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A CHAIN CONDITION FOR GROUPS 

THOMAS S. SHORES 

ABSTRACT. In this article a chain condition for groups, 
called the bounded chain condition, is studied; this chain con
dition includes the ascending and descending chain conditions 
as special cases. It is shown that every locally radical group 
which satisfies the bounded chain condition on subgroups must 
satisfy the ascending or descending chain condition on sub
groups, i.e., such groups are Artinian or Noetherian. The same 
conclusion holds for nilpotent groups which satisfy the bounded 
chain condition on abelian subgroups. 

The ascending and descending chain conditions (ACC and DCC, 
resp.) for subgroups have been studied extensively as essentially inde
pendent phenomena. Our intent in this note is to examine a new chain 
condition which is a common consequence of both of these chain con
ditions. By a chain of subgroups we mean a double sequence of sub
groups • • -, C_!, C0, Ci9 • • • of a given group such that Q C Q + 1 

for all integers I Such a chain is bounded in case there is a positive 
integer n such that all terms Q are equal for i > n or all terms C{ are 
equal for i < ; — n. If every chain of subgroups of the group G is 
bounded, we say G has the bounded chain condition (BCC) on sub
groups. The BCC on subgroups (or for that matter on any lattice) can 
be thought of as a minimal generalization of the ACC and DCC. 

Two questions are of concern to us: First of all, it is only natural to 
ask how far the BCC extends the ACC and DCC. Clearly the BCC on 
subgroups is implied by both the ACC and the DCC on subgroups. 
Whether or not every group with the BCC on subgroups in fact has the 
ACC or DCC (i.e., is Artinian or Noetherian) appears to be a difficult 
question. We shall show in Theorem 3 that every locally radical 
group with the BCC on subgroups is Artinian or Noetherian. 

The second question we consider arises from the following fact: It 
is known that for groups that are "close" to abelian, such as solvable 
groups, the ACC or DCC on abelian subgroups implies the same con
dition for all subgroups. Does the BCC exhibit this type of behavior? 
The answer is no in most cases. In fact we show in die next section 
that there exists a hypercentral metabelian group which has the BCC 
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on abelian subgroups and is neither Artinian nor Noetherian. Such a 
group is locally radical and does not have the BCC on subgroups by 
Theorem 3. On the other hand, nilpotent groups with the BCC on 
abelian subgroups do satisfy the BCC for subgroups (and are therefore 
Artinian or Noetherian). 

Let us recall here that a group G is hypercentral if some term of 
the upper central series of G is itself G. If a finite term of the upper 
central series is G, we say G is nilpotent. Also, G is a solvable group 
if G has a finite normal series with abelian factors and a radical group 
if G has an ascending normal series of subgroups whose factors are 
locally nilpotent. Some more notation: Let G be a group and p a 
group theoretic class. 

Z(G) = centerof G( = Zi(G)). 
Za(G) = ath term of the upper central series of G. 
G is a p -group = G belongs to the class p . 
G is a locally p = finitely generated subgroups of G are p -groups. 
G is hyper- p = nontrivial epimorphic images of G have nontrivial 

normal p -subgroups. 
G is almost p = G has a normal p -subgroup whose index in G is 

finite. 
t = the class of groups which are Artinian or Noetherian. 
If S is a subset of G, (S) is the subgroup generated by S and C(S) 

is the centralizer of S in G. 

1. Nilpotent groups and the BCC. We begin by examining abelian 
groups with the BCC. 

LEMMA 1. Every abelian group G with the BCC on subgroups is 
an t -group; if G has an element of infinite order, then G is Noetherian. 

PROOF. Let G be abelian with the BCC. If G has an element x of 
infinite order, set Gn = (x2"> and obtain a strictly decreasing sequence 
of subgroups Gn, n = 0, 1, • • \ Thus the factor group GIG0 has no 
strict infinite ascending sequences of subgroups; for the inverse image 
in G of such a sequence together with the sequence of subgroups Gn, 
n = 0, 1, . . ., would yield a chain of subgroups of G which is not 
bounded. This is a contradiction. Hence GIG0 is a Noetherian group. 
But G0 is Noetherian and extensions of Noetherian groups by Noether
ian groups are themselves Noetherian. Hence G is an t -group. 

Next suppose G is a periodic group. Then G contains no nontrivial 
infinite direct sums of subgroups. For if this were so, say G had sub
groups An, n = 0, ± 1, ± 2 , . . . , we could let Bn be the subgroup of 
G generated by the groups Ak, k ^ n, and obtain an unbounded chain 
of subgroups 
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• • - C B . i C B o C B x C • •. 

Now every periodic abelian group has a direct summand which is 
either cyclic or quasi-cyclic (i.e., of Prüfer type) by a theorem of 
Kulikov (see item 5.2.10 of [4, p. 98] ). It follows readily that G must 
be a finite direct sum of cyclic and quasi-cyclic subgroups. Since these 
subgroups are Artinian, so is G. Hence G is an e -group; in any case 
the lemma follows. 

There are several results about automorphism groups which will 
be needed in the sequel: 

1. Every solvable group of automorphisms of an abelian Noetherian 
group is itself Noetherian (see Satz 2 of [2, p. 171] for a proof). 

2. Every periodic group of automorphisms of an abelian Artinian 
group is finite (see Lemma 1.2(b) of [4, p. 405] ). The main result on 
nilpotent groups is as follows: 

THEOREM 1. The following are equivalent conditions on the nil-
potent group G: 

(I) G is an t -group. 
(II) G has the BCC on subgroups. 
(III) G has the BCC on abelian subgroups. 

PROOF. That (I) implies (II) and (II) implies (III) is obvious. Sup
pose that the nilpotent group G satisfies (III). Choose a maximal nor
mal abelian subgroup A of G. Since G is nilpotent, C(A) = A. Also 
A is an e -group by Lemma 1. The group Gl A = GIC(A) is essentially 
a group of automorphisms of A. If A is a Noetherian group, then so is 
Gl A by item 1 preceding this theorem. It follows that G itself is 
Noetherian. 

Now suppose that A is an Artinian group. If Gl A is periodic, then 
this group is finite by item 2 so that G must be Artinian. So it remains 
to consider the case in which Gl A is not periodic. If A is finite, then 
G is Noetherian and we are done. Suppose that A is infinite and 
choose an element x G G — A whose image in Gl A has infinite order. 
We shall complete the proof by deriving a contradiction. The group 
H = A{x) is nilpotent and has the BCC on abelian subgroups. It 
follows that there exists an integer n such that, for all a €E A, 

[a,x, • • -,x] = 1, 

where x is iterated n times in the commutator expression above. (Here 
[u, v] = u~lv~luv.) If we represent the identity endomorphism of 
A as 1A, the endomorphism of A induced by conjugation by x as <f> and 
write the group operation of A additively, then the commutator iden-
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tity above becomes 

Û(1A - <t>)n = 0. 

Since a was arbitrary, A(1A — <f>)n = 0. Therefore there is an integer 
fc ^§ n such that the kernel K of the restriction of endomorphism 
(1A — <j>) to the group A(1A — <j>)k is infinite. K is an infinite periodic 
abelian group with the BCC on subgroups. It follows from the proof 
of Lemma 1 that K has a quasi-cyclic subgroup L. Since <j> acts as the 
identity on L, x centralizes L. Hence L(x) is an abelian subgroup 
of G But L(x) contains the non-Artinian subgroup (x) and non-
Noetherian subgroup L. Hence L(x) is not an t-group. By Lemma 1 
this is a contradiction and thus Theorem 1 is proved. 

EXAMPLE. Let p be a prime and A a quasi-cyclic p-group, i.e., 
A is generated by elements a1? a2, * * * where aY

p = 1 and a%+i = an> 

n = 1, 2, • • • . Next define an automorphism <f> of A by the equation 

a n + 1 0 = ( a n + i ) 1 ^ - - " ^ " , n = 1,2, . . . . 

It is readily seen that <f> is well-defined, since the order of an is 
pn. Now let G be the split extension of A by (<f>). Then Z(G) = 
(ai). A simple induction shows that Zn(G) = (an) for all positive n. 
Hence ZW+1(G) = G and G is a metabelian hypercentral group. Let 
C be an abelian subgroup of G. If A C C, then C = A(C fi (0)). 
Since no positive power of <f> is in Z(G), C H (</>) = 1 and A = C. On 
the other hand if A H C C A, then A H C is a finite group. Also 
A PI C < C, so that 

C/(A PI C) = AC/A 

which is cyclic and hence Noetherian. Thus C is Noetherian and 
every abelian subgroup of G is an t -group. Therefore G has the 
BCC on abelian subgroups. But G does not have the BCC on sub
groups, for G has an unbounded chain of subgroups, namely, 

• • • C (a,, tf>4> C (al9 <t>2) C (al9 <f>) C (al9 a2, <j>) C • • • . 

REMARK 1. It is readily seen that any solvable group with the ACC 
or DCC on subnormal subgroups enjoys the same chain condition on 
all subgroups. Even in the simplest cases the BCC does not exhibit 
this type of behavior. For let G be as in the previous example and K 
a normal subgroup of G If K D A C A, then K H A is finite and it 
is easily checked that G/(K H A) = G. Also the image of A in 
GI(K H A) is the maximum divisible subgroup, so this image is self-
centralizing. But AKI(KC) A) is the direct sum of Al(K H A) and 
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KI(K fi A), so K C A Hence the only normal subgroups of G are 
the subgroups of A and the subgroups containing A. It follows that the 
only subnormal subgroups of G are the normal subgroups. Therefore 
G has the BCC on subnormal subgroups but not on all subgroups. 

REMARK 2. While the BCC on abelian subgroups does not ensure 
the BCC on all subgroups for the class of solvable groups, it does at 
least ensure the solvability of radical groups. Call a group a minimax 
group if it has a Noetherian normal subgroup with Artinian factor 
group. Then the following is true: Every hyper-(almost radical) group 
with the BCC on abelian subgroups is an almost solvable poly-
minimax group. This fact is an immediate consequence of our Lemma 
1 and Remark 2.3 in a recent paper of B. Amberg [1]. 

2. Solvable groups and the BCC. 

LEMMA 2. Every solvable group with the BCC on subgroups is an 
e -group. 

PROOF. Let G be a solvable group and denote the nth derived term 
of G by G(n). (Thus G(1> is the commutator subgroup of G and G(n+1> = 
(G(n))(1).) The first integer n such that G(n) = 1 is the derived length 
of G and the proof is by induction on n. For n = 1, G is abelian and 
the result follows from Lemma 1. Suppose that n > 1 and the result 
is true for groups of shorter derived length. Let K = G(1) and C = 
C(K). Note that C ( 1 ) C Z(C), so that C is a nilpotent group. By 
Theorem 1, C is an C-group. 

The group K is also an t -group by the induction hypothesis. If K 
has an element of infinite order, say x, then the factor group GIK has 
no infinite ascending sequences of subgroups. For the inverse image 
in G of such a sequence, together with the decreasing sequence of 
subgroups <x2'), i = 1, 2, • • -, yields an unbounded chain in G. 
Therefore both K and GIK are Noetherian groups, so that G is 
Noetherian. Thus we may assume that K is periodic. If K is also 
Noetherian, then it must be finite since periodic solvable groups are 
locally finite. In this case GIC is isomorphic to a group of automor
phisms of K and therefore finite. Since C is an e -group, it follows that 
G is an e-group. Finally consider the case in which K is infinite 
Artinian. Then K has a characteristic abelian subgroup A of finite 
index in K (see, e.g., [4, p. 403] ). Such a subgroup is Artinian and 
hence a direct sum of cyclic and quasi-cyclic subgroups. Thus for 
some prime p and p-primary component of A it is infinite. Let A< be 
the subgroup of elements of A whose order is a divisor of p\ i= 1, 
2, • • • . The Ai are characteristic in A, hence also characteristic sub
groups of G. Also we obtain an increasing sequence of subgroups 
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Ax C A2 C • • • . 

If GIK is not periodic, then there is an element x 6 G whose image 
in GIK has infinite order. Thus we can form the unbounded chain 
of subgroups 

• • • C Ax(x
4) C A^x2) C Ax(x) C A2(x) C • • • . 

Since G has the BCC on subgroups, this is impossible and GIK is 
periodic. Now GIK has the BCC on subgroups since it is an epi-
morphic image of G. By Lemma 1 GIK is an (-group. Hence GIK 
is Artinian in any case. It follows that G is also Artinian and Lemma 
2 is proved. 

THEOREM 2. If G is a hyper-(almost radical) group, then the fol
lowing are equivalent conditions on G: 

(I) G has the BCC on subgroups. 
(II) G is an almost solvable t -group. 

PROOF. Clearly (II) implies (I). Conversely, if G satisfies (I), then 
G is almost solvable by Remark 2. Any solvable subgroup of G also 
has the BCC on subgroups and is therefore an e -group by Lemma 2. 
Thus G is a finite extension of an t -group and hence G is itself an 
e-group. 

THEOREM 3. If G is a locally radical group, then the following are 
equivalent conditions on G: 

(I) G has the BCC on subgroups. 
(II) G is a solvable t-group. 

PROOF. Clearly (II) implies (I). Conversely, suppose G is locally 
radical and satisfies (I). Since subgroups of G also have the BCC on 
subgroups, G is locally a solvable e-group by Theorem 2. Suppose 
that G has an element x of infinite order. If G were not finitely gen
erated, we could find elements x = xi9 x2, x3, . . . such that if S; = 
(xi, - - *, Xi)y then Sx C S2 C • • • . Thus we have the unbounded 
chain 

• • • C {x2) C <x> C Si C S2 C • • • . 

This is impossible, so G is finitely generated and solvable. Hence G is 
an t -group by Lemma 2. On the other hand if G has no elements of 
infinite order, then every abelian subgroup of G has the BCC and is 
periodic. This implies that every abelian subgroup of G is Artinian, 
so G has the DCC on abelian subgroups. We now apply a result of 
S. N. Cernikov which says that every locally solvable group whose 
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abelian subgroups satisfy the minimum condition is solvable (see 
[3] ); it follows that G is solvable and therefore an e-group by Lemma 
2. Hence (I) implies (II). 

REMARK 3. One might expect to improve Theorem 3 by replacing 
"radical" by "almost radical." Such an extension would involve some 
difficult unsolved problems in the theory of finiteness conditions in 
groups. In this connection we note that V. Sunkov has recently shown 
in [6] that locally finite groups (and therefore also locally almost 
radical groups) whose abelian subgroups are Artinian are likewise 
Artinian. However, it still seems to be unknown whether or not 
locally solvable groups whose abelian subgroups are Noetherian are 
likewise Noetherian. 

REMARK 4. The question of whether or not every group with the 
BCC is an e-group remains open. A related problem is that of finding 
a group with the BCC which is not almost solvable. In this connec
tion we point out that it is still not known whether or not there exists 
an t -group which is not almost solvable. 
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