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A TEST OF TEMPORAL INDEPENDENCE FOR PARTIALLY 
HOMOGENEOUS GAUSSIAN RANDOM FIELDS 

HERBERT T. DAVIS 

ABSTRACT. A partially homogeneous random field is a 
family of random variables [tX(P, t)} where the following two 
conditions are true: First, for a given time t, the X(P, t) are 
observations on a nonhomogeneous random field where its 
second order properties are not a function of time, i.e., 
EX(P, t)X(Q, t) = fì(F, Q). Second, that the family of random 
variables is weakly stationary over time, i.e., EX(P, t) = 0 and 
EX(P, t)X(Q,s)= R(P, Q, t - s). In this paper we consider the 
Karhunen-Loève representation of the random field, to­
gether with necessary and sufficient conditions for a Gaussian 
random field to be temporally independent. It is shown that a 
set of weakly stationary principal components can be used to 
construct a multivariate test of independence. 

1. Introduction. A random field on the space S is a real, or possibly 
complex valued random function X(P) defined on a space S. The 
random variables are defined by the existence of a multivariate func­
tion Fply_pn of {X(Pi)>- • -,X(Pn)} for every finite set {Pl5 • • -, Pn} 
C S, such that Fplt...tpn satisfies the following symmetry and con­
sistency conditions: 

1. For every permutation iu • • -, in of 1, • • -, n, and real numbers 
« 1 , ' ' SOfe, 

0 " 1 ) F P, ,...,P„ (<*1> ' * *>«n) = FP. ,...,/>• ( ah> * * *>«Ü 

and 
2. If m < n, 

(1.2) Fp^^pjai, • • -,owi) = FPl.f...fF|i(ai, •• M ^ , » , . . - , oo). 

Under these conditions and when a conditional distribution exists, 
it is possible to define a probability measure on an abstract space ft 
(Doob [4, p. 639] ), defined on a sufficiently large class of sets (which 
constitute a Borei Field in ft) so that the joint distribution of X(P1? o>), 
• • -, X(Pn, <*>) defined on ft will be the same as that of X(Px), • • -, 
X(P„). 
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The space is assumed to have a topology T, a a-finite measure fx 
defined on a cr-algebra of its subsets, 2, and to be compact. Also 
the process is assumed to satisfy EX(P) = 0 and E\X(P)\2 < o° . 

The covariance function of the random function is given by 

(1.3) R(P, Q) = EX(P)X{Q) for any F, Q G S. 

The process is said to be homogeneous if the covariance function 
depends only on the vector r = PC. In this case the covariance func­
tion is invariant under certain groups of transformations, which leads 
to a spectral decomposition of the covariance operator. For a detailed 
account of this subject, see Yaglom [9], [10] and Hannan [6], 
[7]. 

Natural data often does not possess this homogeneity condition, 
and techniques valid for nonhomogeneous random fields must be 
employed. A second order analysis is possible for certain nonhomo­
geneous random fields by using the Karhunen-Loève representation. 

Since S is compact, it follows that R(P, Q) G L2(/x X JLL), and that 
Mercer's theorem holds. Then 

(1.4) R(P,Q)= £ K<Pn(P)<Pn(Q) 
n = l 

where the convergence is uniform and in quadratic mean (q.m.). The 
{<Pn(P)} are the eigenfunctions corresponding to the eigenvalues {Àn}, 
and satisfy, where 8 is the Kronecker ô, 

| s iPniP) <pJP) dfi(P) = 8m, 

( L 5 ) j s H ( P , ç w ç ) d / i ( ç ) = M P ) -

Without loss of generality, we can assume that the set of eigen­
functions form a complete set in L2(/x) since it is possible to add at 
most a countable set of functions belonging to L^fi) corresponding 
to the zero valued eigenvalues. 

This, together with the conditions on X(P), leads us to the Karhunen-
Loève representation, 

oo 

(1.6) X(P) = S zn<pn(P) where E Z Ä = 8nm\n 
n = l 

and the first equality is taken to be in q.m. The orthogonality of the 
<pn(P) leads to the relation 
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(1.7) A,= j s X(P)^JP)d^{P). 

In this paper, we are concerned with the time indexed class of 
random fields {X(F, t), P €E S}. It will be shown that even though 
the process is nonhomogeneous on S, if it is weakly stationary with 
respect to time (partially homogeneous), i.e., 

(1.8) R(P, t, Q, s) = R(P, Q,t- s) for all t9 s, 

the Karhunen-Loève representation will reduce to a weakly station­
ary multivariate vector process. While the vector is infinite dimen­
sional, its elements are the principal components of R(P, Q, t), and 
hence a finite subcollection will describe the process as closely as is 
desired. We will further show for a discrete time process, X(P, t) is 
uncorrelated over time (white) if and only if the same is true for the 
vector process of principal components. Then for a Gaussian process, 
we develop a test of whiteness for X(P, t). 

2. Space-time processes. In this section, we will prove the several 
assertions made in the last part of the previous section, and some 
results needed for the test of independence given in the last section. 

It is assumed that the covariance function for X(P, t), given by 
R(P, t, Q, s) = EX(P, t)X(Q, s), is for any given time independent of 
that time. That is, R(P, t, Q, t) = R(P, Q) for all t 

For any instant of time, then, we have that 

(2.1) X(P, 0 = 2 2»(«K(P, t) 
n = l 

and that 

(2.2) | s R(P, t, Ç, t)<pn(Q, t) dn(Q) = kn(t)<pn(P, t). 

But since R(P, t, Q, t) = R(P, Q), and the eigenfunctions and eigen­
values are the solutions to the same Fredholm equation, we get that 
<pn(P, t) = <pn(P) and kn(t) = An for all F and n. Hence it follows that 

00 

(2.3) X(P, t) = 2 zn(t)<pn(P), F G S and for all time t9 
n = l 

a very valuable separation of time and space. 
If we let/nm(£, s) = Ezn(t)zm(s), then using 

(2.4) zn(t) = \ s X(P, t)^JP)dn(P) 

and Fubini's theorem, it follows that 
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(2.5) fnm(t, s) = \ \ R(P, t, Q, s)<pn(P)<pm(Q) dn(?) dv(Q). 
S 

If X(P, t) is weakly stationary, then R(P, t, Q, s) is a function of P, Q 
and t — s. It follows from (2.5) that fnm(t, s) = fnm(t — s), that is that 
zn(t) is a weakly stationary process. Similarly, under conditions for 
the interchange of an integral with a summation, it can be shown that 
zn(t) weakly stationary implies that X(P, t) is also weakly stationary. 

An interesting sidelight at this point is that when the vector process 
z(t) is weakly stationary, it has the usual Cramer representation. The 
Karhunen-Loève representation can then be combined with the 
Cramer representation to obtain a time-space decomposition of the 
process. This decomposition can be very important for prediction. 

In the rest of this paper, we restrict ourselves to the discrete time 
case, that is where t = • • -, — 1, 0, 1, • • *. The following lemma 
gives a condition for the "whiteness" of the discrete time process 
X(P, t). 

LEMMA. If X(P, t) is a discrete time random function admitting 
a Karhunen-Loève expansion on S, then R(P, t, Q, s) = 8tsR(P, Q), 
where S is the Kronecker delta, if and only if the representation pro­
cess, zn(t), satisfies fnm(t, s) = 8ts8nmkn far all n, m, s and t. 

PROOF. First, given that R(P, t, Ç, s) = 8tsR(P, Ç), we use (2.5) to 
show that 

fUt, s) =8ts \ \ R(P, QiïJFJvUQ) dn(P) dti(Q). 
s 

By the uniform convergence of (1.4) and the orthogonality of the 
<pn(P) (see equation (1.5)), we get 

(2.6) fnm(t, S) = 8ts8nmK' 

Conversely, given that fnm(t, s) = 8ts8nmkn, and using the fact that 
S is compact assures that the kn converge absolutely, we employ 
Lebesgue's dominated convergence theorem and (2.3) to get 

oo oo 

R(P, t,Q,s)= E S fnm(t, s)<pn(P)<pm(Q) 
n = l m = l 

00 00 

(2.7) = S S 8ts8nmK<Pn(P)MÇJ 
n = l m = l 

oo 

= 8ts 2 K<Pn(P)<PnlQ) = 8tsR(P, <?)• 
n = l 
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This completes the proof of the lemma. 
We say that X(P, t) has a normal distribution if for any finite col­

lection of points {Pi, • • -, Pn} C S and any finite collection of times 
{t\, ' ' ', tn), {X(?i, t\\ • ' ', X(Pn, tn)} has a joint normal distribution. 
We assume that EX(Piy U) = 0 and EX(Ph U)X(PJ9 tj) = R(Pi, Pj, U - tj). 

Recalling equation (2.4), 

zn(t)= \sX(P,t)?n(P)d»(P), 

we use the fact that S is compact and separable to construct a se­
quence of partial sums of X(Pi>t)(pn(Pi)dtJL(Pi) to converge to zn(t). 
Since normally distributed variâtes preserve their normality under 
linear combinations and passing to a limit, the z(t) are also normally 
distributed. 

3. A test of independence. In this section, we develop, for X(P, t) 
Gaussian and having discrete time, a test of independence over time 
against the alternative that it is weakly stationary with its time com­
ponent having a slowly varying spectral density. In the last section, 
we demonstrated that this is equivalent to testing that fnm(t, s) = 
8ts8nm^n against the alternative that the z(t) process is weakly 
stationary with a slowly varying spectral density. 

Since the zn(t) are the principal components of R(P, Q), a finite 
vector of p elements can be used to describe the process as well as 
is desired by the selection of p. A technique for selecting and com­
puting the desired zn(t) is given by Cohen and Jones [3]. 

Since the z(t) selected is normally distributed, the complex Fourier 
transform of the p-dimensional vector z(t), 

(3.1) ä(f) = 2 z(t) exp (frrifi), -\<f<{, 

will have a complex normal distribution with zero mean and variance 
equal to the spectral density of z(i). We are letting z(t) be a finite 
realization of z(t). The complex Gaussian distribution of z(t) is given 
by Goodman [5] to be 

(3.2) p ( ä ) « _ J ^ e x p ( - â ' 2 - 1 â ) . 

Taking the / to be fi = jln, j = 1, • • -, [(n — l)/2], that is, the 
integer part of (n — l)/2, the 5(j5) will be exactly independent under 
the null hypothesis, and 2 = D, a diagonal matrix with the eigen­
values Xn on the diagonal. Under the alternative hypothesis, the 
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ô(jÇ) will be approximately independent, and 2 = 2(f). Since 
variance estimates cannot be based on a sample of one, the hypothesis 
is that 2(f) is a slowly varying function of f so the ä(f ) can be 
separated into frequency bands. Then the assumption is made that 
2(f) can be approximated by a constant in each frequency band. 
Let the sample be composed of IV frequency bands, each of width m 
(so mN= [(n- l)/2] ). 

It is now possible to obtain the approximate likelihood ratio test 
statistic (see Anderson [1, p. 264], for the real version of the same 
problem), 

(3.3) = Il (-ym\%D-^exp(tv(%D-% 
j=i \rn / 

where % = sum over the jth band of ä(f)ä(f)f. the test then is 
composed of N simultaneous independent tests in each of the N 
frequency bands. The following theorem is the complex version of the 
theorem on p. 268 of Anderson [ 1], applicable to the test in each 
frequency band. 

THEOREM. Given ä(fi), • • •, ä(fm) as observation vectors of p 
complex components from N(0, 2), the approximate likelihood ratio 
criterion for testing the hypothesis 2 = D, where D is specified, is 

X = (^)P m | tD-1 | -exp(-tr(tD-1)) 

where 

t= sumjä(fj)ä(Jj)'. 

Also — 2 log (X) has asymptotically, as m becomes large, a chi-square 
distribution with p2 degrees of freedom. 

PROOF. The approximate likelihood ratio comes from using (3.2) 
and the usual maximizing technique to estimate Z. We now proceed 
in an identical fashion to Anderson [ 1] to obtain the moments of X 
and the characteristic function of — 2 log X. 

The estimate 2 has a complex Wishart distribution with m degrees 
of freedom, which is given by Goodman [5] to be 

(3.4) «(t|X, lìl"-e*p(-„a-S)) 
nii2p(P-i)r[m] • ' ' T[m - p + 1] | 2 | n 

We now find the moments of A. The hth moment of X is 
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Ekh = ( - 0 P m ' , j ... | |$D-i |"* exp( - h tr (2D"1)) u>($ | 2) 

_ / j_\prnh r rllk=ir[m + mh+ 1- k] |SP~x |mh 

"" \ m / J " ' J j / + /i2D-1 |m + m ' ' I]^= 1r[m + 1 - Jfc] 

•witlï-i + hD-^di 

_(elm)mr>hYlk-lr[m + mh + 1 - Jfc] |SP-1 |m f t 

|7 + / t 2 D - 1 | m + m * n f - i r [ m + 1 ~ *] 

It can also be shown that the characteristic function of — 2 log X is 

<p(t)= Ee-2i<iogx=EA-2a 

( 3 '6 ) = ( e \2itmP I S D ~ 'I ~2imt TT r O + 1 - . / - 2imt] 
ml \1- 2itXD-l\m-2imt l^ r[m + 1 - Jk] " ~ V m / |7 - 2itXD~l\m-2imt JA-" 

Under the null hypothesis, 2 = D, 

«( f ) = I l e-2imtm2imt(l _ 2ft)-m+iMm« F t W + * * ?ML 

it=i r [ m + l - j f c ] 
(3.7) 

p 

Mt)-(i-2ft)-*( ™ + 1 - f c - 2 ^ y 
M l - 2it)(m + 1 - Jfc) / 

= n **<*). 
Using Stirling's approximation as m becomes large, 

m + 1 - k - 2tm£ \m- fc 

(1 - 2it)(m + 1 - Jfc) 

/ m + 1 - k — 2imt \ ~2imt I _ 2imt \1/2 

V m(l - 2it) / \ ro + 1 - Jfc / 

(3.8) - ( l - 2 « ) - * ( l - - 2U(k - » )-* 
' \ ( l - 2 t t ) ( m + 1 - Jfc) / 

• ( i - k~ x )~2imt(i- 2imt V'2 

\ (1 - 2it)m I \ m+ 1 - k / 

« (1 - 2it)"fc+1/2 • 

Hence 

(3.9) y(t) = n **(«) « (1 - 2itf12 , 
fc = l 
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which completes the proof of the theorem. 
Now recalling equation (3.3), the test statistic for the original test 

of independence, 

*= Il (-)"m|tJD-i|'"exp(-tr(tJD-1)), 
j=i \rn / 

it follows from the theorem that — 2 log A has approximately a chi-
square distribution with Np2 degrees of freedom. 
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