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LAMBERT SERIES, FALSE THETA FUNCTIONS,
AND PARTITIONS

GEORGE E. ANDREWS !

1. Introduction. One of the recent important results in the theory
of partitions is the following theorem due to B. Gordon [5].

THEOREM. Let Ay ,(N) denote the number of partitions of N into
parts #0, + a(mod2k + 1). Let Bi4(N) denote the number of
partitions of N of the form N = Yi_,fi (f denotes the number of
times the summand i appears in the partition) where f = a — 1 and
ﬁ +ﬁ+1 =k-1 ThenAka(N) = Bka(N)

This theorem reduces to the Rogers-Ramanujan identities when
k=2

In this paper we shall study a partition function Wy ;(n; N) which is
somewhat similar to By N). W ;(n; N) denotes the number of parti-
tions of N of the foom N= Y fi, with =i, f=k— 1, and
f+f+1—k or k+ 1 for I=j=n—1 We let wi(n;q)=1+

N=1 Wii(n; N)gN. Our first result relates wy;(n; q) to certain Lam-
bert series.

TueoreM 1. For |g| < 1,

®© — a2n(k—i)
k—1)n%2 +n/2—(k—i)n (1 — g2r*9)
1— 2 q(2 1 + ( T+ q"
n=1
=1+ 3 (=1)"wii(n; q)

S0+ +g) 1+ g

When i=k— 1, we see that the left-hand series in Theorem
1 reduces to a false theta series. From Theorem 1 it is possible to
prove results on partitions which we shall examine in §3.

2. Proof of Theorem 1. We define the function fi ;(x) as follows:

oo . . ) — 1
2.1) frilx) = xkng @k=Ln%24ni2—in (1 — xig2ni) (D ,
n=0 ( —xq )n
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where (a), = (1 — &)(1 — aq) - - (1 — ag"~!). It may be noted that

ﬁct Ck: 1, q;x;q>

in the notation of [2, equation (1.1), p. 433]. The results in [2] imply,
therefore, that the fii(x) satisfy certain systems of homogeneous g-
difference equations. The following lemma establishes that fi (x) also
satisty certain nonhomogeneous g-difference equations.

LEmwMma 1.

=1-—_% xa) — X
fri(x) =1 1+ xq frx—i(xq) 1+ xq frx—i—1(xq).

Proor.

fri(x) = 1+ i xknq(Zk—l)n2/2+n/2—in (ZDa

n=1 (_xq)n
o~ 2 . (_1)n
— i xkng @k=Dn%2+n/2 +in ———0
n§0 9 (_xq)n
=1+ gt i xkng (k=12 4n/2—in+ (k= Dn (=Dl + g%
1+ xq n=0 ( xqz)n
__X i xkng (k= D2 tn/2 vin (Z1)a(1 + xg"*1)
1+ xq = (—%G?)a
x N 2 (=1
=1- kno (2k—1)n“[2+n/j2 > /T
L+ xq 112=0 9™ (—xg?)n

. {qin—kn(l + an+l> — (xq)k~iq—in+(k—l)n(l + qn)}

xi

=1-

s . 2 . ; (_l)n
-y ko (2k—1)n"2+n/2—(k—i)n /N
1+ xq ZO (xq)q (=%G?)n

. (1 — (xq)k—ian(k—i))
xz+lq s X . ) (—l)n
— X Ny (2k—1)n"/2+n/2—(k—i—1)n
1+ xq Zo ( q) q (—xq)n
. (1 — (xq)k—i—qun(k~i—l))

- _* (xq) — X4 o
1 + xq ﬁ»k— xq) 1 + xqﬁ‘»k_l_l<xq)'
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We now define
(2.2) hii(x) = (1 + xk=i — fi pe_i(x))/2xk

Since fio(x) = 0, we see that hyx(x) = 1. Furthermore Lemma 1 may
be rephrased in terms of hy i(x).

LEMMA 2.

(2.3) hii(x) =1+ l(j_q) (1 = hig—i(xq) — hrx—iv1(xq)).

Lemma 3. If h:,i(x is any function of x and q analytic around
x=0,9=0,and

(2.4) hgx(x) =1,

Pty = 1+ 22

_\*MY) _ * ) _ * .
2.5) , 1+ 1q (1 hk,k—:(xq) hk,k—z—l(xq»,

1=i=k-—1,
26) ha0) =1 1Sisk

then hy (x) = hiei(x) for 1 < i = k.
Proor. We let

hii(x) = i i a;(m, n)xmg™

m=0 n=0
hk, (x) = E 2 a;*(m, n)xmgn.
m=0 n=0

Then clearly

a(m,n) = a*(m,n) =1 ifm=n=0,

=0 otherwise.

From (2.1) and (2.2), we see directly that h;(0) = 1; this and (2.6)
imply
a;(0,n) = ¢*0,n) =1 ifn=0,

(2.7)
=0 ifn>0.

(2.3) and (2.5) imply
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aim,n) + a(im — 1,n — 1)

2.8)
= €(m,n) — ak-i(m — i,n — m) — ax—i+1(m — i,n — m)
and
a*(m,n) + a;¥(m — 1,n—1
(2.9) )

=¢e(m,n) —af_(m—i,n—m) — a;f_,'H(m —i,n— m),

where €;(0,0) = €,(1,1) = €;(i,i) = 1, €;(m,n) = 0 otherwise, and
any a;(m, n) or a;*(m, n) with negative entries is zero.

Now we may proceed by mathematical induction on m to verlfy
that ai(m, n) = a;*(m, n). (2.7) takes care of m = 0. If a(m,n) =
a*(m,n) for m < my, then (2.8) and (2.9) imply that ai(mo, n) =
a;*(my, n). Thus Lemma 3 is established.

LemMma 4. Let Wii(n; M, N) denote the number of partitions of
the type enumerated by Wy (n; N) with M parts. Then

Wii(0; M,N)=1 ifM=N=0,

(2.10)
= 0 otherwise,
211) Wii(l, M,N)=1 ifM=N=1i,
= 0 otherwise,
forn>1,
2.12) Wii(n; M, N) = Wix—i(n — 1, M — i, N— M)

+ Wig—izi(ln — L, M — i, N— M),

Proor. (2.10) and (2.11) are directly from the definition of
Wk,i(n; M’ N)

To prove (2.12), we start with the partitions enumerated by the
left-hand side. Let us consider two classes of such partitions: (1)
those in which 2 appears k — i times, and (2) those in which 2 appears
k—i+ 1 times. We now transform our partitions by deleting the
i ones in each partition and subtracting 1 from all other summands.
The number being partitioned now drops to N — M; there are now
M — i parts, and the largest part is n — 1. Indeed this procedure
shows that there are Wix_in — 1; M — i, N — M) partitions in the
first class and Wix_i+1(n — 1; M — i, N — M) elements of the second
class. Thus we have (2.12).

We transform Lemma 4 into identities for the related generating
functions.
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LemMa 5. If

Wri(n; x; q) = 2 E i(n; M, N)xMgV,

then

(2.13) W i(0; x5 q) = 1,
(2.14) Wri(1; x5 q) = (xq)%
and forn > 1,

@1z DeimEa)

= (xq){(Wk-i(n — 1;xq; q) + Wx—i+1(n — 1; xg; q)).
Proor. (2.13), (2.14), and (2.15) follow directly from (2.10), (2.11),
and (2.12) respectively.

LEmMma 6. If

>

o 1)"wk i(n; x; q)
Hk 1
,.z —xq)n
then Hy i(x) is analytic around x = 0, q=0,and

(216)  Helx)=1L;

(217) Hk,,'(X) =1+ (1 - Hk,k_,-(xq) - Hk,k_iﬂ(xq)),

(2.18) H;(0)=1 1=SisSk

Proor. For |g| < 1, |x| < 1, we clearly have

n+1 n

wii(n; |x[; Jg]) = 'ql( 2') Jx|" H 1+ x| [qh + -+ + [x] |gh®—2).

j=1

This estimate is sufficient to guarantee uniform convergence of the
series for Hy ;(x) around x = q = 0.

Now since all partitions of the type enumerated by Wix(n; M, N)
must have k = f; = k — 1, we see that no partitions except the empty
partition are counted. Thus Wik(n; M,N)=1 if n=M=N=0
and equals 0 otherwise. Hence @in;x;q) =1 if n=0 and 0 if
n > 0. Thus Hyx(x) = 1.

Now by Lemma 5,



54 G. E. ANDREWS

SR C.) 2” (=D)"Bri(n + 1; x; q)
1+x .5 (—xq)n+1

) B )
l+xq 1+ xq

LS (1)(@ii(ns 75 ) + Brsier(n5 363 9))

nsl (— xq%)n

BN /)N €'} (Hig—i(xq) + Hixir1(xq) — 2)
1+ xq 1+ xq Jk—i+1

=1 +1(j_—q)xq(1 - Hk,k_i(xq) - Hk,k—i+l(xq))‘

Finally we note that @ii(n;0,q)=1 if n=0 and =0 if n> 0.
Hence H; ;(0) = 1.

Thus we see that the lemma is established.

We are now prepared to prove Theorem 1. First Lemmas 3 and 6
imply that Hyj(x) = hii(x). Consequently

3 — 2n(k—i)
1-— E q(2k—1)n2/2+n12—(k—i)n M
n=1 1 + qn

=1— —fkk i(1) = hei(1) = Hyy(1)

S (= 1)™Bri(n; 1; q)
nz=0 ( q)n

— 1)wkt(nq)
"”E <1+q(1+q2> T

This concludes the proof of Theorem 1.

COROLLARY.

29 _nj: S (=" 'wik-1(n; q)
(2k—1)n*/2 —n/2 1 — gh) = .
9 (=g 21(1+q(1+q) (L+ g7

Proor. Seti = k — 1in Theorem 1 and simplify.

M

n

3. Partition theorems. In this section we shall prove some partition
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theorems which follow from Theorem 1 and its corollary. First we
remark that when k = 2, the corollary of Theorem 1 may be stated as

i qn(3n—1)/2(1 _ qn) - 2” (—1)n—lqn<n+1)/2
A+qA+gd) -QA+qg™°

n=1 n=1

a result due to L. ]. Rogers; to see this we note that the only partition
counted by Wy (n; N) is N=1+ 2+ - -+ + n since every part can
appear at most once yet f; + fi,; = 2 or 3. As remarked in [1, p. 137]
this identity may be used to prove a partition theorem of N. J. Fine
[4, Theorem 2(iii)] .

More generally in the notation of [3, p. 556] we have

THEOREM 2.

N(s =2 firit Y g ph=k-1
i=1 i=1
fitfin=kork+1,fi=k— 1 (—1)n—1+zg,-)
=1 ifs=n(2k— 1)n— 1),
=~ 1 ifs=n(@k—Dn+ 12
= 0 otherwise.

Proor.

i q @k~ n¥y2—n/2 (1- q 2” 1)"'(lwk,l;—1(n; q)
n=1 n=1 —q)n

[
M

N(s= > fit Y ggfi=k=1 4 +f
i= j=

=kork+ 1, fi=k—1; (—1)"—1+2g/>q".

1

4. Conclusion. Other theorems of the nature discussed here are
available for the false theta functions. In the notation of [2, equation
(L1), p. 433] if

frilxs d; q) = Ciild, g5 % q),
then as in Lemma 1, we may prove
x1+lqd 1
xq/d k,k—i—1

fiixdg) =1 _I—_Lx%ﬁc,k—i(xq; d; q) + (xq; d; q)-
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We note also that

foal1; —qq) = q@k-vn*-2in(] — gani),
n=0

Probably further results could be obtained by studying
Cki(g, as, * * *, @; x; q) in general.
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