POINTWISE COMPLETENESS OF DIFFERENTIAL-DIFFERENCE EQUATIONS

R. M. BROOKS AND K. SCHMITT ${ }^{1}$

1. Introduction. Let $A_{i}, i=0,1, \cdots, m$, be complex $n \times n$ matrices and let x be a complex n-dimensional column vector. Further, let $0<\tau_{1}<\tau_{2}<\cdots<\tau_{m}$ be given real numbers. We consider the system of differential-difference equations

$$
\begin{align*}
x^{\prime}(t)= & A_{0} x(t)+A_{1} x\left(t-\tau_{1}\right) \\
& +\cdots+A_{m} x\left(t-\tau_{m}\right), \quad t \geqq 0 \tag{1}
\end{align*}
$$

Let C^{n} denote n-dimensional complex Euclidean space and let \mathcal{B} denote the set of all continuous functions from $\left[-\tau_{m}, 0\right]$ into C^{n}. If $\varphi \in \mathcal{B}$, we denote by $x(t ; \varphi)$ the unique solution of (1) satisfying the initial condition

$$
\begin{equation*}
x(t ; \varphi)=\varphi(t), \quad-\tau_{m} \leqq t \leqq 0 \tag{2}
\end{equation*}
$$

The system (1) is called pointwise complete if for any $t \geqq 0$, the set $\{x(t ; \varphi): \varphi \in \mathcal{B}\}$ equals \mathbb{C}^{n}, and pointwise degenerate otherwise.

In 1967, Weiss [5] posed the question whether the system

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+B x(t-1) \tag{3}
\end{equation*}
$$

is pointwise complete for any pair of $n \times n$ matrices A and B. Since then, several people have worked on this question and several sufficient conditions for the pointwise completeness of (3) have been established. In the case $n \leqq 2,(3)$ is pointwise complete for any choice of A and B (see Halanay and Yorke [3]); however, for dimension $n>2$, pointwise degenerate systems exist as Popov [4] has recently demonstrated by showing that any solution $x(t)$ of (3), where

$$
A=\left(\begin{array}{rrr}
0 & 2 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right)
$$

is orthogonal to the vector $(1,-2,-1)$ for $t \geqq 2$. In the same paper [4], Popov shows that (3) is pointwise complete whenever B is of the

[^0]form $B=b c^{T}$, where b and c are constant column vectors (c^{T} is the transpose of c).

In this paper, we prove pointwise completeness of (1) in another very general situation, namely whenever the matrices $A_{i}, i=0,1$, \cdots, m, commute. We approach the problem by constructing a certain transcendental matrix equation whose solvability provides a sufficient condition for pointwise completeness. We then use Gelfand transform methods to show that this matrix equation has a solution whenever the matrices A_{i} commute.

Our methods have the advantage that we are also able to obtain global existence results for solutions of autonomous differentialdifference equations of advanced and neutral type and further show that a concept similar to pointwise completeness holds for such equations.
2. An auxiliary equation. Together with (1), we consider the following matrix equation

$$
\begin{equation*}
X^{\prime}(t)=A_{0} X(t)+A_{1} X\left(t-\tau_{1}\right)+\cdots+A_{m} X\left(t-\tau_{m}\right) \tag{4}
\end{equation*}
$$

where $X(t)$ is an $n \times n$ matrix. Observe that $X(t) c, c$ a constant vector, is a solution of (1) whenever $X(t)$ is a solution of (4).

Let M_{n} denote the algebra of all complex $n \times n$ matrices equipped with the operator norm. For $Y \in M_{n}$, we denote by e^{Y} the element of M_{n} given by

$$
e^{Y}=\sum_{j=0}^{\infty} Y^{j} / j!
$$

If $Y \in M_{n}$, then $X(t)=e^{t Y}$ is a solution of (4) (for all t) if and only if

$$
\begin{equation*}
Y=A_{0}+A_{1} e^{-\tau_{1} Y}+\cdots+A_{m} e^{-\tau_{m} Y} . \tag{5}
\end{equation*}
$$

If (5) has a solution Y, then, as observed above, $x(t)=e^{t Y} c$ is a solution of (1) for any constant vector c, and since $e^{t Y}$ is nonsingular, we conclude that (1) is pointwise complete whenever (5) has a solution.
3. Solution of the auxiliary equation. In this section, we study equation (5) in case $A_{i} A_{j}=A_{j} A_{i}, i, j=0,1, \cdots, m$. For the sake of brevity, we adopt much of the notation and terminology of Browder [2].

Theorem. Let $A_{i} A_{j}=A_{j} A_{i}, i, j=0,1, \cdots, m$. Then there exists a solution Y of (5) and (1) is pointwise complete.

Proof. We verify the theorem in case $A_{2}=\cdots=A_{m}=0$. The general case may be proved in much the same way. Further there is
no loss in generality in assuming that $\tau_{1}=1$. Equation (5) then takes the form

$$
\begin{equation*}
Y=A+B e^{-Y} \tag{6}
\end{equation*}
$$

where A and B commute.
Let $\delta \Lambda$ denote the closure in M_{n} of the algebra $\{p(A, B): p$ is a polynomial in two indeterminates over $\left.\mathbf{C}^{1}\right\}$. Then \mathcal{N} is a commutative Banach algebra with identity, and is, moreover, generated (polynomially) by A and B. Denote by $S(A)$ and $S(B)$ the spectra of A and B, respectively, considered as elements of \mathcal{M}, and by spec \mathcal{M} the spectrum of the algebra $\propto M$ (the set of all multiplicative linear functionals on $\subset M)$. Then the mapping

$$
T: \operatorname{spec} \subset \Lambda \rightarrow S(A) \times S(B) \subseteq \mathbf{C}^{2},
$$

defined by $T(\varphi)=(\varphi(A), \varphi(B))$, is a homeomorphism of spec $-\mathcal{M}$ onto a subset R of $S(A) \times S(B)$ (see Browder [2, pp. 36-37]).

Now $S(A)=\boldsymbol{\sigma}(A)$, since $\boldsymbol{\sigma}(A)$ (the operator spectrum) is a finite set in C^{1}. We identify spec \mathcal{M} with R. With this identification, we have the Gelfand transform $\mu \rightarrow \hat{\mu}$ mapping \mathcal{N} into the continuous functions on $R, C(R)$, and $\hat{A}(\alpha)=\alpha_{1}, \hat{B}(\alpha)=\alpha_{2}$ for $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in R$.

If $\lambda \in R$, then $\{\lambda\}$ is open and closed in R, so there exists an element $E_{\lambda} \in \mathcal{U}$ such that $\hat{E}_{\lambda}=\chi_{\{\lambda\}}$ (the characteristic function of $\{\lambda\}$), for if $\alpha=\lambda$, there exists $A_{\alpha} \in \mathcal{H}$ such that $\hat{A}_{\alpha}(\lambda)=1, \hat{A}_{\alpha}(\alpha)=0$; let $E_{\lambda}=\prod_{\alpha \neq \lambda} A_{\alpha} \in \propto \mathcal{M}$. Hence, if $f \in C(R)$, we must have

$$
f=\sum_{\lambda \in R} a_{\imath} \chi_{\lambda \lambda,}=\sum_{\lambda \in R} a_{\lambda} \hat{E}_{\lambda}=\left(\sum_{\lambda \in R} a_{\lambda} E_{\lambda}\right)^{\lambda} .
$$

Hence $\hat{\mathcal{M}}=C(R)$.
The above now yield that we must find a function $f: R \rightarrow \mathbf{C}^{1}$ so that

$$
f=\hat{A}+\hat{B} e^{-f} \text { on } R
$$

i.e.,

$$
f(\lambda)=\lambda_{1}+\lambda_{2} e^{-f(\lambda)}, \quad \lambda \in R .
$$

This, however, says only that for each $\lambda \in R$, we must find a $z \in \mathbf{C}^{1}$ such that

$$
\begin{equation*}
z=\lambda_{1}+\lambda_{2} e^{-z}, \tag{7}
\end{equation*}
$$

thus reducing (6) to a quasipolynomial equation (7). Such quasipolynomial equations have been extensively studied and it is well
known (see, e.g., Bellman and Cooke [1, Chapter 12]) that (7) has a solution for any choice of $\left(\lambda_{1}, \lambda_{2}\right) \in C^{2}$.

Remark. Our method may also be employed in the quest for global solutions of neutral type differential-difference equations.

For example, consider the neutral-type equation

$$
\begin{equation*}
x^{\prime}=A x+B x(t-1)+C x(t+1) \tag{8}
\end{equation*}
$$

The transcendental matrix equation obtained in this case is

$$
\begin{equation*}
Y=A+B e^{-Y}+C e^{Y} \tag{9}
\end{equation*}
$$

Again under the assumption that A, B, and C commute, we reduce (9) to the quasipolynomial scalar equation

$$
\begin{equation*}
z=\lambda_{1}+\lambda_{2} e^{-z}+\lambda_{3} e^{z} \tag{10}
\end{equation*}
$$

Such equations again have been extensively studied (see [1]).
Knowing that (10) may be solved, we obtain a solution Y of (9) and hence for any constant vector $c, x(t)=e^{t Y} c$ is a global solution of (8).

References

1. R. Bellman and K. L. Cooke, Differential-difference equations, Academic Press, New York, 1963. MR 26 \#5259; MR 27, 1399.
2. A. Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 39 \#7431.
3. A. Halanay and J. Yorke, Some results and problems in the theory of functional differential equations, Technical Note BN-577, University of Maryland, College Park, Md., 1968.
4. V. M. Popov, Pointwise complete and pointwise degenerate linear, timeinvariant, delay-differential systems (to appear).
5. L. Weiss, On the controllability of delay-differential systems, SIAM J. Control 5 (1967), 575-587. MR 38 \#6195.

University of Utah, Salt Lake City, Utah 84112

[^0]: Received by the editors March 26, 1971.
 AMS 1970 subject classifications. Primary 34J10, 34K25, 34 K 15.
 ${ }^{1}$ Research supported by NSF contracts GP-11555 and GP-18729.

