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POINTWISE COMPLETENESS OF 
DIFFERENTIAL-DIFFERENCE EQUATIONS 

R. M . BROOKS AND K. SCHMITT 

1. Introduction. Let A ,̂ i = 0 ,1, * * -, m, be complex n X n matrices 
and let x be a complex n-dimensional column vector. Further, let 
0 < TY < r2 < • • * < Tm be given real numbers. We consider the 
system of differential-difference equations 

x'(t) = Ao*(*)+ A ^ t - T i ) 

+ ••• + A ^ - r J , t^O. 
Let Cn denote n-dimensional complex Euclidean space and let 

fB denote the set of all continuous functions from [•— Tm, 0] into 
Cn. If ip GiS, we denote by x(t; <p) the unique solution of (1) satisfy
ing the initial condition 

(2) *(*;?) = ?(*), - T m g ^ 0 . 

The system (1) is called pointwise complete if for any ti^O, the set 
{x(t; <p) : <p G. !B] equals Cn, and pointwise degenerate otherwise. 

In 1967, Weiss [5] posed the question whether the system 

(3) * ' (*)= Ax(*)+ Mt- 1) 

is pointwise complete for any pair o f n X n matrices A and B. Since 
then, several people have worked on this question and several suf
ficient conditions for the pointwise completeness of (3) have been 
established. In the case n § 2 , (3) is pointwise complete for any choice 
of A and B (see Halanay and Yorke [3]); however, for dimension 
n > 2, pointwise degenerate systems exist as Popov [4] has recently 
demonstrated by showing that any solution x(t) of (3), where 

A = I 0 0 - 1 I , B= I 1 0 

is orthogonal to the vector (1, —2, —1) for t è 2. In the same paper 
[4], Popov shows that (3) is pointwise complete whenever B is of the 
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form B = bcT, where b and c are constant column vectors (cT is the 
transpose of c). 

In this paper, we prove pointwise completeness of (1) in another 
very general situation, namely whenever the matrices A», i = 0, 1, 
• • •, m, commute. We approach the problem by constructing a certain 
transcendental matrix equation whose solvability provides a sufficient 
condition for pointwise completeness. We then use Gelfand transform 
methods to show that this matrix equation has a solution whenever the 
matrices Â  commute. 

Our methods have the advantage that we are also able to obtain 
global existence results for solutions of autonomous differential-
difference equations of advanced and neutral type and further show 
that a concept similar to pointwise completeness holds for such 
equations. 

2. An auxiliary equation. Together with (1), we consider the follow
ing matrix equation 

(4) X'(t) = AoX(t) + A,X(t - T l ) + . . . + AmX(t - TW), 

where X(t) is an n X n matrix. Observe that X(t)c, c a. constant vector, 
is a solution of (1) whenever X(t) is a solution of (4). 

Let Mn denote the algebra of all complex n X n matrices equipped 
with the operator norm. For Y G Mn, we denote by eY the element of 
Mn given by 

eY = ÌYV/L 

If Y G Mn, then X(t) = etY is a solution of (4) (for all t) if 
and only if 

(5) Y = Ao + Aie-^
Y + • • • + A ^ - V 7 . 

If (5) has a solution Y, then, as observed above, x(t) = etYc is a solution 
of (1) for any constant vector c, and since etY is nonsingular, we con
clude that (1) is pointwise complete whenever (5) has a solution. 

3. Solution of the auxiliary equation. In this section, we study equa
tion (5) in case AiAj = AjAi, i,j = 0 ,1 , • • -, m. For the sake of brevity, 
we adopt much of the notation and terminology of Browder [2]. 

THEOREM. Let A^Af = AjAi, i,j = 0 ,1 , • • -,m. Then there exists 
a solution Y of (5) and (I) is pointwise complete. 

PROOF. We verify the theorem in case A2 = * * * = Am = 0. The 
general case may be proved in much the same way. Further there is 
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no loss in generality in assuming that rx = 1. Equation (5) then takes 
the form 

(6) Y = A + B e - y , 

where A and B commute. 
Let J\/( denote the closure in Mn of the algebra {p( A, B) : p is a poly

nomial in two indeterminates over C l } . Then J\A is a commutative 
Banach algebra with identity, and is, moreover, generated (poly-
nomially) by A and B, Denote by S( A) and S(B) the spectra of A and 
B, respectively, considered as elements of J\/ly and by spec J\K the 
spectrum of the algebra JH (the set of all multiplicative linear func-
tionals on Ji/[). Then the mapping 

T : spec <M-» S(A) X S(B) C C2, 

defined by T(<p) = (<p(A), <p(B)), is a homeomorphism of spec M̂ onto 
a subset R of S(A) X S(B) (see Browder [2, pp. 36~37] ). 

Now S(A) = cr(A), since <r(A) (the operator spectrum) is a finite 
set in C . We identify spec^/l/f with R. With this identification, we 
have the Gelfand transform p —» jx mapping J\A into the continuous 
functions on R, C(R), and Â(a) = au 0(a) = a2 f° r a = (ai, a2> ^ R-

If X G R, then {X} is open and closed in R, so there exists an element 
£x G JH such that Êx = X{k) (the characteristic function of {X}), for 
if a = X, there exists AaGj\i such that ÂJ(k) = 1 , ÂJa) = 0; let 
Ex = Jla^x AaE.J\i. Hence, iff G C(R), we must have 

/ = 2 «*Xft> = S <*>A = ( 2 a,Ex V 
AGfl AGB AGfi ' 

Hence J f = C(R). 

The above now yield that we must find a function f : R —> C * so 
that 

/ = Â + &?"' onR, 

i.e., 

f(X) = Xi + A2*~/<X), X G R. 

This, however, says only that for each X G R, we must find a z G C 1 

such that 

(7) z = X! + X2e-*, 

thus reducing (6) to a quasipolynomial equation (7). Such quasi-
polynomial equations have been extensively studied and it is well 
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known (see, e.g., Bellman and Cooke [1, Chapter 12]) that (7) has a 
solution for any choice of (X1? A2) ^ C2. 

REMARK. Our method may also be employed in the quest for global 
solutions of neutral type differential-difference equations. 

For example, consider the neutral-type equation 

(8) x' = Ax + Bx(t - 1) + Cx(t + 1). 

The transcendental matrix equation obtained in this case is 

(9) Y = A + Be~Y + CeY. 

Again under the assumption that A, B, and C commute, we reduce 
(9) to the quasipolynomial scalar equation 

(10) z = À! + \2e~z + k3e
z. 

Such equations again have been extensively studied (see [ 1] ). 
Knowing that (10) may be solved, we obtain a solution Y of (9) and 

hence for any constant vector c, x(t) = etYc is a global solution of 
(8). 
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