ON MORE RESTRICTED PARTITIONS

M.S. CHEEMA ${ }^{1}$

1. Introduction. Recently Gupta [2] studied the function $g(n, m, h, k)$ which enumerates the number of partitions of n into exactly k summands each less than or equal to m and in which the number of distinct summands is exactly h. Earlier Cheema and Haskell [1] studied $p(n, r, m, k)$, the number of partitions of n into r summands such that each summand is less than or equal to k and greater than or equal to m. In this article it is shown that the above results can be generalized to study $g(n, l, m, h, k)$ (and other related functions) which enumerates the number of partitions of n into exactly k summands each less than or equal to m and greater than or equal to l in which the number of distinct summands is exactly h.
2. $g(n, l, m, h, k)$ is the coefficient of $x^{n} z^{k} t^{h}$ in

$$
\begin{equation*}
\prod_{i=l}^{m}\left(1+\frac{x^{i} z}{1-x^{i} z} t\right) \quad \text { i.e., in } \prod_{i=l}^{m}\left(\frac{1+x^{i} z(t-1)}{1-x^{i} z}\right)=\frac{f(t)}{f(0)} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
f(t)= & \prod_{i=l}^{m}\left(1+x^{i} z(t-1)\right) \\
= & 1+\left[\begin{array}{c}
m-l+1 \\
1
\end{array}\right] x^{l-1} z(t-1) \\
& +\left[\begin{array}{c}
m-l+1 \\
2
\end{array}\right] x^{2(l-1)} z^{2}(t-1)^{2} \\
& +\cdots+\left[\begin{array}{c}
m-l+1 \\
m-l+1
\end{array}\right] x^{(m-l+1)(l-1)} z^{m-l+1}(t-1)^{m-l+1}
\end{aligned}
$$

where

$$
\left[\begin{array}{c}
m \tag{2.3}\\
i
\end{array}\right]=\frac{\left(1-x^{m}\right)\left(1-x^{m-1}\right) \cdots\left(1-x^{m-i+1}\right)}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{i}\right)} x^{i(i+1) / 2}
$$

Received by the editors June 28, 1971 and, in revised form, January 28, 1972.
AMS (MOS) subject classifications (1970). Primary 10A45; Secondary 10A45.
${ }^{1}$ Supported in part by N.S.F. GP 12716.

Thus the coefficient of t^{h} in $f(t)$ is

$$
\begin{align*}
& x^{h(l-1)}\left[\begin{array}{c}
m-l+1 \\
h
\end{array}\right] z^{h} \\
& \quad-\binom{h+1}{1}\left[\begin{array}{c}
m-l+1 \\
h+1
\end{array}\right] x^{(h+1)(l-1)} z^{h+1} \\
& \quad+\cdots+(-1)^{m-h}\binom{m-l+1}{m-l+1-h}\left[\begin{array}{l}
m-l+1 \\
m-l+1
\end{array}\right] \tag{2.4}\\
& \quad \cdot x^{(m-l+1)(l-1)} z^{m-l+1} \\
& =z^{h} A_{h}(x, z) .
\end{align*}
$$

Using partial fractions we have

$$
\begin{equation*}
A_{h}(x, z) \prod_{i=l}^{m}\left(1-x^{i} z\right)^{-1}=\sum_{i=l}^{m} B_{i}^{(h)}(x) /\left(1-x^{i} z\right) \tag{2.5}
\end{equation*}
$$

where
$B_{i}{ }^{(h)}(x)$

$$
\begin{gathered}
=\frac{A_{h}\left(x, x^{-i}\right)}{\left(1-x^{-1}\right)\left(1-x^{-2}\right) \cdots\left(1-x^{l-i}\right)(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{m-i}\right)} \\
B_{l}^{(h)}(x)=\frac{A_{h}\left(x, x^{-l}\right)}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{m-l}\right)} .
\end{gathered}
$$

The coefficient of z^{k-h} in (2.5) is given by $F(x, l, m, h, k)=$ $\sum_{i=l}^{m} B_{i}^{(h)}(x) x^{i(k-h)}$ and $g(n, l, m, h, k)$ is obtained as the coefficient of x^{n} in $F(x, l, m, h, k)$.

These results are easily extended to the study of $f(n, m, h, k)$ which enumerates the number of partitions of n into summands greater than or equal to m such that the total number of summands is equal to k and the number of distinct summands is h. In this case $f(n, m, h, k)$ is the coefficient of $x^{n} z^{k} t^{h}$ in $\prod_{i=m}^{\infty}\left(1+z(t-1) x^{i}\right) /\left(1-z x^{i}\right)$. Using the identity

$$
\begin{equation*}
\prod_{i=m}^{\infty}\left(1-z x^{i}\right)^{-1}=\sum_{r=0}^{\infty} \frac{z^{r} x^{r m}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i=1}^{r}\left(1-x^{i}\right)^{-1}=\sum_{r=0}^{\infty} q_{r}(n) x^{n} \tag{2.8}
\end{equation*}
$$

reduces the problem to that of finding the coefficient $z^{k} x^{n}$ in

$$
\begin{aligned}
\left\{\sum_{s=0}^{\infty}(-1)^{s}\binom{h+s}{s}\right. & \left.\frac{z^{s+h} x^{(h+s) m+(h+s)(h+s-1 / 2}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{h+s}\right)}\right\} \\
& \times\left\{\sum_{r=0}^{\infty} \frac{z^{r} x^{r m}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{r}\right)}\right\}
\end{aligned}
$$

i.e., in

$$
\begin{gather*}
{\left[\sum_{s=0}^{\infty}(-1)^{s}\binom{h+s}{s} z^{s+h} \sum_{i=(h+s) m+\binom{h+s}{2}} x^{u} q_{h+s}^{\left(u-\left\{(h+s) m+\binom{h+s}{2}\right\}\right)}\right]} \\
\cdot\left[\sum_{r=0}^{\infty} z^{r} \sum_{t=r m}^{\infty} q_{r}^{(t-r m) x^{t}}\right] . \tag{2.9}
\end{gather*}
$$

Thus

$$
\begin{align*}
f(n, m, h, k)= & \sum_{u+t=n} \sum_{r+s=k-h}(-1)^{s} \\
& \times\binom{ h+s}{s} q_{h+s}^{\left.\left.(u-\}(h+s) m+\binom{h+s}{2}\right\}\right)} q_{r}^{(t-r m)} \tag{2.10}
\end{align*}
$$

summations being over all nonnegative integers u, t, r, s under the above conditions.
If another extra restriction is imposed that the parts should be odd, the corresponding generating functions are

$$
\begin{equation*}
\prod_{i=m}^{\infty}\left(1+\frac{x^{2 i+1} z}{1-x^{2 i+1} z} t\right)=\sum f^{\prime}(n, m, h, k) x^{n} z^{k} t^{h} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{i=0}^{m}\left(1+\frac{x^{2 i+1} z}{1-x^{2 i+1} z} t\right)=\sum g^{\prime}(n, m, h, k) x^{n} z^{k} t^{h} \tag{2.12}
\end{equation*}
$$

Again one can use the following identities

$$
\prod_{m=0}^{i-1}\left(1+a x^{2 m+1}\right)=1+a \frac{\left(1-x^{2 i}\right) x}{1-x^{2}}+a^{2} \frac{\left(1-x^{2 i-2}\right)\left(1-x^{2 i}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right)} x^{4}
$$

$$
\begin{align*}
& +\cdots+a^{m} \frac{\left(1-x^{2 i-2 m+2}\right)\left(1-x^{2 i-2 m+4}\right) \cdots\left(1-x^{2 i}\right)}{\left(1-x^{2}\right)\left(1-x^{4}\right) \cdots\left(1-x^{2 m}\right)} x^{m^{2}} \tag{2.13}\\
& +\cdots+a^{i} x^{i^{2}},
\end{align*}
$$

$$
\begin{aligned}
& \left(1+a x^{2 m+1}\right)\left(1+a x^{2 m+3}\right)\left(1+a x^{2 m+5}\right) \cdots \\
& = \\
& 4+\frac{a x^{2 m+1}}{1-x^{2}}+\frac{a^{2} x^{4+4 m}}{\left(1-x^{2}\right)\left(1-x^{4}\right)} \\
& \\
& \quad+\cdots+\frac{a^{r} x^{r^{2}+2 r m}}{\left(1-x^{2}\right)\left(1-x^{4}\right) \cdots\left(1-x^{2 r}\right)}+\cdots
\end{aligned}
$$

The details are similar.
3. Concluding remarks. Let $g^{*}(n, l, m, h, k)$ denote the number of those g-type partitions of n in which the greatest part used is m and let $G(n, l, m, h, k)$ be the number of those in which the number of summands is at most $k(\geqq h)$. Thus

$$
\begin{aligned}
g^{*}(n, l, m, h, k) & =g(n, l, m, h, k)-g(n, l, m-1, h, k) \\
G(n, l, m, h, k) & =\sum_{j=1}^{k} g(n, l, m, h, j)
\end{aligned}
$$

It also follows from their generating functions that $g(n, l, m, h, k)=$ $g(n-k(l-1), m, h, k)$. Thus the properties of $g(n, l, m, h, k)$ reduce to those of $g(n, m, h, k)$ studied by Gupta in [2] and it is easy to show that $F(x, l, m, h, k)$ is a polynomial in x of degree exactly $m k+$ $h(2 l-h-1) / 2$. The reduction formulas derived by Gupta can also be extended.

References

1. M. S. Cheema and C. T. Haskell, Multirestricted and rowed partitions, Duke Math. J. 34 (1967), 443-451. MR 36 \# 125.
2. H. Gupta, Highly restricted partitions, J. Res. Nat. Bur. Standards Sect. B 73B (1969), 329-350. MR 40 \#4135.

University of Arizona, Tucson, Arzzona 85721

