Soc. 128 (1967), 40^-413. MR 35 #5985. 

44. , An existence analysis for nonlinear boundary value problems, SIAM 
J. Appi. Math. 19 (1970), 199-207. MR 42 #578. 

45. A. M. Ljapunov, Sur les figures d'équilibre peu différentes des ellipsoïdes 
d'une masse liquide homogène donée d'un mouvement de rotation, Zap. Akad. 
Nauk St. Petersburg 1 (1906), 1-225. 

46. W. MacMillan, A reduction of a system of power series to an equivalent 
system of polynomials, Math. Ann. 72 (1912), 157-179. 

47. , A method for determining the solutions of a system of analytic func
tions in the neighborhood of a branch point, Math. Ann. 72 (1912), 180-202. 

48. A. Marino and G. Prodi, La teoria di Morse per gli spazi di Hilbert, Rend. 
Sem. Mat. Univ. Padova 41 (1968), 43-68. MR 41 #2715. 

49. N. F. Morosov, On the non-linear theory of thin plates, Dokl. Akad. Nauk 
SSSR 114 (1957), 968-971. MR 19, 1108. 

50. L. Nirenberg, Functional analysis, New York University, 1960/61. 
51. W. Osgood, Topics in the theory of functions of several complex variables, 

The Madison Colloq. Lectures on Mathematics (1913), Amer. Math. Soc, Provi
dence, R. I., 1914. 

52. G. H. Pimbley, Jr., Eigenfunction branches of nonlinear operators, and 
their bifurcations, Lecture Notes in Math., vol. 104, Springer-Verlag, Berlin and 
New York, 1969. MR 42 #916. 

53. H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome 1. 
Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymp-
totiques, Gauthier-Villars, Paris, 1892; reprint, Dover, New York, 1957; English 
transi., NASA TTF-450, National Aeronautics and Space Administration, Washing
ton, D. C , 1967. MR 19, 414; MR 38 #6135a. 

54. G. Prodi, Problemi di diramazione per equazioni funzionali, Boll. Un. Mat. 
Ital. (3) 22 (1967), 413-433. MR 39 #6127. 

55. M. Reeken, A general theorem on bifurcation and its application to the 
Hartree equation of the helium atom, J. Mathematical Phys. 11 (1970), 2505-2512. 



250 D. SATHER 

MR 43 #5369. 
56. E. H. Rothe, Completely continuous scalars and variational methods, Ann. 

of Math. (2) 49 (1948), 265-278. MR 10, 461. 
57. , Some remarks on critical point theory in Hilbert space, Proc. Sympos. 

Nonlinear Problems (Madison, Wis., 1962), Univ. of Wisconsin Press, Madison, 
Wis., 1963, pp. 233-256. MR 28 #2424. 

58. D. Sather, Branching of solutions of an equation in Hilbert space, Arch. 
Rational Mech. Anal. 36 (1970), 47-64. MR 40 #4828. 

59. , Nonlinear gradient operators and the method of Lyapunov-Schmidt, 
Arch. Rational Mech. Anal. 43 (1971), 222-244. 

60. , Branching of solutions of a class of nonlinear equations, Math. Z. 
123(1971), 105-112. 

61. E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichung
en, Math. Ann. 65 (1908), 370-379. 

62. S. L. Sobolev, Applications of functional analysis in mathematical physics, 
Izdat. Leningrad. Gos. Univ., Leningrad, 1950; English transi., Transi. Math. 
Monographs, vol. 7, Amer. Math. Soc, Providence, R. L, 1963. MR 14, 565; MR 
29 #2624. 

63. I. Stakgold, Branching of solutions of nonlinear equations, SIAM Rev. 
13(1971), 289-332. 

64. A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chap
man & Hall, London, 1958. MR 20 #5411. 

65. V. A. Trenogin, Branching of solutions of non-linear equations in Banach 
space, Uspehi Mat. Nauk 13 (1958), no. 4 (82), 197-203. (Russian) MR 22 #8362. 

66. , Branching equation and Newton diagram, Dokl. Akad. Nauk SSSR 
131 (1960), 1032-1035 = Soviet Math. Dokl. 1 (1960), 388-391. MR 22 #8363. 

67. , Perturbation of a linear equation by a small nonlinear term, Dokl. 
Akad. Nauk SSSR 140 (1961), 311-313 = Soviet Math. Dokl. 2 (1961), 1212-1215. 
MR 27 #593. 

68. M. M. Vaïnberg, Variational methods for the study of non-linear operators, 
GITTL, Moscow, 1956; English transi, Holden-Day, San Francisco, Calif., 1964. 
MR 19, 567; MR 31 #638. 

69. M. M. Vaïnberg and P. G. Aïzengendler, The theory and methods of inves
tigation of branch points of solutions, Progress in Math., vol. 2, Plenum Press, 
New York, 1968. 

70. P. G. Aïzengendler and M. M. Vaïnberg, Theory of branching of solutions 
of nonlinear equations in the multidimensional case, Dokl. Akad. Nauk SSSR 163 
(1965), 543-546 = Soviet Math. Dokl. 6 (1965), 936-939. MR 33 #565. 

71. , Periodic solutions of nonautonomous systems, Dokl. Akad. Nauk 
SSSR 165 (1965), 255-257 = Soviet Math. Dokl. 6 (1965), 1419-1422. MR 33 
#2880. 

72. M. M. Vaïnberg and V. A. Trenogin, A note on the theory of the ramifica
tion of solutions of nonlinear equations, Uspehi Mat. Nauk 18 (1963), 223—224. 
(Russian) 

73. , The Ljapunov and Schmidt methods in the theory of non-linear 
equations and their subsequent development, Uspehi Mat. Nauk 17 (1962), no. 
2 (104), 13-75 = Russian Math. Surveys 17 (1962), no. 2, 1-60. MR 27 #4071. 

74. B. L. van der Waerden, Moderne Algebra. Vol. II, Springer, Berlin, 1931; 
English transi., Ungar, New York, 1950. MR 10, 587. 

75. J. H. Wolkowisky, Existence of buckled states of circular plates, Comm. 
Pure Appi. Math. 20 (1967), 549-560. MR 35 #3952. 

UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302 


