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THE DOUBLE CENTRALIZER PROPERTY 
IS CATEGORICAL1 

R. S. CUNNINGHAM AND E. A. RUTTER, JR. 

The purpose of this note is to prove the result stated in the title. 
This answers a question raised by E. A. Walker at the summer sym
posium on ring theory at Appalachian State University in August, 
1969, as to whether being QF-1 is categorical. This also seems timely 
since many papers have appeared recently studying the double 
centralizer property for modules, for instance [2] , [4], and [6]. 

Let R and S be associative rings with identity such that the cate
gories RJ\K and sdl\of left R-modules and left S-modules respectively 
are equivalent. Then by [7, Theorem 3.5] or [1, Theorem 3.4, p. 62] 
there is a right R-progenerator PR with S — EndR(PR) such that the 
functor F = SPR®R(~~) • R<M—> S<M gives the equivalence; we say 
R and S are Morita equivalent via SPR. 

Let M be a left K-module and let C = EndR(RM). Then the map 
C -» End s( sP ®R M) via / -» 1P ® / is a unital ring isomorphism so 
we identify C with End s(P ®R M). Let D = En4c(MG) and E = 
End c(P <8>R Mc) be the double centralizers of RM and SP ®RM = 
sF(M) respectively; note that we write homomorphisms opposite 
scalars. We say that M has the double centralizer property (DCP) if 
the natural map rj: R -»Endc(Mc) via t)(r)(m) — rm is onto. Equiva
lenti^ if AnnR(M) = {r G R | rm = 0 for all m G M}, M has the DCP 
if the natural map R/AnnR(M) —» Endc(M) is an isomorphism. 

Finally, we say that two modules N and N ' are similar if each is 
isomorphic to a direct summand of a finite direct sum of copies of 
the other and in this case we write N — N'. 

THEOREM. Let R and S be Morita equivalent via the module 
SPR. If a left R-module RM has the double centralizer property, so 
doessF(M) = SP®RM. 

PROOF. Since PR is a progenerator, PR ~ RR, so P <8>R M ~ R <8>R M 
= M as abelian groups, and the action of C on P ®RM makes 
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P ®RM ~ M as right C-modules. Thus by [5, Theorem 1.5], D 
and E are Morita equivalent via the module £Homc(M, P ®R M)D. 
Our proof of the theorem will be in two parts. 

(a) If RM is faithful and has the DCP we may identify R and D. 
Then the Morita equivalences of S and R and of R and E give a 
Morita equivalence of S and E via the module £Homc(M, P <8>R M) 
® R ^s* where P* = HomR(P, R). Applying the Horn-Tensor identities 
[3, VI, Proposition 5.2] and [3, II, Proposition 5.2], recalling that 
PR is a progenerator, we have 

Homc(M, P ®R M) ®R P* ^ Homc(HomR(P*, M), P <8>R M) 

^ Homc(P ®R M, P®R M)^ E 

as left E-right S-bimodules. Thus EES gives a Morita equivalence of 
E and S and we conclude by [ 1, Theorem 3.5, p. 65] that S — 
End£(E) — E. Since this isomorphism is the canonical mapping 
and SF(M) is faithful [1, Theorem 3.5, p. 65], SP®RM= SF(M) has 
the DCP. 

(b) If RM is not faithful, let A = AnnR(M). Then the ideal A' of 
S corresponding to A under the lattice isomorphism of ideals of R and 
S is isomorphic to HomR(P, PA) and is the annihilator in S of SP ®R M 
[1, Theorem 3.5, p. 65]. Let R' = RIA and S' = SIA'. Clearly 
PIPA is a right R '-progenerator. Since PR is projective, the natural 
ring homomorphism from EndR(P) to EndR, (P/PA) via f—>f where 
f(p + PA) = j{p) + PA is surjective with kernel HomR(P, PA). It 
follows as noted above that S' — EndR.(P/PA) so that R' and S' 
are Morita equivalent via SPIPAR>. Since M is faithful over R', we 
may apply the first part of the proof to conclude that SP ®RM has 
the DCP provided we show that SP ® R M — S W ^ ®R' Af. But 
0 - * PA-^> P—» P/PA-»0 is an exact sequence of left S-right R-
bimodules, so tensoring with RM we have the exact sequence of left 
S-modules 

PA <8>R M ->P®RM -» P/PA <8>R M - • 0. 

Since the image of PA ®R M in P (8>R M is zero, this shows P <8>R M 
— PIPA <8>R M ^ P/PA <8>R, M as left S- modules. 

A ring R is called left QF-1 if every faithful left K-module has the 
DCP, while R is called balanced if every left R-module has the DCP. 
See [2] for further background on these types of rings. 

COROLLARY. Let R and S be Morita equivalent. 
(a) IfR is left ÇF-1, then S is left QF-1. 
(b) If Ris balanced, then S is balanced. 
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In particular, if S is a full n X n mutrie ring over R, then S is left 
QF-1 or balanced if and only if Ris. 
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