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SPACES WITH COMPACT SUBTOPOLOGIES 
HAROLD REITER 

Introduction. In [ 1] , Banach posed the problem of characterizing 
metric spaces which have a coarser compact metrizable topology. 
Banach asked if the space c0 has the property. Klee [5] answered 
the question affirmatively. The purpose of this paper is to answer 
Banach's question in some special cases and to study a class of 
spaces containing all those with compact metrizable subtopologies. 
A y space X is a topological space whose topology is finer than a 
compact Hausdorff topology. 

§1 consists of a theorem which allows us to restrict our attention to 
Tychonoff spaces and several examples. In §2 we show that the class 
of y spaces is closed under sums and products, but not under quotients. 
In §3 it is proved that an example of Sierpinski of a non^y space 
admits a complete metric. Finally in §4 we prove a theorem which 
shows the abundance of non^y spaces. 

1. DEFINITIONS 1.1. A topological space X is a y space if 
there is some compact Hausdorff space K and a continuous bijection 
from X onto K. A space X has property F if it is metrizable and its 
topology is finer than some compact metrizable topology. A topologi­
cal space X is an s space if the family C(X) of real continuous functions 
on X separates the points of X. A completely regular space X is a 
Baire space if the intersection of countably many dense open subsets 
of X is necessarily dense in X. 

EXAMPLE 1.2. Every y space is an s space. Hence every y space is 
Hausdorff. However, the family C(X) need not separate points and 
closed sets. That is, a y space X need not be completely regular. Let 
{Z | |Z| = 1} be the closed unit disc in the plane. Let ^U be the usual 
topology for X and B the boundary of X in the plane. Topologize X 
as follows: A set U is open if 

(1) [ / C X \ ß a n d [ / G ^ o r 
(2) U H (X\B) GQlandx<$rU- cl(X\(B U U)) for x G U. Thus, 

one sees that open sets contained in X\B are as usual and open 
sets about a point p of B consist of all points in some T^-open set U 
about p except for the points of B\ {p} in U and unions of sets of this 
type. Call this topology r. Now, (X, r) is not completely regular. In 
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fact, if Z G B and Z £ [/ G T, then no pair of disjoint r-open sets 
can be found which separate Z and X\(7. Specifically, if V is any 
r-open set containing Z, then either V must contain points of B 
different from Z or some points of B different from Z must not be 
contained in any open set which misses V. Thus (X, r) is not even 
regular. It is easy to see that i : (X, T) —> (X, ^U) is a continuous bi-
jection of (X, r) onto the compact space (X, Hi). 

However, in attempting to characterize the y space, one need not 
be concerned with noncompletely regular spaces. It turns out that for 
each s space X there is a Tychonoff topology r such that C(X) = 
C ( X , T ) . This result is due to Hewitt [4, p. 51]. The analogous 
proposition holds for y spaces. 

THEOREM 1.3. Let (X,a) be ay space. Then there exists a Tychonoff 
topology T for X which is coarser than a such that (X, r) is also 
ay space and C(X, a) = C(X, r). 

PROOF. From the theory of rings of continuous functions, it can 
be seen that a Tychonoff space X is compact if and only if every 
maximal ideal of C(X) is fixed at a point of X, Thus, a space X is 
a y space if and only if the ring C(X) contains a ring F with the 
property that the map x —» Mx H F of X into the family of ideals of 
F is a bijection of X onto the family of maximal ideals of F. Now if 
(X, a) is a y space, let T be the Tychonoff topology such that C(X, a) 
is isomorphic (as a ring) with C(X, T). NOW, since C(X,a) has a 
subring F such that JC—> Mx fi F is a bijection between X and the 
maximal ideals of F, C(X, r) also has this property. Thus (X, T) is a 
y space. 

EXAMPLE 1.4. Having seen in Example 1.2 that not all y spaces are 
Tychonoff (even regular), it is interesting to note that not all Tychonoff 
spaces are y spaces. Let Ç be the space of rational numbers with the 
usual topology. If Q were a y space, one would necessarily have a 
countable, compact Hausdorff space. According to a theorem of 
R. Baire, such a space must have isolated points. In fact, the inter­
section of any countable family of open dense sets in a locally compact 
space is dense. But no continuous image of Q can have isolated points. 
Theorem 4.1 will generalize this example. 

EXAMPLE 1.5. There is a Hausdorff space whose only compact 
Hausdorff continuous image is the one-point space. Let Z denote the 
positive integers. Topologize Z by choosing for an open basis all sets 
of the form {an + b \ (a, b) = 1}. This is a connected topology [3] 
and by the same reasoning as above, one sees that its only compact 
continuous image is a singleton. 
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One is tempted to conjecture that there is some inclusion relation 
between real compact spaces and completely regular y spaces or 
between Baire spaces and metrizable y spaces. These, however, are 
false. 

EXAMPLE 1.6. The Tychonoff Plank T is a y space as will be seen 
by the next theorem (T is locally compact). However, T is not real-
compact (see [2, p. 123] ). 

EXAMPLE 1.7. Let / denote the irrational numbers and Q the 
rational numbers each with the usual topology. Then I © Ç is a 
metrizable non-Baire space which has figure "8" as a continuous 
bijective image. 

2. In this section we show that the class of y spaces is quite large. 
In fact it includes all sums and products of locally compact spaces. 

THEOREM 2.1. Every locally compact Hausdorff space is ay space. 

PROOF. Let (X, T) be a locally compact Hausdorff space and let 
(8X, h) be its (unique) one-point compactification with ideal point co. 
Let j/o be a point of X. Construct a new space out of the points of 
X by giving X the quotient topology a determined by the map 
f:8X->X defined by 

f(x) = h~1(x), if x j£ CD, 

= t/o, if x = a). 

That is, a subset U of X is a-open if and only if f~l(U) is open in 
8X. To see that (X,<r) is Hausdorff, let x and y be any two points 
of X. If y = t/o> find disjoint open sets U, V and W containing 
respectively h~l(x), h~l(y) and to. Now / (V U W) and f(U) are 
clearly seen to be disjoint and to contain respectively x and y. Also 
both f(V U W) and /([ / ) are open since f~lf(V U W) = V U W 
and f~lf{U) = U. The case in which both x and y are different 
from t/o is trivial. Thus (X, a) is Hausdorff. 

Now, the map fh : (X, r) —> (X, a) is a continuous bijection and, 
of course (X, a) is compact. Hence, (X, r) is a y space. 

COROLLARY 2.2. The sum of any family of y spaces is a y space. 

PROOF. Let {Xa : a G A} be a family of y spaces, and for each 
a let Ka be a compact continuous bijective image of X«. Now 
{ ^ K t t i a E A } is a locally compact Hausdorff space (hence a y 
space) which is a continuous bijective image of ]£ {Xa : a G A}. But 
any space which has a y space for a continuous bijective image is 
clearly itself a y space. 
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The product of y spaces is also a y space. If {Xa : a G A} is a family 
of y spaces with K„ compact spaces and fa SL family of injections each 
from Xa onto K„, then the function/: J J {Xa : a G A} - * f j {K« : a G A} 
defined by [f(x)] a = fa(xa) is an injective continuous mapping of 
Y[ {K* '.aE. A} onto j \ {K„ : a G A}. Further, if A is countable and 
each Xa satisfies property F then so doesJJ {X« : a G A}. 

EXAMPLE 2.3. There are completely regular y spaces which are not 
products of locally compact spaces. Let 

X = { ( x , t / ) | 0 < x < l , 0 < i / < l } U {(0,0)} 

and let X have the relative topology from the plane. X is not a finite 
product because it is not locally compact and X cannot be an infinite 
product because it has dimension 2. 

THEOREM 2.4. Let (X, r) be a space. The following three conditions 
are equivalent: 

(1) (X, T) is ay space. 
(2) T contains a compact Hausdorff topology. 
(3) (X, T) is homeomorphic with the graph of some (not necessarily 

continuous) function f defined on a compact Hausdorff space K into 
a (not necessarily Hausdorff) space Y. 

PROOF. If (X,r) is a y space w i t h / : X—» K a continuous bijection 
to the compact Hausdorff space K, then r contains the compact 
Hausdorff topology {f~l(U) | U open in K}. Thus (1) implies (2). 
To see that (2) implies (3), let r contain a compact Hausdorff topology 
a for the set X. For each U G T, let {0,1 }u denote the two-point 
Sierpinski space (with {1} open but not closed). Let Y = 
Y[{0,1 }u I U G T and give Y the product topology. For each U E T 
define the function Xu : X—» {0,1 } v according to 

Xv(x)= 1, if* G U, 

= 0, if x $ U. 

Now define the map / required in condition (3) by (f(x))v = Xu(x) 
for x G (X, a). The graph G(f) of / is homeomorphic with (X, T). 
In fact PX\G(J) is a homeomorphism on G(f) onto (X, r), where Px 

is the projection of X X Y onto X. Now clearly Px\Q(f)(U) = 
[(X X Tv) H G(f)] where Tv = {g G Y | g(U) = 1}. Since Tv 

is open in Y, (X X Tv) H G(f) is open in G(f) and so FX|G(/) is 
continuous. To see that FX|G(/) is an open mapping, it suffices to 
show that there is a basis Hi of open subsets of G(f) such that 
PX\G(J)( V) is open for each V G ^ . 
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Let 

^ = { ( l / o X f i r * ) riG(f)\{Ui}î=iCTandUoe<r } . 

Now 

Piled) \ ( u0 x n TVÌ ) n Gif) 1 = n Ui 
L x

 i = 1 / J i=o 

is r-open. Thus PX\G(/) *S open. Thus PX\G(D *S a homeomorphism 
and (2) implies (3). 

To see that (3) implies (1), let (X, T) be homeomorphic with the 
graph G(f) of the function / defined on the compact Hausdorff 
space K. Then the map (x, fix))->x is a continuous bijection of 
G{f) onto K. 

COROLLARY 2.5. The space Q of rationals cannot be homeomorphic 
with the graph of any function on a compact Hausdorff space. 

COROLLARY 2.6. A space X is ay space if and only if X is homeo­
morphic with the graph of some function fon a y space. 

COROLLARY 2.7. If (X, r) is any space and a is a topology con­
taining T, then (X, <J) is homeomorphic with the graph of some 
function defined on (X, T) into a topological space Y. 

We have seen that the class of y spaces is closed under several 
operations. It is not, however, closed under taking quotients. Every 
first countable Hausdorff space, being a K space, is a quotient space 
of a locally compact space. But Example 1.4 shows that there are 
first countable non^y spaces. 

3. Having seen that every locally compact Hausdorff space is a 
y space, one might next ask if every complete separable metric 
space is a y space. The question has a negative answer as the fol­
lowing example shows. 

EXAMPLE 3.1. For each positive integer n, let 

4»= {(*>!/) I*= -^ a n d O ^ t / ^ l } 

U j (x, y) | x2 + y2 = — and not both x and y are positive > . 

Let AQ = {(0,0)}. Set S = Un"=o4. and let S have the relative 
topology of the plane. The space S\{(0,0)} was introduced by 
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Sierpinski. It is easy to see that S is a connected, nonlocally connected, 
nonlocally compact separable metric space which is the union of 
countably many pairwise disjoint compact continua. If S were a y 
space and K were its compact continuous bijective image, then K 
would be decomposable into countably many pairwise disjoint sub­
continua, contradicting a theorem of Sierpinski, see [6]. The purpose 
of this example, of course, is to show that the space S admits a com­
plete metric consistent with its topology. To this end, let zn = 
(0,1/n) if n > 1 and z0 = (0, 0). If p and q are two points of the 
plane, let \p — q\ denote the ordinary Euclidean distance from p 
to q. Let M = {zn \ n = 0 ,1 , 2, • • •}. Now define a function d : X X 
X - » R b y 

d(p, q) = \p - q | , i f ( l )p = z0orq = ZQ9 or 

(2) if both p and q belong to the same An, 

= inf {\p — Zi\ + \q — Zi\ : Zi Œ M}, otherwise. 

Clearly the conditions d(p, q) = 0 if and only if p = q, d(p, q) i ï 0, 
and d(p, q) = d(q, p) are satisfied. Thus it must be shown that 
d(p, q) ^ d(p, r) + d(r, q) for any three points p, q and r of S. If 
p and q lie in the same An, the inequality is obvious. If p and q lie 
in different An, one considers two cases. 

Case I. The point r lies in the same 4 , as p or in the same An as 
q. For convenience, assume r , p G An, q G Am and that 

inf {\p - Zi\ + \q - Zi\:ZiGM}= \p - Zj\ + \q - ^ | , 

inf {\r - Zi\ + \q - Zi\:Zi GM}= \r- zk\ + \q - zk\. 

Then 

d(p, q)= \p- Zj\ + \q - Zj\ g \p - zk\ + \q - zk\ 

^ \p - r\ + \r - zk\ + \q - zk\ = d(p, r) + d(r, q). 

Case II. The point r lies in an An different from those in which p 
and q lie. As before, assume that 

d(p,q)= \p- % | + \q - Zjl 

d(r,q) = \r- zk\ + \q - zk\. 

Also assume that 

d(p,r) = \p - zn\ + \r- zn\. 

Now 
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d(p, q) = \p- Zf\ + \q - Zj\ ^ \p - zk\ + \q - zk\ 

= \p - zn\ + \zn - zk\ + \q - zk\ 

= \p - zn\ + K - f | + \r - zk\ + \q - zk\ 

= d(p, r) + d(r, q). 

Now it remains to show that the topology of d is the original topology 
and that d is complete. Convergence of a sequence in the d-topology 
clearly implies convergence in the usual topology. Suppose {xn}—> x0 

in the usual topology and x0 ^ Z{, i = 0 ,1 , • • • . If x0 G Am, then 
{xn} is eventually Am. Then, d(xn,x0) = \xn — Xo|—»0. If x0 = zfc, 
then d(xn, zk) = inf {|xn — Zi\ + |zfc — ^ | : JZ* G M} = \xn — zk\-* 0. 
Therefore the topologies are the same. To show that (S, d) is complete, 
let {xi} be a Cauchy sequence which is not eventually in any arc An 
(otherwise, convergence is obvious). Let {xp} be a subsequence of 
{X{} satisfying 

d(x(ï,*,Ul.)=iU)'. 
Let z.p be a sequence from {z{ : f = 0 ,1 , • • •} satisfying 

d(xPi,xPi+i ) = \xVi — zTi\ + \x-pi+l — Zpy 

The compactness of M assures that such a sequence exists. The 
sequence {zP} is Cauchy since 

d(zPi, zv) = \zPt - z.p\ ^ d(xPi, xPi+l ) + d(xPi+2, xPi+i ) 

S l + ^ L . 
2* 2 t + 1 

Thus the sequence {z,,} converges (again using the compactness of 
M). Therefore {zp } is eventually a constant z ' or converges to z$. In 
the first case it is clear that {xP_} converges to z'. In the second case 
choose N so large that i > N=>\zp — z0\ < e/2 and d(xp,xPi+i) < 
e/2. Then, for j > N, one has 

d(x„,Zo) = d(x})., z}i) + d(zp_, Zp) 
'j J j J .o 

g d(xPj, xPj+l) + d(zPj9 z0) < e. 

This completes the proof of the completeness of (S, d). One could 
also prove the complete metrizability of (S, d) by noting that S 
is a Gg in its closure in the plane. 

4. The following theorem shows that non^y spaces are abundant. 
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THEOREM 4.1. Let Xbe a space which can be expressed as the union 
of countably many compact sets X;. If either one of the following 
pairs of conditions are met, then X is not a y space: 

Ai. X is separable metric and 
A2. each X* is nowhere dense. 
Bx. X is connected and 
B2. the Xi are pairwise disjoint. 

PROOF. Suppose X = Ut=iXj where each Xi is compact and condi­
tions Ai and A2 are satisfied. If / is a continuous bijection on X 
to a compact Hausdorff space f(X), then f(X) is a separable metric 
space. In fact, since f(X) X f(X) is a continuous image of X X X, 
it is hereditarily Lindelöf, and therefore (being regular) perfectly 
normal. But a compact Hausdorff space with a G8 diagonal is 
metrizable. Since f(X) is compact (hence complete) it must be of 
the second category. However, the /(Xi) are closed nowhere dense 
subsets of f(X) whose union is /(X), a contradiction to the Baire 
category theorem. 

Now suppose conditions Bx and B2 are satisfied and F is a con­
tinuous bijection on X to a compact Hausdorff space K. Then K is 
connected and is expressible as the union of the f(Xi). But since / 
is one-to-one f(Xi) H f(Xj) = 0 for i ^ j . Thus the compact con­
tinuum K is the union of countably many pairwise disjoint closed 
subsets of itself. This contradicts the theorem of Sierpinski [6]. This 
completes the proof. 

COROLLARY 4.2. The subspace lp(œ) of l\ consisting of sequences 
which are zero for all but finitely many coordinates is not a y space. 

PROOF. The space IF(Q>) can be decomposed as follows: 

W*>)= Ü Ü E{j 

where 

Eij= {{*n} \xn= O i f n > i and max {|xi |, |x2|, * * *, \xi\}^j], 

Each Eij is compact and nowhere dense. 
REMARK. The theorem above also shows that a separable metric 

space has property T if and only if it is a y space. Thus the problem 
of characterizing y spaces includes as a special case finding all 
separable metric spaces with property T. 
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