POINTWISE COMPLETENESS OF DIFFERENTIAL-DIFFERENCE EQUATIONS

R. M. BROOKS AND K. SCHMITT¹

1. Introduction. Let A_i , $i = 0, 1, \dots, m$, be complex $n \times n$ matrices and let x be a complex *n*-dimensional column vector. Further, let $0 < \tau_1 < \tau_2 < \dots < \tau_m$ be given real numbers. We consider the system of differential-difference equations

(1)
$$x'(t) = A_0 x(t) + A_1 x(t - \tau_1) + \cdots + A_m x(t - \tau_m), \quad t \ge 0.$$

Let \mathbb{C}^n denote *n*-dimensional complex Euclidean space and let \mathcal{B} denote the set of all continuous functions from $[-\tau_m, 0]$ into \mathbb{C}^n . If $\varphi \in \mathcal{B}$, we denote by $x(t; \varphi)$ the unique solution of (1) satisfying the initial condition

(2)
$$x(t;\varphi) = \varphi(t), \quad -\tau_m \leq t \leq 0.$$

The system (1) is called *pointwise complete* if for any $t \ge 0$, the set $\{x(t; \varphi) : \varphi \in \mathcal{B}\}$ equals \mathbb{C}^n , and *pointwise degenerate* otherwise.

In 1967, Weiss [5] posed the question whether the system

(3)
$$x'(t) = Ax(t) + Bx(t-1)$$

is pointwise complete for any pair of $n \times n$ matrices A and B. Since then, several people have worked on this question and several sufficient conditions for the pointwise completeness of (3) have been established. In the case $n \leq 2$, (3) is pointwise complete for any choice of A and B (see Halanay and Yorke [3]); however, for dimension n > 2, pointwise degenerate systems exist as Popov [4] has recently demonstrated by showing that any solution x(t) of (3), where

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix},$$

is orthogonal to the vector (1, -2, -1) for $t \ge 2$. In the same paper [4], Popov shows that (3) is pointwise complete whenever B is of the

Received by the editors March 26, 1971.

AMS 1970 subject classifications. Primary 34J10, 34K25, 34K15.

¹Research supported by NSF contracts GP-11555 and GP-18729.

Copyright © 1973 Rocky Mountain Mathematics Consortium

form $B = bc^T$, where b and c are constant column vectors (c^T is the transpose of c).

In this paper, we prove pointwise completeness of (1) in another very general situation, namely whenever the matrices A_i , $i = 0, 1, \dots, m$, commute. We approach the problem by constructing a certain transcendental matrix equation whose solvability provides a sufficient condition for pointwise completeness. We then use Gelfand transform methods to show that this matrix equation has a solution whenever the matrices A_i commute.

Our methods have the advantage that we are also able to obtain global existence results for solutions of autonomous differentialdifference equations of advanced and neutral type and further show that a concept similar to pointwise completeness holds for such equations.

2. An auxiliary equation. Together with (1), we consider the following matrix equation

(4)
$$X'(t) = A_0 X(t) + A_1 X(t - \tau_1) + \cdots + A_m X(t - \tau_m),$$

where X(t) is an $n \times n$ matrix. Observe that X(t)c, c a constant vector, is a solution of (1) whenever X(t) is a solution of (4).

Let M_n denote the algebra of all complex $n \times n$ matrices equipped with the operator norm. For $Y \in M_n$, we denote by e^Y the element of M_n given by

$$e^{Y} = \sum_{j=0}^{\infty} Y^{j} |j| .$$

If $Y \in M_n$, then $X(t) = e^{tY}$ is a solution of (4) (for all t) if and only if

(5)
$$Y = A_0 + A_1 e^{-\tau_1 Y} + \cdots + A_m e^{-\tau_m Y}$$

If (5) has a solution Y, then, as observed above, $x(t) = e^{tY}c$ is a solution of (1) for any constant vector c, and since e^{tY} is nonsingular, we conclude that (1) is pointwise complete whenever (5) has a solution.

3. Solution of the auxiliary equation. In this section, we study equation (5) in case $A_iA_j = A_jA_i$, $i, j = 0, 1, \dots, m$. For the sake of brevity, we adopt much of the notation and terminology of Browder [2].

THEOREM. Let $A_iA_j = A_jA_i$, $i, j = 0, 1, \dots, m$. Then there exists a solution Y of (5) and (1) is pointwise complete.

PROOF. We verify the theorem in case $A_2 = \cdots = A_m = 0$. The general case may be proved in much the same way. Further there is

no loss in generality in assuming that $\tau_1 = 1$. Equation (5) then takes the form

$$Y = A + Be^{-Y},$$

where A and B commute.

Let \mathcal{M} denote the closure in M_n of the algebra $\{p(A, B) : p \text{ is a polynomial in two indeterminates over C}^1\}$. Then \mathcal{M} is a commutative Banach algebra with identity, and is, moreover, generated (polynomially) by A and B. Denote by S(A) and S(B) the spectra of A and B, respectively, considered as elements of \mathcal{M} , and by spec \mathcal{M} the spectrum of the algebra \mathcal{M} (the set of all multiplicative linear functionals on \mathcal{M}). Then the mapping

$$T: \operatorname{spec} \mathcal{M} \to \operatorname{S}(A) \times \operatorname{S}(B) \subseteq \mathbb{C}^2,$$

defined by $T(\varphi) = (\varphi(A), \varphi(B))$, is a homeomorphism of spec \mathcal{M} onto a subset R of $S(A) \times S(B)$ (see Browder [2, pp. 36–37]).

Now $S(A) = \sigma(A)$, since $\sigma(A)$ (the operator spectrum) is a finite set in C¹. We identify spec \mathcal{M} with R. With this identification, we have the Gelfand transform $\mu \to \hat{\mu}$ mapping \mathcal{M} into the continuous functions on R, C(R), and $\hat{A}(\alpha) = \alpha_1$, $\hat{B}(\alpha) = \alpha_2$ for $\alpha = (\alpha_1, \alpha_2) \in \mathbb{R}$.

If $\lambda \in R$, then $\{\lambda\}$ is open and closed in R, so there exists an element $E_{\lambda} \in \mathcal{M}$ such that $\hat{E}_{\lambda} = \chi_{\{\lambda\}}$ (the characteristic function of $\{\lambda\}$), for if $\alpha = \lambda$, there exists $A_{\alpha} \in \mathcal{M}$ such that $\hat{A}_{\alpha}(\lambda) = 1$, $\hat{A}_{\alpha}(\alpha) = 0$; let $E_{\lambda} = \prod_{\alpha \neq \lambda} A_{\alpha} \in \mathcal{M}$. Hence, if $f \in C(R)$, we must have

$$f = \sum_{\lambda \in R} a_{\lambda} \chi_{\{\lambda\}} = \sum_{\lambda \in R} a_{\lambda} \hat{E}_{\lambda} = \left(\sum_{\lambda \in R} a_{\lambda} E_{\lambda} \right)^{*}.$$

Hence $\hat{\mathcal{M}} = C(R)$.

The above now yield that we must find a function $f: \mathbb{R} \to \mathbb{C}^1$ so that

$$f = \hat{A} + \hat{B}e^{-f} \quad \text{on } R,$$

i.e.,

$$f(\lambda) = \lambda_1 + \lambda_2 e^{-f(\lambda)}, \quad \lambda \in R.$$

This, however, says only that for each $\lambda \in R$, we must find a $z \in C^{\perp}$ such that

(7)
$$z = \lambda_1 + \lambda_2 e^{-z},$$

thus reducing (6) to a quasipolynomial equation (7). Such quasipolynomial equations have been extensively studied and it is well known (see, e.g., Bellman and Cooke [1, Chapter 12]) that (7) has a solution for any choice of $(\lambda_1, \lambda_2) \in \mathbb{C}^2$.

REMARK. Our method may also be employed in the quest for global solutions of neutral type differential-difference equations.

For example, consider the neutral-type equation

(8)
$$x' = Ax + Bx(t-1) + Cx(t+1).$$

The transcendental matrix equation obtained in this case is

$$Y = A + Be^{-Y} + Ce^{Y}.$$

Again under the assumption that A, B, and C commute, we reduce (9) to the quasipolynomial scalar equation

(10)
$$z = \lambda_1 + \lambda_2 e^{-z} + \lambda_3 e^{z}.$$

Such equations again have been extensively studied (see [1]).

Knowing that (10) may be solved, we obtain a solution Y of (9) and hence for any constant vector c, $x(t) = e^{tY}c$ is a global solution of (8).

References

1. R. Bellman and K. L. Cooke, *Differential-difference equations*, Academic Press, New York, 1963. MR 26 #5259; MR 27, 1399.

2. A. Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 #7431.

3. A. Halanay and J. Yorke, Some results and problems in the theory of functional differential equations, Technical Note BN-577, University of Maryland, College Park, Md., 1968.

4. V. M. Popov, Pointwise complete and pointwise degenerate linear, timeinvariant, delay-differential systems (to appear).

5. L. Weiss, On the controllability of delay-differential systems, SIAM J. Control 5 (1967), 575-587. MR 38 #6195.

UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112