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LARGE ABELIAN SUBGROUPS OF SOME INFINITE GROUPS 
VANCE FABER 

ABSTRACT. A generalization of the following conjecture of 
W. R. Scott is proved. If (Ha)a^g is a well-ordered descending chain 
of subgroups of a group with the property that Hß = Oa<ßHa for 
limit ordinals, then [ H 0 : H8] ^ 11« <«[**<* : H a + 1 ] . Using this, 
we show that the members of certain classes of infinite groups are 
guaranteed to have large abelian subgroups. 

1. Introduction. Following Kurosh [5, p. 171], a totally ordered 
system <7Z of subgroups of a group is said to be complete if for an 
arbitrary subsystem of li, the unions and the intersections of the sub
groups forming the subsystem belong to ^U. W. R. Scott [8, p. 21] 
has conjectured that, if (Ha)a^s is a well-ordered descending complete 
system of subgroups of a group H0, then 

(1) [H0:H6] ^ I ] [Ha:Ha+l\. 
a<ò 

In a private communication, Scott has shown that this is indeed 
true for 8 = o>, the first infinite ordinal, and has stated that under 
these same conditions both he and, independently, A. Kruse have 
proved that 

[H0:H,]^ [ f i [Ha:Ha+1]]w. 

In §3 we shall establish a generalized form of Scott's conjecture 
from which the latter can be deduced. In addition, we shall find a 
lower bound for [ Ho : H8] which will be useful in §4. 

If m is a cardinal number, we define exp m = exp lm = 2m. Induc
tively, if n is any positive integer, we define expn+1ra = exp expnm. 
In §4 we utilize equation (1) to investigate the existence of large 
abelian subgroups of certain infinite groups. For example, C. R. 
Kulatilaka has shown [4, p. 241] that every infinite SJ*-group G 
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has an infinite abelian subgroup A such that A<i2 G (A is normal in 
its normal closure, AG). We shall show that every infinite SI*-group 
G has an abelian subgroup A such that exp2|A| ^ \G\, in fact, Theorem 
5 states that G need only have an ascending invariant series with FC 
factors. For similar results on large discrete subspaces of topological 
spaces, the reader should see [2] and [3]. 

2. Notation. Let S and T be sets. S < T will always mean strict 
inclusion. The cardinality of S will be denoted by |S|. If G is a group 
and H is a subgroup, we write H < n G if there is an ascending normal 
series 

H= H0<HX< • "<Hn= G 

from H to G. C(H) = C (H ^ G) denotes the centralizer of H in G, 
while N(H) = N (H ^ G) denotes the normalizer of H in G. A trans
versal for H in G is a full set of distinct coset representatives for H 
in G; if a transversal contains the identity, it is said to be normalized. 

Let sym |S| = sym1 |S| be the order of the symmetric group on |S| 
letters; if n is a positive integer, define symn+1 |S| = symsymn|S|. We 
shall frequently make use of the fact that 

| A u t ( G ) | ^ s y m | G | , 

where Aut (G) is the group of automorphisms of G. 
We assume the terminology of §57 and §63 of [5] to denote 

various classes of generalized solvable and nilpotent groups. 
Let Fi(G) be the set of all elements in G which have at most a 

finite number of conjugates in G. As in [1], we define the upper 
FC-series of G to be the ascending characteristic series 

E = Fo(G) < F^G) < • • • < Fa(G) < • • • 

where Fa+l(G)IFa(G) = Fi(G/Fa(G)), and if ß is a limit ordinal, then 
Fß(G) = LU/?Fa(G). If F^G) = G, G is said to be an FC-group. 
If Fa(G) = G for some a, then G is a ZFC-group; if a is an integer, G 
is FC-nilpotent. 

If m is an infinite cardinal, let Mi(G) be the set of all elements in 
G which have at most m conjugates in G. By analogy with the upper 
FC-series, we define the upper mC-series of G to be the ascending 
characteristic series 

E = Mo(G) < M^G) < • • • < Ma(G) < • • • 

where Ma+l(G)lMa{G) = Mi(G/Mtt(G)), and if 0 is a limit ordinal, then 
Mß(G) = (Ja<ßMa(G). If Mi(G) = G, Gis anmC-group; if Ma(G) = G 
for some a, then G is a ZmC-group. 
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If H is a class of groups, we let 3Ê I* be the class of all groups having 
an ascending invariant series with factors in $ . If every subgroup 
and every homomorphic image of an H -group is an # -group, then 
the same holds true for TU Z*-groups [5, §56]. 

Let ^U = (AJaGW be a complete ordered system of subgroups of a 
group G. We shall suppose that W is ordered by a relation < such 
that a<ß implies that A« < Aß. If a has an immediate successor 
in W, we denote it by a + 1. Let ^ be the set of all a in W for which 
a + 1 exists. If W is well ordered, H is an ascending series; if W 
with the inverse ordering is well ordered, U, is a descending series. 

If a is an ordinal, we say a is of the first kind if it has an immediate 
predecessor; otherwise, a is of the second kind. A limit ordinal is any 
nonzero ordinal of the second kind. 

3. The index theorems. 

THEOREM 1. Let ^U = (A^aswbe a complete ordered system of 
subgroups of a group G containing the whole group G = \ and 
some Ao = \\aewAx- Then 

[ G : A o ] g r i [ 4 , + i : 4 J . 

PROOF. Let R^ be a transversal for Aa in A a + 1 for each a G <ß. 
Let Ta be a transversal for Aa in G for each a G W. For each g G T0, 
let g« be the unique element in Ta such that Aag„ = Aag. If a EL £ , 
then consider AagB(gB+1)"1. Since A a + 1g a + 1 = A^+ig and Aaga = Aag, 
it follows that g(g a+i) - 1 G A a + 1 and that gag"1 €z Aa^ Aa+1; and, 
consequently, that ga(ga+i) -1 G. Aa+i. Thus we can define a unique 
point Fg in the cartesian product, J][a e^K«, by the two conditions 

(i) Fg(a) G ZL 
(ii) AaFg(a) = Aaga(ga+1)~1, 

for all a G ^. If the function F taking g to Fg is one-to-one, then 
| T01 = n « ^ l ^ * l > t n e conclusion of the theorem. 

If Fg = Fh for g and /i in T0, then by (ii) 

(*) A*ga(g«+l)_1 = AAtiK+l)'1 

for all a G ^ . Let P(a) be the statement that gfx= ha for all a G W. 
Since there is only one element in Tß, P(fx) obviously holds. If 
[S(l), S(2)] is a Dedekind section taken in W having the property 
that P(a) holds for all elements a G S(2), then we can easily find some 
ß G S(l) for which P(ß) holds. Suppose this were not the case, then 
ga^ ha for every a G S(l). Since A«g = A ^ ^ AJia = AJi, then 
gh-l^Aa for every a £ S ( l ) ; and so gh~l $ Uaes(i)Aa. But by 
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assumption, gh~l E A, for all a G S(2), and thus Ay = UaES(i)A* 
must be the last element of S(l). Similarly, A„g = A„/i for each 
a G S(2) implies that gh~l G Haes^A«. Hence n«es(2)Aa cannot be 
in S(l) and, therefore, must be the first element of S(2), namely 
Ay+i. But(*) andg y + 1 = hy+i together yield Aygy = Ayhy, contradicting 
the assumption that gy ^ hy. 

Let S ' (2 )= {aEW\a^ß} and let S'(l) be its complement in 
W. Then [S'( l) , S'(2)] is a section in W with S'(2) > S(2). Since 
gß = hß, we have gh~l G Aß ^ \ for every a^ ß, that is, goc= ha 

for all a E S '(2). Thus, by induction on the ordered set W [9, p. 
264], P(a) holds for all a G W. 

To complete the proof, we note that g0L= ha for all a E W implies 
that gh~l E A« for all a, and hence that gh~l E C\aewAx = AQ. Thus 
g = h and F is one-to-one. 

Statement (1) in the introduction is easily seen to be that special 
case of Theorem 1 in which W with the inverse ordering is a well-
ordered set. 

THEOREM 2. Let ^U = ( A ^ e w be a complete ordered system of sub
groups of a group G containing the whole group G = A^ and some 
Ao = Pl«ewAa. Then 

S l i W A J ^ [G:Ao]. 

PROOF. If Q is finite, one can easily establish by induction that 

2[À. + i :ÀJ ^ I l [ 4 . + i : 4 J , 

the desired result in this case. 
If Q. is infinite, we shall establish the somewhat stronger statement 

(2) E [ 4 . + i : 4 > ] ^ [G:Ao]. 

Let i^ be a normalized transversal for A^ in A„+1 for each a E £. 
Let La be a normalized transversal for Ao in A„ for each a E Q. The 
main steps in the proof consist of showing that: 

(i) LaRa is a transversal for Ao in Aa+i for each a £ ^ ; 
(ii) {1} \Ja GgiLaRcSLat) is a transversal for Ao in G, and this union 

is disjoint; 
(iii) | I « , f t , | S 2 M l Z t f | . 

Since ^ is infinite, (iii) implies (2). Details are omitted. 
REMARK. If ^U is a complete ordered system as in the theorem, let 

2 {<U) = 2 [ 4 , + 1 : A J , n ( ^ ) = f i [4.+1 : AJ. 
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If the complete ordered system ll ' is a refinement of fZZ, then it is 
easily shown that 

2(7*')^ S(^)g [G:Ao] =s n(^)ân(^'), 
that is, the finer the system becomes, the worse the approximation to 
[ G : AQ] . However, using a general fact from cardinal arithmetic 
[9, p. 418], we obtain 

By examining first the case where £ is finite, and then the case where 
£ is infinite, one gets 

S ( ^ ) g [G:AQ] g 11(00 g exp X {11) g exp [ G : ilo]. 

Hence both 2(0/) and n(cZ^) are limited in range. In fact, if G is 
infinite and we assume the generalized continuum hypothesis, there 
are only two possible values for [ G : Ao] : 2 (7^) or exp 2((7^); also, 
there are only two possible values for II(TÌ): [G : Ao] or exp [G : Ao]. 
The only combination of these possibilities which cannot occur is 
[G : Ao] = exp 2 ( ^ ) andll(TZ) = exp [G : Ao]. 

4. Large abelian subgroups. 

LEMMA [4, p. 240]. If A is a maximal normal abelian subgroup of 
a group G and if Gl A is a ZA-group, then A— C(A). 

COROLLARY 1. If A is a maximal normal abelian subgroup of an 
infinite group G and if Gl A is a ZA-group, then exp \A\ i= |G|. 

PROOF [4, p. 240]. By the lemma, A = C(A). Hence Gl A is 
isomorphic to a subgroup of the group of automorphisms of A; and 
so if A were finite, G would also be finite. Thus A must be infinite 
and |Aut (A)| g exp |A|. It follows that 

\G\ = \A\ \G1A\ =§ \A\ |Aut (A)| S exp |A|. 

THEOREM 3. If Ax is a normal abelian subgroup of an infinite group 
G and if GlAi is a ZFC-group, then G has an abelian subgroup A 
containing Ax such that exp |A| ^ |G|. 

PROOF. Let Ao = E, H0 = G and HY = C(Al â G). Inductively, 
suppose that we have defined the ascending chain (Atx)a<ß and the 
descending chain (Ha)a<ß such that Aa^Z(Ha) for all a<ß. If ß 
is a limit ordinal, let Aß = {Ja<ßA« and let H^ = f]a<ßHa. If0 = a + 1 
for some ordinal a, let the superscript ~ denote homomorphic images 
in HJZ(Ha). Since Ha is a ZFC-group, if it is not trivial, there exists 
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an element xa+i in ffa\Z(Ha) such that xa+i is in Fi(Ha). Let A*+i 
= (xa+l)Z(Ha), and let H a + 1 = C (A^+i = Ha). Hence for all a, 
\ < ii^+i unless Ha = Z(ffa), that is, unless Ha is abelian. Let y be 
the first ordinal such that Hy is abelian. 

We note that since xa+i has onlv a finite number of conjugates in 
Hm n a + 1 = [H a :N(A, + 1 ^ H t t ) ] = [H t t :N(£ , + 1 ^ Ha)] is finite. 
Thus 

[Ha : ffa+1] = V i [ N ( 4 + i ^ Ha) : C(4 , + 1 ^ Htt)] 

^ n a + 1 |Aut(A*+i)|. 

Hence by Theorem 1 

| G | = \Hy\[G:Hy]ê \Hy\ ft[Ha:Ha+1] 

g |Hy| n»V.+i |Aut(A,+ i ) | ; 

and so if Hy were finite, G would also be finite. Thus Hy is infinite and 
it follows by equation (2) that 

| G | g \Hy\ FI No | A " + l l =|H y |Ko 2 " < ï | A " + l i 

g |Hy |Xo^l=exp|H7 | . 

THEOREM 4. If Ax is a normal FC-subgroup of an infinite FCre
group G, then G has a ZFC-subgroup H containing Ax such that 
exp \H\ ^ \G\. 

PROOF. Let H0 = G and let AQ = E. If possible, let Aa+i be a 
normal subgroup of Ha such that Aa+iIAa is a nontrivial normal FC-
subgroup of H J An, then let Ha+i be the normal subgroup of Ha such 
that Ha+lIAa = (Aa+1/Aa)C (A a + 1 /A a ^ HJAJ. If 0 is a limit ordinal, 
let Aß = Ua</sAa and let Hß = Oa<ßHa. Since HJA^ is an FCZ*-
group, if it is not trivial, then it has a nontrivial normal FC-subgroup. 
Hence Aa+i > \ unless Ha = A«. Thus there is a first ordinal y such 
that Hy = Ay. 

Since Aa+iIAa is an FC-group, using the definition of Ha+1 , we see 
that each element in Aa+iIAa has only a finite number of conjugates in 
AylAa. Thus Ay is a ZFC-group. It follows by the method of the pre
vious argument (Theorem 3) that 

[G:A,]^ f i [HJAa:Ha+lIAa\ ^ U |Aut (Aa+lIAa)l 
a <y ex <y 

Again, Ay must be infinite, so by Theorem 2 
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* < y 

Thus 

|G |^ Ko '^^expKI. 

Theorem 3 together with Theorem 4 gives 

THEOREM 5. If G is an infinite FCI*-group and if Ax is a normal 
abelian subgroup of G, then G has an abelian subgroup A containing 
Ai such that exp2|A| i? |G|. 

We would like to show that an infinite group G, every subgroup of 
which is subnormal, has an abelian subgroup A such that exp2|A| ^ |G|. 
Since S/*-groups are FCI*-groups, this would certainly be the case if 
G were always an SZ*-group; but this is an open problem, so we settle 
for 

THEOREM 6. If an infinite group G has an abelian subgroup A 
such that A<\nG and such that \C(A)\ g sym \A\, then expn|A| ^ |G|. 

PROOF. Let A = AQ < Ax < • • • < ] A n = G b e a finite normal 
series from A to G. For each integer k < m, 

|Afc+1| ^ \N(Ak)\ = [N(Ak) : C^)] \C(Ak)\ 
^ s y m l A f c H C ^ I ^ s y m l A f c l . 

Proceeding by induction, we get 

\G\ = |A„| g sym»|A|. 

Again, A cannot be finite, so symn|A| = expn|A|. 

THEOREM 7. If Hi is a normal mC-subgroup of an infinite mCI*-
group G, then G has a ZmC-subgroup H containing Hi such that 
exp |H| = |G|. If Ai is a normal abelian subgroup of an infinite 
ZmC-group H, then H has an abelian subgroup A containing Ai such 
that mlAl== \H\. Thus, if AY is a normal abelian subgroup of an 
infinite mCI*-group G, then G has an abelian subgroup A containing 
Ai such that exp m'Al i? |G|. 

PROOF. The arguments used above are easily applied here. Details 
are omitted. 

REMARK. If G is any group, the Fitting subgroup of G, *>(G), is de
fined to be the product of all of the normal nilpotent subgroups of 
G. If G coincides with v(G)9 G is said to be a Fitting group. If G is 
an S7*-group, then C(v(G)) is contained in v(G). (For details see 
[7, p. 16].) Thus, if G is an infinite S/*-group, exp KG)I = |G|. 
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Consequently, if we knew that every infinite Fitting group N had an 
abelian subgroup A such that exp \A\ = |N|, then we could easily 
deduce that every infinite SZ*-group G has an abelian subgroup A 
with exp2 \A\ è |G|. We show 

THEOREM 8. If one assumes the generalized continuum hypothesis, 
then every infinite Fitting group G has an abelian subgroup A such 
that exp | A | ^ |G|. 

PROOF. Since Fitting groups are SZ*-groups, by Theorem 5, G has an 
abelian subgroup A with exp2 |A| = |G|. 

Let Ka be the order of G. If a is of the second kind, then we must 
have |A| = |G|. If a is of the first kind, but a — 1 is of the second 
kind, then we cannot have exp \A\ < \G\. For, if \A\ < Ka_i, then 
exp2 \A\ < Ka_i, while if \A\ = Ka_1? then exp \A\ = Xa = |G|. 

So we may assume that neither a nor a — 1 is of the second kind. 
If |xG| = \G\ for some x G G, then by Corollary 1, xG has an abelian 
subgroup B with exp |B|i^ |xG| = |G|. Thus we may assume that 
|xG| < \G\ for all x in G. But then G is an Xa_iC-group; and so by 
Theorem 7, G has an abelian subgroup B such that Xj?!i = Xa. If 
| B | S X a _ 2 , then KJ^i = KT-F 2 = Ka-i, a contradiction. Thus 
\B\ è K«_i; but then exp |B| ^ exp Xa_i = Xa. 

REMARK. If G is any group, the Gruenberg (respectively, Baer) 
radical of G, p(G), is the group generated by all the ascendant (re
spectively, subnormal) abelian subgroups of G [7, p. 100]. One can 
prove that if G is an SN*-group (respectively, S/*-group), then 
C(p(G)) is contained in p(G). (See, for example, [6, p. 352].) 
Thus, if G is an infinite SN*-group (respectively, S/*-group), then 
exp |p (G) |= |G|. We note, however, that the Kovacs-Neumann 
example [7, p. 110] is an infinite locally nilpotent p-group with 
trivial Gruenberg radical. If we generalize this example by wreathing 
together cô  copies (instead of only o>x copies) of Zp, and if we assume 
the generalized continuum hypothesis, we then discover that there 
exists a locally finite p-group G in which each abelian subgroup A 
has expn \A\ < \G\ for all positive integers n. For details, see [7, 

p. m ] . 
There is an infinite two-step nilpotent group G which has a maximal 

normal abelian subgroup A such that exp \A\ = \G\ [8, 9.2.17]. This 
shows that the bounds given in Corollary 1 and Theorem 3 are the 
best possible. The author does not know whether any of the other 
results are the best possible. There seems to be no known counter
example to the following question: Does every locally nilpotent 
group of order > exp m have an abelian subgroup of order > m? 
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