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REAL REPRESENTATIONS OF SPLIT 
METACYCLIC GROUPS 

LARRY C. GROVE 

The number of real absolutely irreducible representations of a 
rather special class of metacyclic groups was determined in [2]. The 
results of [2] are extended here to the class of all split metacyclic 
groups. This class includes, for example, all groups having every 
Sylow subgroup cyclic (see [1, p. 112] ). 

Suppose G is a split metacyclic group having cyclic subgroups 
A = {a) and B = <fc>, with A < G, AB = G, and A fi B = 1. Suppose 
\A\ — m, \B\ = s, and b~lab = ar, with 0 < r < m. Then (m, r) = 1 
and rs = 1 (mod m). We shall assume throughout that r > 1, for 
otherwise G is abelian. Denote by u the order of r modulo m, i.e., 
u is the least positive integer such that ru = 1 (mod m). Then w | s. 

If f G C is a primitive rath root of unity set <Pi(a) = f*. Then 
^ = {̂ o> ^i> * ' '» ^m-i} is the set of all irreducible complex charac
ters of A. It will be convenient to utilize a method due to Mackey 
(see [3] ) for constructing all the irreducible characters of G. Mackey's 
construction is given in the context of locally compact groups, but 
it is not difficult to verify his results directly for finite groups. 

Observe that B acts as a permutation group on A, via <pib(a) = 
<Pi(b~lab) = <Pi{ar) = £ir. For each (p{ G Â let us denote by cD* the 
B-orbit of (pi and by B* the stabilizer in B of <pi. Thus | Oi\ = \B : B{\, 
the index of B{ in B, for each i. If we set w* = | <Di\ it is easy to see that 
Ui is the least positive integer such that m | i(rui — 1), and that 
Ui | u. Furthermore B\ = (£>"•) and \B{\ = slui. 

If è G C is a primitive 5th root of unity then the irreducible charac
ters of B{ are given by {i/fy : 0 ^ j ' ^ i s/w* — 1}, where \jjij(bui) = 
&Ui. Define characters Xy of B*A by setting 

Xy.(fc»«%«) = ^(b^Ma«) = £"<#(* 

If one representative ^ is chosen from each orbit (Di? and if the result
ing characters Xy are induced up to characters of G, then the set 
{Xjj} of induced characters is the full set of inequivalent irreducible 
complex characters of G. 
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It will at times be typographically convenient in the following 
computations to write powers, both in G and in C, in the form x f y 
rather than xy. As an illustration observe that if a, ß, y, and 8 are 
arbitrary integers then 

(bya8)-l(bu<0a«)(bya8) = (b f u{ß)(a Î (S(l - r«*) + or*)). 

PROPOSITION 1. Suppose O ê i = m - l and a,/3 are integers. Then 

I/x G G\BiA then Xy (x) = 0. 

PROOF. By the observation preceding the proposition 

Xij((bya8)-lb»iPa<*(bya0)) = (€\uißj)(tU(8(l - r t t '*) + off)). 

Thus 
s - l m - 1 

x£(fo«.%«) = |BiA|-i 2 S (fî«*/8/)(CÎ<(8(l - f.*) + or?)) 
y=0 0=0 

= (f*i/*m)(f Tti#i3/) S « î « (1 - r -iß)) S (£ T iary). 
8 y 

Repeated application of the fact that iru* = i (mod m) shows that 
£ î iô(l - ru*) = 1 for all ß and 8, so that 2a(£ î iô(l - r«^)) = m. 
The set {1, r, r2, • • -, rs~1} is, modulo m, just the set {1, r, • • -, r u - 1 } 
with each element repeated slu times. Thus 

y=0 y=0 

and the formula above reduces to (uju)(€ tUißjj^y =o£'î ww*. 
Finally B*A < G, so r 1 ** $ B;A if x ^ B(A, and so X§(x) = 0. 

Set v(X?ù= ÌGl-^fcfjix^ixGG}. Then by the theorem of 
Frobenius and Schur [1, p. 21] X§ is the character of a representation 
over the real field R if and only if ^(X§) = 1. 

PROPOSITION 2. Suppose that either i = 0 or, if m is even, i = ra/2. 
Then u{ = 1 and X»j = X,j- is linear for all j . Also, (̂X»o) = 1 «nd if s 
is even then K%,*/2) = 1> &u* K^y) = Ofor all other values off 

PROOF. It is obvious that u0 = 1. If m is even then r is odd, so 
r — 1 is even, and m | (m/2)(r — 1). Thus i / ^ = 1. In both cases 
BiA = G so Xij is linear. Since the values of Xy- are roots of unity, 
v(Xij) = 1 if and only if X^bW)2 = £ î 2fxj = 1 for all /*. Taking 
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JJL = 1 we see that i>(X#) = 1 if and only if s | 2j. Since 0 ^ j ^ 5 - 1 
it follows that 7 = 0 or s is even and j = s/2. 

Suppose in general that 0 ̂  fji ^ s — 1 and O S X ^ m - 1. Then 
(foMflx)2 = ^2^(a | X ( ^ + !)) £ B.A if a n d only if u{ | 2p,. Thus (fo<^)2 

G B{A if and only if 

fi = pWj, 0 ^ p ^ (5/Mi) — 1, if Ui is odd, 

= pUi/2, O â p ^ (25/Wi) — 1, if Ui is even. 

THEOREM 1. Suppose u{ is odd but i / 0, i ^ ra/2. T/ißn 
Kxé = 0, allj. 

PROOF. By Proposition 1 and the observation above, 

slui-l m - 1 

KxS)=(m*) - ' 2 2 xS((fcp,V)2) 
p=0 X=0 

= (m*)-' E X^((foî2pUj)(«î^w + 1))) 

- (m»)"1 S («MÉtS«,» "S (C T i(f" + l)f>X) 

= (Win««) 2 (f Î2uijb) 2 (cî^"1" + i)'0')'-

As above, m | i(r pUi— 1), all p, and t(f*" + 1) = i(rpui — 1) + 2i, 
so m I i(rPtt<+ 1) if and only if ra | 2 i But that means i = 0 or i = 
ra/2, and those cases have been ruled out. Since (ra, r) = 1 it follows 
that £ f i ( r ^ + l ) r ^ l for all p and 7, and so ]£x(£ f i ( r ^ + l)r?)x 

= 0 by the formula for the sum of a geometric progression. As a 
result, v(xfj = 0. 

As a consequence of Theorem 1 the only real linear characters of 
G are those discussed in Proposition 2. Thus G has either 1, 2, or 4 
real linear characters depending on oddness or evenness of ra and s. 

THEOREM 2. If i ^ 0, ra/2 ^ ^ n *>(X#) = 1 if and only if j = 0, 
t*i is even, and ra | i(r"</2 + 1 ) . 

PROOF. Because of Theorem 1 we need only consider the case 
where Ui is even. By Proposition 1, 

vQUf) = (mS)-12{X§((Mp«i)(aÎA(r*«<«+ 1))): 

O S p g 2slUi - l , 0 S x g m - i } 

= (ujmsu) 2 (£ Î putj) 2 (i Î i(^u ' /2 + l)»°t-
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When p is even, say p = 2r), then 

i(rpui/2 + 1) = i(rvui + 1) = 2i (mod m) 

as in the proof of Theorem 1. But 2i ^ 0 (mod ra), so 

(J Î i(rpV2 + 1)^) / 1, 

and so 2 x (̂  T i(r^M*/2 -h l)r r)x = 0. Suppose then that p is odd, say 
p = 2T7 + 1. In that case 

j(rpu,/2 + l) = i ( rwrV2 + 1) = i(ru>l2+ 1) (mod m). 

Thus £ U(rpui'2 + l)r? = 1 if and only if m | i(r"./2 + 1). If 

m/i(ruti2+ 1) 

then 2x(£ î Kl****12 + l)ry)A = 0, as before, so suppose m \ i(r"</2 +1). 
Then 

KX?)= (W«u) S 2{(£ î (21, + l)Mij): O ^ i j ^ a / u j - l } 

Again we see that (̂Xy) = 0 unless £ f %Uij = 1, i.e., unless s | 2WJ/, 
or (s/w<)""| 2j. Since 0 S j ^ s/t/; — 1 we have (̂Xij) = 0 unless j = 0 
or 2/ = s/Ui. When j = 0 it is immediate that vfyfy = 1. If j = s/2wi? 

then^(X§)= ls /2 = - 1 . 

COROLLARY (OF THE PROOF). KX§) = ~~ 1 if and only if u{ is even, 
2j = slui, and m \ i(W2 + 1). 

The corollary describes the circumstances under which Xij is the 
character of a matrix representation T that is not similar to a real 
representation, although it is similar to its own complex conjugate T. 

For each even divisor 2v of u set dv = (ra, rv + 1), and let M„ be 
the set of divisors w of u that are maximal with respect to w < 2v. 
Thus w G Mu if and only if w | u, w < 2v, and w = w' whenever 
w' \u and tt> ̂  w' < 2v. Next set 

d ((,) = d 

4 ( 1 ) = S { ( ^ r - - l ) : u ; E M B } , 

4 ( 2 ) = 2 {(<*•» r(w,z) - l ) : w , z Ë M 0 , U ) / z}, 

and in general set 

^ ( fc ) = ^{(dv, r^wv ->"k) - 1) : Wi G M„,1^ 7̂  u^ ifi ^ j}. 

We agree that 4 ( f c ) = 0 if fc > \MV\. 
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THEOREM 3. The split metacyclic group G has exactly 

2 { ( 2 ü ) - ' 2 { ( - W > : f c = 0 , l , •••}:2v\u} 

distinct nonlinear absolutely irreducible representations over the 
real field R. 

PROOF. The proof is basically an application of the combinatorial 
principle of inclusion-exclusion. Suppose 2v \ u. Using Theorem 2, 
we wish to determine which i, 0=i=m— 1, satisfy Ui = 2v and 
also m | i(rv 4- 1). Observe that m \ i(rv + 1) if and only if 
(mldv) | i((rv 4- l)ldv), hence if and only if (mldv) | i, or i = 0, 
(mldv)y • • •, (dv — l)(mldv). These dv = dv

{0} values of i correspond 
to characters of real representations provided that u{ = 2v, so we 
must eliminate the values for which U{ ^ 2v, which means that 
U{ < 2v, since U{ is minimal such that m \i(rUi~ 1). Thus we must 
eliminate those i for which there is a divisor w of u, with w < 2v, 
such that m \i(rw — 1). Observe though that if z \ to and m \ i(rz — 1) 
then also m \ i(rw — 1), since rz — 1 | rw — 1. As a result, if certain 
values of i are eliminated by way of the elements w of Mv then there 
will be no further eliminations. 

Suppose then that i = k(mldv) and w E. Mv. Then 

m | k(mldv)(r
w - 1 ) 

if and only if dv | k(rw - 1), which is if and only if (dj(dv, rw - 1)) | k, 
or k = n(dj(dv, rw - 1)), O g n g (dv, rw - 1) - 1. Eliminating 
those (dv, rw — 1) values of i for each w EL Mv results in the portion 
4 ( 0 ) - d„(1) of the formula. 

The process is still too crude, however, for some values of i may 
have been eliminated more than once. If z, w E Mv, z ^ w, and if 
dv divides both k(rz — 1) and k(rw — 1), write (w, z) = coo + ßz, 
a,ß G Z . Modulo dv we may assume that a and ß are both positive. 
Then k(r^w^ - 1) = k(rW(Xrz^ - 1) = 0 (modd^), and we see that 
d„ | fc(r(M;'z) - 1) if and only if dv divides both k(rw - 1) and 
k(rz - 1). But dv | fc(r<«^ - 1) if and only if (dj(dv, r<">*> - 1)) | k, 
or k = nidJid», r^>z>> - 1)), O ^ n ^ (dm r<̂ >̂ - 1) - 1. Thus if we 
restore each value of i once for each pair of times it was eliminated, 
the formula grows to dv

{0) — dv
(l) + dv

(2\ 
The process continues, with analogous arguments at each step, 

yielding finally 

4 ( 0 ) - do(1) + 4 ( 2 ) - 4 ( 3 ) + • • • 

values of f for which U\ = 2f and m | i(ru + 1 ) . Since these values 
must be distributed among orbits of size 2v, the total number of 
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distinct real representations of degree 2v is 

(2«)->2{(-i)*dB(*):fc = o,i, • • •} . 
The theorem follows. 

COROLLARY. A split metacyclic group G ^ 1 has all its absolutely 
irreducible representations real if and only if G is a dihedral group 
Dm of order 2m. 

PROOF. If G is abelian it is immediate that G must be either cyclic 
of order 2 or Klein's four group, i.e., G = Di or G = D2. Assume 
then that G is not abelian, and suppose all representations are real. 
Then s is even by Theorem 1. The commutator subgroup G' of G 
has index s(m, r — 1), so G has s(m, r — 1) linear characters. Thus 

s(m, r — 1) = 2 if m is odd, 

= 4 if m is even, 

by Proposition 2 and Theorem 1. In the first case s = u = 2 and 
(ra, r — 1) = 1. In the second case s = u = (ra, r — 1) = 2. In either 
case the formula in Theorem 3 is just i((m> r + 1) — (ra, r + 1, r — 1)), 
which is thus the number of nonlinear irreducible characters of G. 
Each has degree 2, so equating the sum of the squares of their de
grees with \G\ — [G\G'] we have (ra, r 4- 1) — (ra, r + 1, r — 1) = 
m — (ra, r — 1). But (ra, r 4- 1, r — 1) = (m, r — 1) in either case, so 
m = (ra, r + 1), and m | r + 1. Since 1 < r < m we conclude that 
r = m — 1, and so G is dihedral. The converse is well known; it also 
follows easily from the criteria above. 

Let us illustrate Theorem 3 with two concrete examples. 
1. Suppose r = m — 1, as, for example, when G is dihedral. Then 

u = 2 since r2 — 1 = m2 — 2m, so s is even. We have Mi = {1}, 
di = (m, r + 1) = ra, and 

di{l) = (m, m — 2) = 1 if m is odd, 

= 2 if m is even. 

Thus the number of absolutely irreducible real representations is 
(ra — l)/2 + 2 if m is odd, (ra — 2)/2 4- 4 if ra is even. 

2. Suppose ra = p is an odd prime. Then u divides <p(p) = p — 1, 
and all U{ = u except that u0 = 1. If w is odd then only the principal 
character 1G is real if s is odd, and there is one additional real linear 
character if s is even, by Proposition 2. Suppose u = 2v is even. 
Then dv = (p, rv + 1) = p since p \r2v — 1 but p^ r ü — 1. For each 
w G Mv we have (d„, rw — 1) = 1 since p# rw — 1. If \MV\ = n 
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then dv
{l) = n= ("), dv

{2) = (2), et cetera, and the number of real 
absolutely irreducible representations of G is 
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