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SOME PROPERTIES OF PSEUDO-CONFORMAL IMAGES OF
REINHARDT CIRCULAR DOMAINS

STEFAN BERGMAN AND KYONG T. HAHNl

0. Introduction. A one-to-one mapping of a domain D of C2 by a
pair of analytic functions, say

(1) T = [a*= 2*(z1, 22), k= 1,2],

onto another domain D* is called a PCT (pseudo-conformal trans-
formation). In contrast to the case of simply connected domains in the
complex plane C, simply connected domains D in C? are as a rule
not homogeneous. It is of interest in the theory of PCT’s to determine
and investigate the “interior distinguished sets”; i.e., sets possessing
certain properties which in a PCT go over into sets having the same
properties. As indicated in the previous papers [B.3], [B.7], [B.8],
[B.9], [B.11], [B.12], the theory of the kernel function enables us to
determine certain (absolute) invariants Jp®“)(zy, z9; Z1, Z2) =Jp (3, Z),
z = (24, 2g), i.e., functions which in a PCT T of D onto D* go over into
functions Jp. (z*,2*%), 2* = (2;* 22*), »=1,2, - -+, which at the
corresponding points z* possess the same value as Jp® at z. There
are many different methods to determine invariants of D. There arises,
however, the problem of determining domains D, for which the in-
variant Jp® is constant throughout D. The second problem is to find
domains for which two different invariants, say Jp® and Jp®, v 74 ™
are linearly independent. In the present paper we investigate these
problems for Reinhardt circular domains R. (For simplicity sake we
assume that the center of R is the origin O.)

REMARK. A domain which admits the group z* = zei*,0 = <p = 7,
k=1, 2, of PCT’s onto itself (automorphisms) is called a circular
domain. See e.g., [B.-T., pp. 33-34]. A Reinhardt circular domain is
a circular domain which admits the (two-parameter) group z* =
e’ , 0 = ¢ = 27, of PCT’s onto itself.

Since Jg™ is an analytic function of z;, 22, Z1, Z2, we have a series
development of 1/Jg® at O in the form (9) of §1, see p. 426, and show
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that the coefficients Ef,"l,,’p are polynomials in Byo'and By, r+ s> 0,
r=0, s=0. The B, are geometric quantities of R, i.e., quantities
which can be computed if the domain R is given.

In §1 the above polynomials E\”,»(By) are determined for the
Reinhardt circular domains R. In this way we obtain a condition
which permits us to decide whether or not 1/Jg") is constant through-
out the domain R. This method is again applied to determine a
condition for R in order that two invariants, say Jg) and Jg®, are
linearly independent.

In case if 1/Jg" is not constant throughout the domain R, we
investigate in §2 the behavior of the hypersurfaces 1/Jg " = constant.
We consider three different cases. Since using the theory of the
kernel function one can determine the hypersurfaces 1/Jp® =
constant for a large class of domains D, we obtain in §2 a procedure
to determine in D the pseudo-conformal image t= T(O) of the
center O of R, provided that D is a pseudo-conformal image of R.
Once t = T(O), t = (t,, tp) is known, we determine the representative
domain R(D, t), see [B.8, p. 187 ff]. If D = T(R), then R(D,t) can
differ from a Reinhardt circular domain only by a linear (affine)
PCT, see (72), p. 191 of [B.8]; in this case R(D, t) must be a circular
domain.

Remagk. Circular domains obtained by linear PCT’s from Reinhardt
circular domains will be investigated in a future paper.

In §3 we discuss a special class of Reinhardt circular domains,
namely,

R, = [|z |2 + |z|2 < 1], p>0,p#1,

see [B.4] and [B.S8, p. 197], and show that any two invariants of
R, for each p > 0 are linearly dependent. Therefore, a domain of this
class has essentially one nontrivial (linearly independent) invariant.
It would be most interesting to construct a domain explicitly in which
there are two or more linearly independent invariants.

1. Conditions for the existence of nonconstant invariants in a
Reinhardt circular domain. As mentioned in the introduction the use
of the kernel function, among others, enables us to determine various
invariants, i.e., real or complex functions which preserves their values
in PCT’s.

The functions

(1a) U] (z,7) = K- det ( "zl%i),

02,0Z,
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mn=12v=12 ---,

see [B.6, p. 51 ff], [B.7] and §4, p. 182 ff. of [B.8], and the scalar
curvature

@ Jez)= 3 3 T"Rm, mn=12,
m,n

are examples of invariants. Here T™" are the contravariant com-
ponents of the metric tensor (T,,5) and R,.; are the components of the
Ricci curvature tensor, see [K.1] or [Y.B]. Investigating the question
when a domain can be mapped pseudo-conformally onto a Reinhardt
circular domain (or onto a general circular domain), it is useful to
consider the level hypersurfaces

3) 1/J¥(z,Z) = ¢ = const,

since various properties of (3) are preserved in a PCT. The set de-
fined by the relation (3) is as a rule three dimensional. However, it
can happen that for some values of ¢, (3) degenerates to a two-
dimensional set ora point set.?

RemMark. Here and in the following we formulate results for the
invariants 1/J*). Similar results are also valid for other invariants.

A simply connected domain D of C2 which possesses the property
that its boundary, dD, can be written in the form

(4) s(|z1], |z2]) = O,

where s is a real continuous function of two real variables,® is a
Reinhardt circular domain with the center at the origin. It will be
denoted by R.

ReEMaRk. R admits the group of automorphisms

(5) zk* = 2k exp[igok] , 0 § Dk = 271‘, k= ]., 2.

DeFiniTiON. A domain which can be obtained by a linear (affine)
PCT

(6) Zk* = Aklzl + Akzzz, det (Akv) }é 0, Akv = const, k= 1, 2,

from a Reinhardt circular domain will be denoted by R. The domains
R obtained in this way are circular domains.

2As one can show it is impossible that the above set is one dimensional.
3s has to satisfy some additional conditions. See, e.g., [B.T., pp. 33-34].
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It is at first of interest to decide for what circular domains, (1),
(2) or other invariants are constant in the whole domain. If this is
not the case, it is important to investigate the critical sets of (3) and
indicate the conditions when these sets degenerate (for some values
of c) to sets of lower dimension. The above properties of level hyper-
surfaces (3) are preserved under PCT’s. Since in the case of an
arbitrary (schlicht) bounded domain D, as a rule one can compute the
hypersurfaces (3), we obtain in this way a necessary condition in
order that D is a pseudo-conformal image of a circular domain. As
we shall show, using the same approach, one obtains also sufficient
conditions in order that D is pseudo-conformally equivalent to a
domain R.

Remark. A further class of domains which is of interest to investi-
gate is the class of domains which can be obtained from Reinhardt
circular domains by the PCT’s

* _ Axi13) + Axozg

Ax1Bre — AxeB 0, k=1,2,
Bklzl + Bk2z2) k1DPk2 k2 Pk1 % )

2
where Ay, and By, are constants.
It is important that in the case of Reinhardt circular domains one
obtains an answer to the above questions in terms of equation between
certain geometric quantities of the domain R. The “moments”

ID zlmzznlez2N d(l),
(7)

dw = volume element, m,n M,N=20,1,2, - -,

are examples of geometric quantities of D.
In the case of a Reinhardt circular domain, all the moments except

Bap= [ llrizlrde,
(8) R
(m,p) = (0,0),(1,0),(0,1),(2,0), - - -,
vanish. The invariants 1/Jg*(z,%Z), v= 1,2, * - -, of R admit in the

neighborhood of the center of R (which we choose as the origin O,
the development

9) 1Jr"(z, %)

||Ms

n
L 2 ExlnslaPe ol

Here E,ﬁ"_),,,p are polynomials in Bgo' and By, r+ >0, r=0,s=0

THeOREM 1.1. The necessary and sufficient condition in order tha
the invariant 1/Jg"(z, Z) is a constant is that all polynomials
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(10) EY ,,=EY,,B,), p=01--nn=L2"""
vanish. (Infinitely many conditions.)

We proceed now to the determination of E)" po(Brs), v=1,2,
for a Reinhardt circular domain R.
The kernel function Kg of R has the development

(1) K=K =3 Bulaillafr,  Bup= | J [ [1za2mlza2r do

at the origin. Here dw is the volume element, and 2 means the
summation over

(12) (m, p) = (0,0),(1,0),(0,1),(2,0), (1,1), (0, 2), - - .
The invariants 1/Jg* admit the developments

1
Jr"

=3 Emp a1z

at the origin.
To obtain a recurrence formula for 1/J**! in terms of the co-
efficients E,) , we first compute det (7% ), T® = 8%(1/J®)/d2,,0%:

mn

Ti=3 3 m?Em [afm D,

n=1 m+p=n

(13) T = 212, 2 > mpE |z [20m—1)|zg [2P =1,

=1 m+p=n

Tig=3 X p? Em 2]z 0.

n=1 m+p=n
Hence,

de (T(V)) =

mn

(14) !

'ﬁMs

1 m+p=q r+s=n
ms(ms — pr) X E§">n EY |21 [2m+7= D)z, |20 +s=1),

From this the coefficients of det (T(‘ )) can be written down explicitly.
For example, if we write

(15) det (T))) = 2 P Jz1|2]z2 |2,

k,l=0
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then
k+1
Pl(<'8 = 2 m? Ef(’;l)o Ek —-m+1,1
m=1
1+1
(16) P = 3 B Ef . E,
p=1
( k+l+1
P = Y ml+1—p[ml+1)—pk+ DEVEnir i—ps1.
m+p=1

Further, a formal computation shows that the coefficients of
(17) K-'= 2 Dipplzi 2™ |22]27

are given by

(18) Dyy = BO_O1 "ip (— 1)"2 [lij[ .!’ ] :

k=0 =

Here the second summation runs over all possible combinations of
nonnegative integers for which

k k
(19) 2 =m, Epi=p, mi'f‘pigl
izl i=1

hold.
A formal computation yields for the coefficients E,) and EZ2
the expressions

_ Wiy r
(20) S 1 Boo X2 Dk22 H By,

In the case of Em,,, 2 | means the summatlon is taken from q =
to ¢ =3+ m+ p, and in the case of E from ¢ =7 to q—9+
m + p. 22 means the summation over nonnegatlve 1ntegers k;, 1 4
such that

S k=m+1 YlL=p+1,
j=1

i=1
0<k+lL=m+p+1,j=12---,rr=q-—1

for E,i,l,,’ , and



TabLg 1*
Expression for E,,, in terms of By,

E(l) E(“ E(l) E(]l

m4+p+3
q( 23 ) 3 3 4 3 4

Ut
)
5N
Ut

DY | 1| Di} | 1Dy |—4| DVs | 1 | Disz [F19|D{\s| 10 | D35 |16 | Dggs [-16|Dy1os |19

S, Dy | 4 D3\ | 4| DI\l |4 D2 | 4 |DY2|-16
17 kg-1
Dy | 9 Dg; | 4 | Diotl |—9
D}l |-1

Note. The terms of Eg,’ and Eg,’ can be found from the terms of E[}’ and E;)). respectively, with B,,, replaced by B,n

Example: E(J(l)o B10Bo, By, . ) 1 ‘ .
) (BIOBII + 4301320)300 4BTOBOIB(;0 s E(;l)z (BOIBll + 4310302)36")} - 436131()B6()‘ 5 etc.

*Tables of Ep(By), ¥ = 1, 2, for a small number of n have been published in a mimeographed report by S. Bergman,
“Interior distinguished points in the theory of functions of two complex variables” at Stanford University in collaboration
with K. T. Hahn. It should be noted that some numerical errors occur in the previous tables and that the figures in the
present tables are correct.
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jikj=m+3, Si=p+3,
=1

i=1
0<k +lL=m+p+2 j=12 - rr=q—3,

for E,(,,Q,,), D;'f -k, are integers for which one can obtain recurrence
formulas. The values of the coefficients D o ',f, Ik, for E,) and
E\2) are found in Tables 1 and 2.

The method applied can also be used to determine conditions for
R in order that any two invariants Jg*’ are linearly independent. As
an example we derive a condition that J") and Jg® are independent.
The necessary and sufficient condition in order that 1/Jzg", v = 1,2,
are linearly independent is that

(1 Ja™, 1/Jg®
(21) DU = —(——/{;L)T/z]");éo px= |l k= 1,2

Using (9) we obtain the series development for D:2) at O,

hd n
D,2) = 2 2 . pppln P poP,

where H." %,),, are polynomlals in Boo' and B,, r+s>0, s=0,
r= 0. We obtain for Hoo ain expression (20). Here 21 means
summation from q = 10 to 13, 2 means summation over nonnegative
integers k;, [; such that

k=5 XL=5 0<k+[=3 j=L2 - nr=q—4
< ~

Iy ly-
The values of the coefficients Dy, .‘kf!_: are found in Table 3.

Turorem 1.2. Let R be a Reinhardt circular domain. Hig™ # 0
is a sufficient condition in order that Jg'V and Jg® are linearly
independent.

2. The class of domains which are pseudo-conformally equivalent
to a Reinhardt circular domain. By the PCT

(1) =z —a, k=12,

where ax are conveniently chosen constants, a Reinhardt circular
domain with the center at an arbitrary point P = (ay, aq), |a;|?> +
lag|?2 > 0, is transformed into a Reinhardt circular domain with a
center at the origin O. Assume that Jz) is not constant. The following
three cases are possible:



TaBLE 3
Expression for Hyy* in terms of B,

a(3)

10 11 12 13

10
Ditoiis Diiooir 32| Dliaeost 16 | Diliooc00z 128
Dot — 4 | Dooottiz | = 32 | Dooinitor | — 16 | Doconinito | —128
Dio105 32 | Ditloiio 72| Ditoooos 64
Dooiizt = 32 | Dootniz | = 72 | Docorinii | — 64
Doooi15 36 | Diiooozr 128 | D000 576

Wly - ly—a

S0, 5, |pis |- s | pems | -1 | D | st

Docozor 64 | Dooooaz 272 | DiMiiodo 704
Di1166 — 64 | Dilltoor | — 272 | Doodoorzz | —704
Di'3166 2% | DiTiioio 288
Diooiz2 —256 | Doocons | — 288
Didoios 288 | Ditioozo 1152
Doi120 —288 | Dooonnos | —1152
D066 576 | Diooosa 1280
Dbo7230 —576 | Doltioor | —1280
Doaaiil 16
Ditiii - 16

Example: H
x Bog' + -

(1,2) _

00

= (4B1oB;B/B; — 4Bo\ByB)B)s +

te ')Bo_om + (323{}03621311312 - 323(:)313120311321 +

(354

NHVH "L Y ANV NVINOUAd NVJILS
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(2a) : I, « EY-EY >0,
(2b) II, : E\y-ES) <0,
(2¢) I, : EY)-Ey) =

In the case of a Reinhardt circular domain of type I, ie., if there
exists Jg "z, Z) satisfying (2a), the level hypersurface

@) UJa® = Egy

has a critical point (maximum or minimum point) at the origin. There-
fore, if D is a pseudo-conformal image of R, then the image of O is
a critical point (maximum or minimum) of one of the level hyper-
surfaces:

(4) 1/Jp"(z,Z) = ¢ = const
in D.

Lemma 2.1. The level hypersurface (3) of a Reinhardt circular
domain R can degenerate to a point only at the origin O (the center

of R).

Proor. Let P be the image of the Reinhardt circular domain in
the p;, po-space, px = |z[|? see Fig. 2.1. To the level hypersurfaces
(3) correspond in P the lines

(5) LJp"p1, p2) = c.

Suppose that one level line of (5) for ¢ = ¢, degenerates to a point,
say po. If po = (219, 229) is such that [z,°2 + [2,°]> > 0, then either
[z,°] > 0, |z2°| > 0, or at least one of the above inequalities holds.
If both inequalities hold, then to py corresponds a torus in R. If
[z = 0, |z5_,| >0, » =1 or 2, then to po corresponds in R a circle
which lies in z,= 0. Thus (3) degenerates to a point if and only
if po is the origin (p,, p2) = (0, 0) (the center of R).
Consequently it holds:

Tueorem 2.1a. Let D be a domain in C? which possesses a kernel
function. The necessary condition in order that the domain D is a
pseudo-conformal image of a Reinhardt circular domain Ry, of the
type 1, is that a level hypersurface (4) for a conveniently chosen value
of ¢ or a segment of (4) degenerates to a point, say t = (t1, t;). The
point t is the image of the center of Ry,.

Tueorem 2.1b. If D is a pseudo-conformal image of Ry, then there
exists a point t, described in Theorem 2.1a, and the representative
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R(D,t)= R is a_domain which one can obtain from Ry by a linear
transformation; R is a circular domain.

The proof of Theorem 2.1b follows from the first theorem on p. 189
and the second theorem on p. 190 of [B.8]. Indeed, if B*, see the
second theorem on p. 190, is a Reinhardt circular domain R;, with
the center at t= t* then R(Ry,t)= R, and R(D,t)= R can be
obtained from Ry, by a linear PCT (see Lemma 2.3).

/'S
o
_\\
\\
\\
N\
[ ) \\
Po
Py
- - S
l
. 2
Domain P, K ]zkl
Ficure 2.1

The case 11,. Let D be a pseudo-conformal image of a Reinhardt
circular domain R such that the coefficients of the development (9)
of §1 satisfy condition (2b). (If the development (9) of §1 satisfies
(2b), then R will be denoted by Ryy,.) In this case a three-dimensional
hypersurface (4) (with ¢ = Esy) passes through the center O of Ry,
If in addition to the invariant J® a closed distinguished line, say q!,
lying on the distinguished hypersurface (3) is known, then we can
determine in D the location of the image of the center O of Ry,

The domain Ry, admits the group of automorphisms (5) of §lI.
Therefore, if the point, say [, | 74 O, lying on the hypersurface (3) is a
distinguished point, then a closed curve c¢!lying on (3) is a distinguished
line. Let = (1,%0LY), L 74 0, k=1, 2, then the torus T2=
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[z = U expligi], k= 1,2] is a distinguished surface. The inter-
section of (3) with T2 is a closed curve c.

Lemma 2.2. Suppose that around each point of c' an invariant
sphere of radius p" is drawn. Then all these spheres have a point of
intersection at the center of Ry.

If we draw hyperspheres H,* with the centers along ¢! and of
(noneuclidean) radius p, p < p° then there does not exist a point
which belongs to all H,% For p = p° one point, the center of Ry,
will be the common point of intersection of all H3 .

If p > p", then a four-dimensional domain will be the intersection
of all H}.

Consequently it holds:

Tueorem 2.2. Let D be a pseudo-conformal image of a Reinhardt
circular domain Ry,. Then through the zmage of the origin passes a
dzstzngmshed hypersmface H3 = [1/Ja) = E¢y]. Suppose that h!
is a closed distinguished line lying on H3, If we draw around every
point p of h! an invariant hypersphere H* of radius p, then for a
sufficiently small p the intersection of all H* will be empty. If p
increases continuously, then there exists a value of p, say p = p°,
so that all H* intersect at one point, say t. For p > p°, the intersection
of all H* is a four-dimensional set. Then t = T(O), i.e., t is the image
of the center O of Ry,

LemMma 2.3. A circular domain C with the center at the origin O
is mapped by a linear PCT (6) of §1 onto a circular domain C* with
the same center at O.

Proor. C admits the group of automorphisms:
2k=zke"“’, O§¢§27T, k=1,2

Let C* = T(C),where T is the PCT (6) of §1. Let (z,*, 2,*) = T(z,, 25)
be a point in C*. Then

2™ = Azl + Apgze = (AnZ) + AweZo)e v = Z¥e ¥
Therefore, C* admits the group
Z* = zteir, 0=¢p=2r, k=1,2,
of PCT onto itself.

LemMma 2.4. Suppose D is a pseudo-conformal image of a Reinhardt
circular domain with the image of the center at t,t € D. Then R(D, t)
is a circular domain with the center at t.
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Proor. By [B.8, p. 190 ff.], the domain R(D, t) can be obtained from
a Reinhardt circular domain by a linear transformation. By Lemma
2.3 R(D, t) must be a circular domain.

ReEMARK. Suppose that an invariant, say f: is known, such that |,

/7@
D

then the intersection of (5) with f(p,, ps) = ¢ = const for a convenient-
ly chosen value of ¢ will be a point (p,% p2”), pi’ 74 0, yielding a
torus T2 in the z,, zo-space. The intersection of this torus with H3 is
the line h! considered in Theorem 2.2.

If one of the pi, k = 1, 2, vanishes, then the image of (p,’, p2")
in the 2, zp-space is a curve which we can use as the curve h! in
Theorem 2.2.

If the intersection

(7) [1]Yz2) = 1] N[J(z32) = ca]

is a torus T2, then in Theorem 2.2 we can use T2 instead of h1,

In the case III, we consider the following two subcases: (a) R
possesses a distinguished set s passing through O and admits a group
of automorphisms transforming an arbitrary point of s into the origin
O. Then an arbitrary point of T(s) can be used as the image of O in
D = T(R). (b) R does not admit the group of automorphisms indicated
in (a).

Assuming that a second invariant J (linearly independent of 1/J*)
is known in both cases (a) and (b), we can proceed as in the case II,.
An example of a Reinhardt circular domain Ryy;, possessing an interior
distinguished surface s = 52 is considered in [B.8, p. 197 ff.].

(6)

e = |23

3. An example of a domain Ryy; In the cases I, and 11, we obtained
the series developments for the mvariants around the center O. This
permits us to determine the behavior of the invariant hypersurfaces
J® = const in the neighborhood of the center O.

It is of interest that for a class of domains, namely for

(1) R,= [la|?" + [%2< 1, p>0, p#1],

one can obtain for the kernel function (and consequently for most of
the quantities connected with the invariant metric) expressions which
are rational functions of z;, z, and %, Z, (see [B.4]). These results
represent a useful illustration of our considerations. Further we show
that any two invariants are linearly dependent for the Reinhardt
circular domains R,,
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In [B.4] and [B.11, p. 34], the kernel function K, = Kg, and the
invariant 1/J,(1’ are computed. We have for R,

@) K, = K, = (1 — [2|?)~2DIr*C?,
(3) U= 1J,W = 9r¥D* — k2CHRDY, k2= (p> — 1)I3,

where
(4) C=(Q10— ]z’ —|z% D= (p+ 1)1 — 2>+ (p — Dlz[~

A formal computation shows that the scalar curvature for R, is
given by the rational function:
4k2C4D* — 3CD? — 6kC2D? — kC>D — 3k2C*)
3(D? — kC2)(D? + kC2)3 '

G h=-1+

It is interesting to observe that the scalar curvature f,, assumes the
maximum value, f, = —1, on the boundary 4R, and the minimum
value, J, = —1 — p(p — 1)%2(p + 2)(2p + 1) on the plane z, = 0.

LemMma 3.1. The domain functions
(6a) Xp(2,2) = |21 A1 — |2[?)",
(6b> Yp(z’ 2) = D(z) 2)/C(z7 Z),

where C(z,%) and D(z,%) are given in (4), define (pseudo-conformal)
invariants of Ry, which are linearly dependent.

Proor. From (3),
T = 20, 49m(Y, 0 = k) or Yt = KON, 2f9m?)

Since J,(z,z) > 2/972 on R,, Y, is a well-defined invariant of
R,. From the relation

(7) Xp=Yp— (p+ DY, + (p— 1))

and the inequality p + 1 = Y, < =, it follows that X,, is also a well-
defined invariant of R,. Clearly, X and Y, are hnearly dependent.
By (5) and (6b), f, can be expressed in terms of Y, by well-defined

rational function. Therefore, we have

CoroLLARY. Any two of the invariants X,, Y,, 1/],'V and J, are
linearly dependent in R,

Let 7 : R,— Q,2 C R? be the projection map given by m(z), z5) =
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(1 p2), = [2k[* k= 1,2,and Y : Q> — [p + 1, @) by

(1 —po)” + py

(L=p)»—p1~

where Q,2= {(p;,p2): (1 — p3)” > p,;} C R2 Then under the com-
posite map Y -7 : R,— [p + 1, @), the points on the plane z; =0

correspond to the point Y =p + 1 and the boundary points of R,
correspondto Y = o,

(8) Y(pr,p2) =1+ p

Lemma 3.2. For p, 74 P2, P1, p2 > 0, two domains R,, and Rp,
cannot be mapped onto each other by a PCT.

Proor. Suppose that there is a PCT, wi = wi(zy,22), k= 1,2,
from R, onto Rp, and that p; > p,. Let wi(0,0) = wy". Since
Y5, (0,0) =p; +1 and Y, is an invariant, Y,,(w;% w") = p; + 1.
But Y, (w,°% wy°%) = p, + 1 which leads to p; = py.

LemMma 33. Let J,(2,%Z) be any pseudo-conformal invariant of
R,. If ], depends linearly on X, z € R, then all level hypersurfaces
of ], are given by the equation:

9) 21> = t(1 = [2[>)",  t€E€[0,1).

Proor. If J, depends linearly on X, then it can be expressed by
X, in the form of an (real) analytic function. Therefore, the totality of
level hypersurfaces of one invariant coincide with the totality of level
hypersurfaces of the other. Hence, all the level hypersurfaces of
J» are given by the level hypersurfaces X, = t, t € [0, 1), which proves
the lemma.

We note that any two distinct level hypersurfaces of a pseudo-
conformal invariant of R, which depends linearly on X, cannot be
mapped onto each other by a holomorphic automorphism.

Lemma 3.4. The domain R, admits a group G, of holomorphic
automorphisms:

1= )2 9P .
= - = 0
wy [ (1 = toza) ] zyexp[if,],
(10) 6,, 6; € [0,27],(0,t;) € R,.
= P~ b 0
wp= explifs],

See [B.8, p. 197]. Conversely, all holomorphic automorphisms of R,
are given in the form (10).
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Proor. The first part of the lemma follows by the same method
used in [B.8]. To prove the converse, we let g be any holomorphic
automorphism of R,. By the previous remark, two points z and gz
must lie on the same level hypersurface of X,. Since G, acts transi-
tively on each level hypersurface, there must be an element of G,
which is identical to g. So g € G, is of the form (10).

It is clear that G, contains the structural group T, of a Reinhardt
domain as a subgroup. An element of T}, is given by

t(z), 22) = (2 exp[i 6], 2o exp[i 6] ).

The orbit of z° € R,, Or(z") = {(z)"exp[i 6], 2" exp[ify]):0=
0,, 6, = 27} with respect to T, forms a two-dimensional torus if
219# 0, 2,°# 0. For z°= (0,2 with z,°# 0 or (z°0) with
20 # 0, Or(z% is a circle. Or(z") = z° if and only if z° = (0,0).
Since G, acts transitively on each level hypersurface of X,, and any
two distinct level hypersurfaces cannot be mapped onto each other
by an element of G, the orbit O¢(z°) of 2° € R, with respect to G,
coincides with the level hypersurface of X, passing through z° In
particular, if z° lies on z; = 0 then O¢(z") is two dimensional and
O¢(2°) = O¢(O). Thus, we have

LemMma 3.5. On R, the orbit Og(z") of a point z° = (z,°, 2.°) with
respect to G, forms a three-dimensional hypersurface if z,° # 0,
and a two-dimensional analytic surface if z,° = 0. Furthermore, such
orbits coincide with level hypersurfaces of X,

Tueorem 3.1. On R, any two pseudo-conformal invariants J,V
and [, are linearly dependent.

Proor. First we note that an invariant of R, cannot take a constant
value on a four-dimensional set of R,, unless it reduces to a constant.
On the other hand, an invariant must take a constant value on each
orbit and hence its level hypersurfaces are of dimension two or three.
It is therefore clear that the totality of the level hypersurfaces of the
invariant J,!) includes all the orbits of R, with respect to G,.
Conversely, for any level hypersurface of J,(!) there exists exactly one
orbit to which the level hypersurface coincides. In fact, let 2° be a
point on the level hypersurface, ie., J,((z,2) = c = J,1)(z° z9).
Since R, = U, e #,0c(?), there exists exactly one orbit which passes
through z° Since Oc(z") is homogeneous, J,(1(2,Z) = ¢ for all
z € Og(z"). Suppose that there exists a point Z on the level hypersurface
such that Z €0¢(z%). Then again there exists another orbit Og(z)
on which J,(z,%z) = J,\'(%,Z) = c¢. Since two orbits are either
identical or disjoint, the level hypersurface J,(z,%) = ¢ consists of
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two disjoint orbits, which is impossible. Thus, by Lemma 3.5 the
totality of level hypersurfaces of J,' and X, coincide. The same
holds for J,,® and X,. This completes the proof.
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