GENERALIZATIONS OF MIDPOINT RULES

ROBERT E. BARNHILL

Abstract

A midpoint rule proposed by Jagermann and improved upon by Stetter is generalized to Hermite-type quadrature rules and to first degree cubature rules. Remainder terms are included in both cases.

l. Introduction. This note contains two types of generalizations of a midpoint rule proposed by Jagermann [1] and improved upon by Stetter [3]. The first generalization involves a Hermite type of midpoint rule and is discussed in $\$ 2$. The second generalization concerns cubature rules for a function of two variables and is in $\$ 3$. In both cases, error terms are included, from which asymptotic estimates can be derived.
2. Hermite-type midpoint rules. The integral to be approximated is $\int_{a}^{b} p(x) f(x) d x$, where $p(x) \geqq 0, p(x)$ does not vanish identically on any subinterval of $[a, b]$, and $\int_{a}^{b} p(x) d x=1$, Stetter [3] has proved the following:

Let $N \geqq 1$ and

$$
\mathrm{S}_{N}(f) \equiv \int_{a}^{b} p(x) f(x) d x-\frac{1}{N} \sum_{i=0}^{N-1} f\left(a_{i}\right)
$$

where $\quad a_{i}=N \int_{x_{i}}^{x_{i+1}} \operatorname{tp}(t) d t, \quad i=0,1, \cdots, N-1$, and the x_{i}, a $=x_{0}<x_{1}<\cdots<x_{N}=b$, are chosen so that $1 / N=\int_{x_{i}}^{x_{i+1}} p(x) d x$. Then $\mathrm{S}_{N}(f)=\frac{1}{2} \mathrm{~S}_{\mathrm{N}}\left(x^{2}\right) f^{\prime \prime}(\epsilon), \quad a<\epsilon<b$.

We generalize this theorem as follows:
Theorem 1. Let

$$
R_{N}^{(1)}(f) \equiv \int_{a}^{b} p(x) f(x) d x-\left[\frac{1}{N} \sum_{i=0}^{N-1} f\left(a_{i}\right)+\sum_{i=0}^{N-1} E_{i}(x) f^{\prime}\left(a_{i}\right)\right]
$$

where $p(x)$ is as above,

$$
E_{i}(x)=\int_{x_{i}}^{x_{i+1}} x p(x) d x-a_{i} / N
$$

and the a_{i} are chosen so that

$$
\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{2} d x=0
$$

Received by the editors April 8, 1970.
AMS 1970 subject classifications. Primary 41A55, 65D30.
Copyright © Rocky Mountain Mathematics Consortium

Then

$$
R_{N}{ }^{(1)}(f)=\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} p(x) f^{(3)}\left(\epsilon_{i}(x)\right)\left(x-a_{i}\right)^{(3)} d x,
$$

where $x_{i}<\epsilon_{i}(x)<x_{i+1}$ and $\left(x-a_{i}\right)^{(k)} \equiv\left(x-a_{i}\right)^{k / k!}, \quad k$ a positive integer.

Proof. First,

$$
\begin{aligned}
f(x)= & f\left(a_{i}\right)+f^{\prime}\left(a_{i}\right)\left(x-a_{i}\right)+f^{\prime \prime}\left(a_{i}\right)\left(x-a_{i}\right)^{(2)} \\
& +f^{(3)}\left(\epsilon_{i}(x)\right)\left(x-a_{i}\right)^{(3)}
\end{aligned}
$$

so that

$$
\begin{aligned}
\int_{x_{i}}^{x_{i+1}} p(x) f(x) d x= & \frac{f\left(a_{i}\right)}{N}+f^{\prime}\left(a_{i}\right) \int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right) d x \\
& +\int_{x_{i}}^{x_{i+1}} p(x) f^{(3)}\left(\epsilon_{i}(x)\right)\left(x-a_{i}\right)^{(3)} d x .
\end{aligned}
$$

A summation of the last equation on i from 0 to $N-1$ completes the proof. Q.E.D.

We remark that Stetter's choice of the a_{i} was made so that

$$
\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right) d x=0
$$

His definition of the x_{i} was the same as the above.
The definition of a_{i} given above is equivalent to

$$
\begin{aligned}
& a_{i}=\left[\int_{x_{i}}^{x_{i+1}} x p(x) d x \pm\left\{\left[\int_{x_{i}}^{x_{i+1}} x p(x) d x\right]^{2}\right.\right. \\
&\left.\left.-\left[\int_{x_{i}}^{x_{i+1}} p(x) d x \int_{x_{i}}^{x_{i+1}} x^{2} p(x) d x\right]\right\}^{1 / 2}\right] / \int_{x_{i}}^{x_{i+1}} p(x) d x
\end{aligned}
$$

and it follows that the two possible values of a_{i} are both complex numbers. Either possible value may be used, but the function f must now be analytic at the a_{i}.

The remainder term $R_{N}{ }^{(1)}$ cannot in general be simplified because the factor $\left(x-a_{i}\right)^{(3)}$ can be of variable sign. However this can be remedied as follows:

Theorem 2. Let

$$
\begin{aligned}
R_{N}^{(2)}(f) \equiv & \int_{a}^{b} p(x) f(x) d x \\
& -\sum_{i=1}^{N-1}\left[\frac{f\left(a_{i}\right)}{N}+A_{i} f^{\prime}\left(a_{i}\right)+B_{i} f^{\prime \prime}\left(a_{i}\right)\right]
\end{aligned}
$$

where the x_{i} are as before and the a_{i} are chosen so that

$$
\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{3} d x=0, \quad A_{i}=\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right) d x,
$$

and

$$
B_{i}=\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{(2)} d x
$$

Then $R_{N}{ }^{(2)}(f)=f^{(4)}(\epsilon) R_{N}{ }^{(2)}\left(x^{(4)}\right), a<\epsilon<b$.
Proof. Now

$$
\begin{aligned}
f(x)= & f\left(a_{i}\right)+f^{\prime}\left(a_{i}\right)\left(x-a_{i}\right)+f^{\prime \prime}\left(a_{i}\right)\left(x-a_{i}\right)^{(2)} \\
& +f^{(3)}\left(a_{i}\right)\left(x-a_{i}\right)^{(3)}+f^{(4)}\left(\epsilon_{i}(x)\right)\left(x-a_{i}\right)^{(4)}
\end{aligned}
$$

Multiplication of this equation by $p(x)$, integration from x_{i} to x_{i+1}, and summation on i from 0 to $N-1$ yields the desired quadrature sum. The remainder term is

$$
\begin{aligned}
R_{N}^{(2)}(f) & =\sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} p(x) f^{(4)}\left(\epsilon_{i}(x)\right)\left(x-a_{i}\right)^{(4)} d x \\
& =\sum_{i=0}^{N-1} f^{(4)}\left(\epsilon_{i}\right) \int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{(4)} d x \\
& =f^{(4)}(\epsilon) \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{(4)} d x
\end{aligned}
$$

by the application of the two mean value theorems. Finally, if $R_{N}{ }^{(2)}(f)=f^{(4)}(\epsilon) C_{N}, \quad C_{N} \quad$ a constant, then $\quad C_{N}=R_{N}{ }^{(2)}\left(x^{(4)}\right)$ by inspection. Q.E.D.

The deeper reason that $R_{N}{ }^{(2)}(f)$ has a simpler form than $R_{N}{ }^{(1)}(f)$ is that the Peano kernel is of one sign for $R_{N}{ }^{(2)}(f)$.

Since a_{i} in Theorem 2 must satisfy a cubic equation, there are three possible choices for a_{i}. At least one of these is real and it must be in $\left(x_{i}, x_{i+1}\right)$ since, if not, the conditions on p imply that $\int_{x_{i}}^{x_{i+1}} p(x)\left(x-a_{i}\right)^{3} d x=0$ is impossible. Although Theorem 2 is
true for all three choices, the real root is the one that should be used. The fact that there is a real root for a_{i} makes Theorem 2 an improvement over Theorem 1. Also f need only be in $C^{4}[a, b]$ for Theorem 2 rather than analytic as in Theorem 1.

We remark that Theorems 1 and 2 can, of course, be generalized to higher-order rules.
3. Cubature midpoint rules. We discuss two cubatures to approximate the integral $\int_{a}^{b} \int_{c}^{d} p(x, y) f(x, y) d y d x, p(x, y) \geqq 0$ and >0 except on a set of measure zero. The triangular Taylor's expansion is the following [2]:

$$
\begin{align*}
f(x, y)= & f\left(a_{i}, b_{j}\right)+f_{1,0}\left(a_{i}, b_{j}\right)\left(x-a_{i}\right)+f_{0,1}\left(a_{i}, b_{j}\right)\left(y-b_{j}\right) \\
& +\frac{1}{2}\left[f_{2,0}(\boldsymbol{\epsilon}, \boldsymbol{\eta})\left(x-a_{i}\right)^{2}+2 f_{1,1}(\boldsymbol{\epsilon}, \boldsymbol{\eta})\left(x-a_{i}\right)\left(y-b_{j}\right)\right. \tag{1}\\
& \left.+f_{0,2}(\boldsymbol{\epsilon}, \boldsymbol{\eta})\left(y-b_{j}\right)^{2}\right]
\end{align*}
$$

ϵ between x and a_{i} and η dually. We must assume that there exist x_{i} and y_{j} such that

$$
\begin{equation*}
\frac{1}{M N}=\int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}} p(x, y) d y d x \tag{2}
\end{equation*}
$$

(In the case of functions of one variable, $\left\{x_{i}\right\}$ such that $1 / M$ $=\int_{x_{i}}^{x_{i+1}} p(x) d x$ exist because the positivity of $p(x)$ ensures the existence of the appropriate inverse function. Cf. [3].) A special case in which the above always holds is if $p(x, y)=p_{1}(x) p_{2}(y)$ where p_{1} and p_{2} are both $\geqq 0$ and >0 except on a set of measure zero. However, there are examples in which equation (2) holds and $p(x, y)$ is not of the form $p_{1}(x) p_{2}(y)$. Such an example can be constructed as follows: On each subrectangle $\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]$, let $p(x, y)$ be a pyramid that is zero on the boundary of the subrectangle and has positive height $h_{i j}$ such that (2) obtains. Specifically, for the rectangle $[-1,1] \times[-1,1], p(x, y)$ is defined in the figure below.

Thus (2) is equivalent to the following:

$$
1 / M N=\left[\left(x_{i+1}-x_{i}\right)\left(y_{j+1}-y_{j}\right) h_{i j}\right] / 3
$$

so that

$$
h_{i j}=3 /\left[M N\left(x_{i+1}-x_{i}\right)\left(y_{j+1}-y_{j}\right)\right]
$$

Now we multiply equation (1) by $p(x, y)$ and integrate from x_{i} to x_{i+1} and y_{j} to y_{j+1}. Since

$$
\frac{1}{M N}=\int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}} p(x, y) d y d x
$$

the cubature sum

$$
\frac{1}{M N} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f\left(a_{i}, b_{j}\right)
$$

is exact for constant functions. Let the a_{i} and b_{j} be so chosen that
and

$$
\int_{y_{j}}^{y_{j+1}} \int_{x_{i}}^{x_{i+1}} p(x, y)\left(x-a_{i}\right) d x d y=0
$$

i.e., if $\quad \int_{y_{j}}^{y_{j+1}} \int_{x_{i}}^{x_{i+1}} p(x, y)\left(y-b_{j}\right) d x d y=0$,

$$
I_{i j}(g) \equiv \int_{x_{i}}^{x_{i+1}} \int_{y_{j}}^{y_{j+1}} p(x, y) g(x, y) d y d x
$$

then

$$
\begin{equation*}
a_{i}=\frac{\int_{y_{j}}^{y_{j+1}} \int_{x_{i}}^{x_{i+1}} p(x, y) x d x d y}{\iint p(x, y) d x d y} \equiv \frac{I_{i j}(x)}{I_{i j}(1)} \quad \text { and } \quad b_{j}=\frac{I_{i j}(y)}{I_{i j}(1)} . \tag{3}
\end{equation*}
$$

$$
(-1,-1)
$$

$$
(-1,1)
$$

$(1,-1)$

(1, 1)

Theorem 3. Let

$$
R_{M N}(f)=\int_{a}^{b} \int_{c}^{d} p(x, y) f(x, y) d y d x-\frac{1}{M N} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f\left(a_{i}, b_{j}\right),
$$

where $p(x, y)$ is as above, the a_{i} and b_{j} are as in equation (3) and the x_{i} and y_{j} as in (2). Then $R_{M N}(f)$ has the following representations:

$$
\begin{align*}
& R_{M N}(f)=f_{2,0}(\tilde{\boldsymbol{\epsilon}}, \tilde{\boldsymbol{\eta}}) R_{M N}\left(x^{(2)}\right)+f_{0,2}(\boldsymbol{\gamma}, \boldsymbol{\delta}) R_{M N}\left(y^{(2)}\right) \\
& \quad+\sum_{i, j} \int_{y_{j}}^{y_{i+1}} \int_{x_{i}}^{x_{i+1}} p(x, y) f_{1,1}\left(\epsilon_{i}(x), \eta_{j}(y)\right)\left(x-a_{i}\right)\left(y-b_{j}\right) d x d y, \tag{4}
\end{align*}
$$

$a<\tilde{\epsilon}, \gamma<b$ and $\tilde{\boldsymbol{\eta}}, \delta$ dually.

$$
\begin{align*}
R_{M N}(f)= & \sum_{i, j} f_{1,1}\left(a_{i}, b_{j}\right) \\
& \cdot \int_{x_{i}}^{x_{i}+} \tag{5}\\
& \int_{y_{j}}^{y_{j+1}} p(x, y)\left(x-a_{i}\right)\left(y-b_{j}\right) d y d x \\
& +f_{2,0}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\beta}_{1}\right) R_{M N}\left(x^{(2)}\right)+f_{0,2}\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{2}\right) R_{M N}\left(y^{(2)}\right) \\
& \quad-f_{2,2}\left(\boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{3}\right) R_{M N}\left(x^{(2)} y^{(2)}\right),
\end{align*}
$$

$a<\alpha_{i}<b, i=1,2,3$ and the β_{i} dually.
Proof. 1. Equation (4) follows from (1), since

$$
\begin{aligned}
& R_{M N}(f)=\frac{1}{2} \sum_{i, j}\left[\iint p(x, y) f_{2,0}(\epsilon, \eta)\left(x-a_{i}\right)^{2} d x d y\right. \\
& \quad+2 \iint p(x, y) f_{1,1}(\epsilon, \eta)\left(x-a_{i}\right)\left(y-b_{j}\right) d x d y \\
& \left.\quad+\iint p(x, y) f_{0,2}(\epsilon, \eta)\left(y-b_{j}\right)^{2} d x d y\right]
\end{aligned}
$$

where the integrals are over $\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]$ and $\epsilon=\epsilon_{i}(x)$, $\eta=\eta_{j}(y)$. The two mean value theorems can be used on the first and third integrals, but not on the second one. E.g., the first sum becomes $f_{2,0}(\tilde{\boldsymbol{\epsilon}}, \tilde{\boldsymbol{\eta}}) \sum_{i, j} I_{i j}\left[\left(x-a_{i}\right)^{(2)}\right]$ and this equals $f_{2,0}(\tilde{\boldsymbol{\epsilon}}, \tilde{\boldsymbol{\eta}}) R_{M N}\left(x^{(2)}\right)$, as can be seen by applying $R_{M N}$ to $x^{(2)}$.
2. We could consider the $f_{1,1}$ terms in (4) as part of the cubature sum, analogous to $\$ 2$. If not, then it is desirable to get $f_{1,1}$ outside the integral and this is the motivation for (5).
Use a rectangular Taylor's expansion [2] as follows:

$$
\begin{aligned}
f(x, y)= & f\left(a_{i}, b_{j}\right)+f_{1,0}\left(a_{i}, b_{j}\right)\left(x-a_{i}\right)+f_{0,1}\left(a_{i}, b_{j}\right)\left(y-b_{j}\right) \\
& +f_{1,1}\left(a_{i}, b_{j}\right)\left(x-a_{i}\right)\left(y-b_{j}\right)+R(f),
\end{aligned}
$$

where

$$
\begin{aligned}
R(f)= & \left(x-a_{i}\right)^{(2)} f_{2,0}(\epsilon, y)+\left(y-b_{j}\right)^{(2)} f_{0,2}(x, \eta) \\
& -\left(x-a_{i}\right)^{(2)}\left(y-b_{j}\right)^{(2)} f_{2,2}(\epsilon, \eta) .
\end{aligned}
$$

Multiply by $p(x, y)$, integrate over $\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]$ and sum on i and j to obtain:

$$
\begin{aligned}
\iint p R(f)= & \iint p(x, y)\left(x-a_{i}\right)^{(2)} f_{2,0}(\epsilon(x), y) d x d y \\
& +\iint p(x, y)\left(y-b_{j}\right)^{(2)} f_{0,2}(x, \eta(y)) d x d y \\
& -\iint p(x, y)\left(x-a_{i}\right)^{(2)}\left(y-b_{j}\right)^{(2)} f_{2,2}(\epsilon(x), \eta(y)) d x d y
\end{aligned}
$$

The application of the two mean value theorems yields the conclusion. Q.E.D.

We remark that the idea used for one variable of using the a_{i} to move out further in the Taylor's expansion (e.g., to include f^{\prime} terms in the quadrature sum) is not effective for two variables because of the binomial effect inherent in two-dimensional Taylor's expansions.
4. Example. Let $p(x, y) \equiv 1, \quad[a, b]=[c, d]=[0,1]$. We consider Theorems $1-3$ for this case. In Theorem 1, $x_{i}=i / N$, $i=0, \cdots, N$, and

$$
a_{i}=\frac{x_{i+1}+x_{i}}{2} \pm \frac{x_{i+1}-x_{i}}{2.3^{1 / 2}}(-1)^{1 / 2}, \quad i=0, \cdots, N-1
$$

I.e.,

$$
a_{i}=\frac{2 i+1}{2 N} \pm \frac{(-1)^{1 / 2}}{2 \cdot 3^{1 / 2} N}
$$

In Theorem 2, the equation for a_{i} is the following:

$$
\begin{gathered}
a_{i}{ }^{3}-3 a_{i}{ }^{2}\left(x_{i+1}+x_{i}\right) / 2+a_{i}\left(x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}{ }^{2}\right) \\
\\
-\left(x_{i+1}^{3}+x_{i+1}^{2} x_{i}+x_{i+1} x_{i}{ }^{2}+x_{i}^{3}\right)=0
\end{gathered}
$$

If $N=1$, then $a_{0}=1 / 2$, for example.
In Theorem 3, equation (3) can be simplified. In fact, if $p(x, y)$ $=p_{1}(x) p_{2}(y)$, then a_{i} is the same as in [3], i.e.,

$$
a_{i}=\int_{x_{i}}^{x_{i+1}} p_{1}(x) x d x / \int_{x_{i}}^{x_{i+1}} p_{1}(x) d x .
$$

Then the cubature rule in Theorem 3 is a cross-product rule.
Recalling the notation of $\S 2$, we note that, for the above case, Stetter showed that

$$
\mathrm{S}_{N}\left(x^{2}\right)=1 / 12 N^{2}
$$

The remainder terms in Theorems 1-3 permit us to determine analogous results for the integration rules concerned. Noting the above equation for a_{i} in Theorem 1, we see that

$$
R_{N}^{(2)}(f)=O\left(N^{-3}\left\|f^{(3)}\right\|\right)
$$

where norm on $f^{(3)}$ is the sup norm on [0,1]. Similarly, in Theorem 2 ,

$$
R_{N}^{(2)}\left(x^{(4)}\right)=O\left(N^{-4}\right)
$$

so that

$$
R_{N}^{(2)}(f)=O\left(N^{-4}\left\|f^{(4)}\right\|\right)
$$

In Theorem 3, by the quadrature results, equation (4) yields

$$
\begin{aligned}
R_{M N}(f)= & O\left(\frac{1}{M^{2}}\left\|f_{2,0}\right\|\right)+O\left(\frac{1}{N^{2}}\left\|f_{0,2}\right\|\right) \\
& +O\left(\frac{1}{M N}\left\|f_{1,1}\right\|\right)
\end{aligned}
$$

where the norm is the sup norm on $[0,1] \times[0,1]$. Equation (5) yields

$$
\begin{aligned}
R_{M N}(f) & =O\left(\frac{1}{M N}\left\|f_{1,1}\right\|\right)+O\left(\frac{1}{M^{2}}\left\|f_{2,0}\right\|\right) \\
& +O\left(\frac{1}{N^{2}}\left\|f_{0,2}\right\|\right)+O\left(\frac{1}{M^{2} N^{2}}\left\|f_{2,2}\right\|\right)
\end{aligned}
$$

These asymptotic estimates illustrate the idea motivating Theorems 1 and 2, as well as showing a connection between the cubature and quadrature results.

Acknowledgments. This research was supported by the National Science Foundation under grant GP 9021 to The University of Utah. Insight was gained in a discussion with Professor Louis J. Grimm while the author was reviewing Stetter's paper for the Zentralblatt für Mathematik.

References

1. D. Jagermann, Investigation of a modified mid-point quadrature formula, Math. Comp. 20 (1966), 79-89. MR 32 \#8499.
2. D. D. Stancu, The remainder of certain linear approximation formulas in two variables, SIAM J. Numer. Anal. 1 (1964), 137-163. MR 31 \#1503.
3. F. Stetter, On a generalization of the midpoint rule, Math. Comp. 22 (1968), 661-663. MR 37 \#2449.

University of Utah, Salt Lake City, Utah 84112

