CONVOLUTION IN $K\{M_p\}$ SPACES

CHARLES SWARTZ

In this note we establish a characterization of convolution operators on certain $K\{M_p\}$ spaces. In particular our results contain the characterization of the space \mathcal{O}_c' of L. Schwartz [5, Chapter VII, §5, Theorem IX] and the characterization of convolutes on the space of distributions of exponential order as given in [3], [6] and [7]. We also obtain a characterization of convolutes on the $W_{M,a}$ spaces introduced by Gelfand and Shilov [2].

Throughout this note we use the terminology and notation of [1]. We recall the definition of $K\{M_p\}$ spaces. Let $\{M_p\}$ be a sequence of real-valued continuous functions defined on \mathbb{R}^n which satisfy $1 \leq M_1(x) \leq M_2(x) \leq \cdots$ for all $x \in \mathbb{R}^n$. (In [1, Chapter II, 1.2], a slightly more general definition is given.) The space $K\{M_p\}$ consists of all infinitely differentiable functions ϕ such that $M_p D^{\phi}$ is bounded for every positive integer p and $|\alpha| \leq p$. The vector space $K\{M_p\}$ is then given a locally convex Hausdorff topology by means of the norms

 $\|\phi\|_p = \sup \{M_p(x)|D^{\alpha}\phi(x)| : x \in \mathbb{R}^n, |\alpha| \leq p\}$ $(p = 1, 2, \cdots).$

We will only consider $K\{M_p\}$ spaces which satisfy the conditions (M) and (N) as introduced in [1, Chapter II, 4.2]. The sequence $\{M_p\}$ satisfies conditions (M) or (N) if:

(M) the functions M_p are quasi-monotonic in each coordinate, i.e., if $x_j' x_j'' \ge 0$ and $|x_j'| \le |x_j''|$ then $M_p(x_1, \dots, x_j', \dots, x_n) \le M_p(x_1, \dots, x_j'', \dots, x_n)$ for each fixed point $(x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$,

(N) for each p there is p' > p such that the ratio $M_p(x)/M_{p'}(x) = m_{pp'}(x)$ tends to zero as $|x| \to \infty$ and is a summable function on \mathbb{R}^n .

In [1, Chapter II, 4.2], it is shown that if $\{M_p\}$ satisfies conditions (M) and (N), then the norms $\|\phi\|'_p = \sup \{\int M_p(x) |D^{\alpha}\phi(x)| dx: |\alpha| \leq p\}$ $(p = 1, 2, \cdots)$ generate the same locally convex topology as the sequence of norms $\{\|\|_p: p \geq 1\}$. (Throughout we write $\int f$ to denote the integral of f over all \mathbb{R}^n .)

The $K\{M_p\}$ spaces which we will consider will satisfy an additional condition. The $\{M_p\}$ are said to satisfy the factorization condition (F) if:

Copyright © 1972 Rocky Mountain Mathematics Consortium

Received by the editors July 10, 1970 and, in revised form, December 7, 1970. AMS 1970 subject classifications. Primary 46F10, 46F05.

(F) each M_p is symmetric, i.e., $M_p(x) = M_p(-x)$ and for each p there is a p' > p and $C_{p'} > 0$ such that $M_p(x + h) \leq C_{p'}M_{p'}(x)M_{p'}(h)$, for all $x, h \in \mathbb{R}^n$.

EXAMPLES. 1. If $M_p(x) = (1 + |x|^2)^p$, i.e., if $K\{M_p\} = \mathcal{S}$, then $\{M_p\}$ satisfies condition (F) since the inequality $(1 + |x + h|^2) \leq 2(1 + |x|^2)(1 + |h|^2)$ holds [4, Chapter 4, §11, Lemma 1].

2. If $M_p(x) = \exp(p\gamma(x))$, where $\gamma(x) = (1 + |x|^2)^{1/2}$, the condition (F) is satisfied since $\gamma(x+h) \leq \gamma(x) + \gamma(h)$ [6]. In this case $K\{M_p\}'$ is the space H of distributions of exponential order of [3].

3. The $W_{M,a}$ spaces of Gelfand and Shilov are also $K\{M_p\}$ spaces satisfying condition (F). Here $M_p(x) = \exp(M(a(1-1/p)x)))$, where $M(X) = \int_0^x \mu$ with μ an increasing function such that $\mu(0) = 0$, $\mu(\infty) = \infty$. For each M_p the inequality $M_p(x + h) \leq M_p(x)M_p(h)$ holds since M is a convex function (see [2, Chapter I, 1.1]).

We now consider translation on $K\{M_p\}$ spaces. If $\phi \in K\{M_p\}$ and $h \in \mathbb{R}^n$, the translate of ϕ by h is denoted by $\tau_h \phi$ or $\tau_h \phi(x) = \phi(x + h)$. If $\{M_p\}$ satisfies conditions (M), (N) and (F), we have the following result.

LEMMA 1. Let $\{M_p\}$ satisfy (M), (N), and (F). Then

(i) for each $h \in \mathbb{R}^n$ the function $\phi \to \tau_h \phi$ is continuous from $K\{M_p\}$ to $K\{M_p\}$,

(ii) if B is a bounded subset of $K\{M_p\}$ and $\epsilon > 0$, the set $\{\tau_h \phi : |h| \leq \epsilon, \phi \in B\}$ is also bounded in $K\{M_p\}$.

PROOF. For $\phi \in K\{M_p\}$ and $h \in \mathbb{R}^n$,

(1)
$$\int M_p(x) |D^{\alpha} \tau_h \phi(x)| dx = \int M_p(t-h) |D^{\alpha} \phi(t)| dt$$
$$\leq C_{p'} M_{p'}(h) \int M_{p'}(t) |D^{\alpha} \phi(t)| dt.$$

From (1), we obtain

(2)
$$\|\boldsymbol{\tau}_{\boldsymbol{h}}\boldsymbol{\phi}\|_{\boldsymbol{p}}' \leq C_{\boldsymbol{p}'}M_{\boldsymbol{p}'}(\boldsymbol{h})\|\boldsymbol{\phi}\|_{\boldsymbol{p}'}'$$

so that (i) follows. Also since M_p is continuous on \mathbb{R}^n , (ii) follows from (2).

REMARK. It follows from this lemma that translation is a continuous operation on $W_{M,a}$ spaces since conditions (M), (N) and (F) are satisfied for these spaces. In particular the result of [1, Chapter IV, 4.3, p. 191] follows from the lemma.

The results of Lemma 1 are the conditions set forth in [1, Chapter III, 3.1] for $K\{M_p\}$ to have a continuous translation and since differentiation is also continuous on $K\{M_p\}$, the condition of the lemma in [1, Chapter III, 3.3] are satisfied and we obtain

COROLLARY 2. If $\{M_p\}$ satisfies (M), (N) and (F), then translation on $K\{M_p\}$ is differentiable (in the sense of [1, Chapter III, 3.3]).

PROOF. Just note that $K\{M_p\}$ is "perfect" since $\{M_p\}$ satisfies condition (N) and therefore condition (P) [1, Chapter II, 2.3].

We use the definition of "convolute" given in [1, Chapter III, 3.2]. A generalized function $T \in K\{M_p\}'$ is said to be a convolute if for each $\phi \in K\{M_p\}$ the function $T * \phi : h \to \langle T, \tau_h \phi \rangle$ is in $K\{M_p\}$ and the map $\phi \to T * \phi$ is continuous from $K\{M_p\}$ into $K\{M_p\}$. If T is a convolute and $S \in K\{M_p\}'$, the convolution of T and S is given by $\langle S * T, \phi \rangle = \langle S, T * \phi \rangle$. From the definition of convolute, S * T is in $K\{M_p\}'$ for each S in $K\{M_p\}'$.

We now give a characterization of the convolutes on $K\{M_p\}$ spaces which satisfy conditions (M), (N) and (F). In particular our result applies to the spaces in Examples 1-3. We thus obtain the characterization of \mathcal{O}_c' given by L. Schwartz [5, Chapter VII, §5, Theorem IX] and the characterization of \mathcal{P}_M' given by Yoshinaga [6, Proposition 11], and the characterization of $\mathcal{O}_c'(\mathcal{H}_1')$ in [7]. The result also gives a characterization of convolutes on $W_{M,a}$ spaces.

THEOREM 3. Let $\{M_p\}$ satisfy conditions (M), (N) and (F). The following are equivalent for $T \in K\{M_p\}'$:

(a) T is a convolute,

(b) for each $\phi \in \mathcal{D}$, $T * \phi \in K\{M_p\}$,

(c) for each positive integer p, $\{M_p(h)\tau_{-h}T: h \in \mathbb{R}^n\}$ is strongly bounded in \mathcal{D}' ,

(d) for each positive integer k, $T = \sum_{|\alpha| \leq n_k} D^{\alpha} f_{\alpha}$, where each $M_k f_{\alpha}$ is a continuous, bounded function on \mathbb{R}^n .

PROOF. (a) implies (b): this follows by the definition of a convolute since $\mathfrak{D} \subseteq K\{M_p\}$.

(b) implies (c): First note that $\mathfrak{D} \subseteq K\{M_p\}$, with \mathfrak{D} dense in $K\{M_p\}$ [1, Chapter II, 2.5] and the injection of \mathfrak{D} into $K\{M_p\}$ continuous with respect to the usual topology of \mathfrak{D} . Thus $T \in K\{M_p\}'$ can be identified with a distribution and the statement in part (c) is meaningful. Now if $T * \phi \in K\{M_p\}$ for $\phi \in \mathfrak{D}$,

$$\sup \{M_p(h)|T * \phi(h)| : h \in \mathbb{R}^n\}$$

= sup {|\langle M_p(h)\tau_{-h}T, \phi\rangle| : h \in \mathbf{R}^n} < \infty

so that $\{M_p(h)\tau_{-h}T: h \in \mathbb{R}^n\}$ is weakly bounded in \mathcal{D}' and is therefore strongly bounded in \mathcal{D}' since \mathcal{D} is a barrelled space.

(c) implies (d): Since $\{M_p(h)\tau_{-h}T:h\in \mathbb{R}^n\}$ is bounded in \mathfrak{D}' , there is a compact neighborhood K of \mathcal{O} in \mathbb{R}^n and a positive integer m such that if $\psi \in \mathfrak{D}_K^m$, the family of continuous maps

CHARLES SWARTZ

 $\{(M_p(h)\tau_{-h}T) * \psi : h \in \mathbb{R}^n\}$ is bounded on K [5, Chapter VI, §7, Theorem XXII]. The elementary solution E of Δ^N is *m*-times continuously differentiable for large N so if we take $\gamma \in \mathcal{D}_K$ such that γ is equal to 1 on a neighborhood of the origin, then $\gamma E \in \mathcal{D}_K^m$ and $\delta = \Delta^N(\gamma E) - \phi$ where $\phi \in \mathcal{D}$. Then

(3)
$$T = T * \delta = \Delta^{N}(T * \gamma E) - T * \phi.$$

Since $T \in \mathfrak{D}'$ and $\phi \in \mathfrak{D}$, $T * \phi \in \mathcal{E}$ and the hypothesis in (c) gives sup $\{M_p(h)|T * \phi(h)|: h \in \mathbb{R}^n\} < \infty$ so that the function $M_p(T * \phi)$ is bounded. Since $\gamma E \in \mathfrak{D}_K^m$ the family of continuous functions $\{M_p(h)\tau_{-h}T * \gamma E: h \in \mathbb{R}^n\}$ is bounded on K so in particular the function $T * \gamma E$ is continuous and sup $\{M_p(h)|T * \gamma E(h)|: h \in \mathbb{R}^n\}$ $< \infty$ since $0 \in K$. Therefore, $M_p(T * \gamma E)$ is a bounded continuous function and formula (3) gives the representation in part (d).

(d) implies (a): By Corollary 2 $\overline{K}\{M_p\}$ has a differentiable translation so for each $\phi \in K\{M_p\}$ the function $\psi : h \to \langle T, \tau_h \phi \rangle$ is in $C^{\infty}(\mathbb{R}^n)$ [1, Chapter III, 3.3] and $D^{\alpha}\psi = \langle T, \tau_h D^{\alpha}\phi \rangle$. Let p be a positive integer and $|\alpha| \leq p$. Choose q = p' as in condition (F) and then choose r = q' as in condition (N). We then have

$$\begin{split} \int M_p(h) |D^{\alpha}\psi(h)| dh &= \int M_p(h) |\langle T, \tau_h D^{\alpha}\phi \rangle| dh \\ & \leq \int M_p(h) \sum_{|\beta| \leq n_r} \int |f_\beta(x)| D^{\alpha+\beta}\phi(x+h)| dx dh \\ & = \sum_{|\beta| \leq n_r} \int |f_\beta(x)| \int M_p(u-x)| D^{\alpha+\beta}\phi(u)| du dx \\ & \leq C_q \sum_{|\beta| \leq n_r} \int |f_\beta(x)| M_q(x) dx \int M_q(u)| D^{\alpha+\beta}\phi(u)| du dx \end{split}$$

where we apply (d) to the integer r. Note that $\int |f_{\beta}|M_q < \infty$ since $|f_{\beta}|M_q \leq |f_{\beta}|M_r m_{qr}$, $|f_{\beta}|M_r$ is bounded, and m_{qr} is summable on R^n . Also $\int M_q |D^{\alpha+\beta}\phi| \leq ||\phi||'_{q+n}$, so from (4) there is a constant L not depending on ϕ such that $||\psi||'_p \leq L ||\phi||'_{q+n}$, and therefore $\psi \in K\{M_p\}$ and the map $\phi \to \psi = T * \phi$ is continuous from $K\{M_p\}$ into $K\{M_p\}$, i.e., T is a convolute on $K\{M_p\}$.

References

1. I. M. Gel'fand and G. E. Šilov, Generalized functions. Vol. 2: Spaces of fundamental functions, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1968. MR 21 #5142a; 37 #5693.

2. —, Generalized functions. Vol. 3: Some questions in the theory of differential equations, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1967. MR 21 #5142b; 36 #506.

3. M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tôhoku Math. J. (2) 13 (1961), 94-104. MR 24 #A1607.

(4)

4. J. Horváth, Topological vector spaces and distributions. Vol. 1, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863.

5. L. Schwartz, *Théorie des distributions*, Publ. Inst. Math. Univ. Strasbourg, nos. 9, 10, Hermann, Paris, 1966. MR 35 #730.

6. K. Yoshinaga, On spaces of distributions of exponential growth, Bull. Kyūshū Inst. Tech. Math. Nat. Sci. 6 (1960), 1-16. MR 23 #A4011.

7. Z. Zieleźny, On the space of convolution operators in \mathcal{K}_1 ', Studia Math. 31 (1968), 111-124. MR 40 #1772.

NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NEW MEXICO 88001