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FIXED LENGTH CONFIDENCE INTERVALS 
FOR PARAMETERS OF THE NORMAL DISTRIBUTION 

BASED ON TWO-STAGE SAMPLING PROCEDURES1 

L.H. KOOPMANS AND CLIFFORD QU ALLS 

1. Introduction and summary. In many industrial situations the 
statistician is required to estimate a statistical parameter not only with 
prescribed confidence or reliability but also with prescribed precision. 
The most natural procedure is to construct a confidence interval for the 
parameter for which both the confidence coefficient, 1 — a, and the 
length of the interval, 2L, can be specified in advance. 

In this paper fixed length confidence intervals based on two-stage 
sampling procedures are proposed for the variance and coefficient of 
variation in the case of a single normal distribution and for the differ
ence in means and ratio and difference of variances in the case of two 
populations. 

The usual one-stage sampling methods do not lead to confidence 
intervals with both prescribed confidence coefficient and length for 
any of the parameters we consider. In fact, no one-stage confidence 
interval can be constructed for any of these parameters which satisfy 
both requirements. (See, e.g. [1], [2].) The reason for this difficulty 
can be seen, heuristically, by studying the classical confidence interval 
for the mean /LI of a normal distribution when the variance a2 is also 
unknown. The endpoints are X ± tas/y/n where X is the mean of a 
sample of size n, ta is a percentile of the Student's t distribution, and s2 is 
the unbiased sample variance. Now our ignorance of the magnitude of 
a and consequently of its estimate s makes it impossible to select, in 
advance, a sample size n which will guarantee a prescribed bound on 
the length of this confidence interval. 

In a pioneering paper [ 7] Stein showed how to overcome this prob
lem by employing two stages of sampling. The first sampling stage is 
used to obtain an estimate of a. If the usual 100(1 — a)% confidence 
interval (above) computed for the first sample is not short enough to 
meet the length requirement, a second sample size based on the esti-
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mate of a is completed which guarantees the satisfaction of both the 
length and confidence requirements. 

A fortuitous property of the normal distribution — the independence 
of X and s2 — makes it possible to do two things in Stein's procedure 
which are seldom possible in two-stage procedures for other distribu
tions or other parameters of the normal distribution. First, if the usual 
confidence interval for the parameter computed in the first stage is 
already short enough, a second sample need not be taken. For the pro
cedures we propose a second sample of size at least one must be taken. 
Secondly, the information from the first sample can be used to estimate 
the endpoints of the confidence interval as well as determine the second 
sample size in Stein's procedure. In the procedures we propose, the 
sole use made of the first sample is to determine the size of the second 
sample. This, coupled with the fact that every problem proposed de
pends on the global inequality P(A fi B) ^ P(A) + P(B) - 1, leads to 
the expectation that these two-stage procedures are wasteful of data or 
inefficient in the traditional statistical sense. 

Why then does not one use sequential procedures? This would be 
the best in many cases. However, in many other important situations 
items are relatively inexpensive to test but the tests are very time con
suming. For example in determining the yield of, say, a new strain of 
rice, each experimental stage will require at least the time for the 
growth of the plants to maturity —a period of several weeks. The 
experimental units, either individual plants or small plots, will be 
relatively inexpensive compared with the possible economic and 
sociological cost of delaying the use of an improved product. In yet 
other situations items are relatively inexpensive to test, but the "set up" 
costs for each stage of experimentation are high. This is often the case 
when the experiment requires an expensive laboratory. In the above 
cases, sample size is not the appropriate measure of loss. The number 
of sampling stages becomes the important component of the loss func
tion. Now, sequential procedures become quite unattractive and, 
since at least two stages are needed to guarantee both preassigned 
confidence and length, procedures with exactly two stages are best. 

Though sample size is of secondary importance (when compared to 
the number of stages) in the cost of experimentation, sample sizes are 
kept within reason as much as possible in the procedures proposed 
here by taking advantage of the best one-stage procedures in each stage 
of sampling. 

Before the detailed procedures of this paper are given, two com
ments are in order. Unfortunately, little guidance is available in select
ing the first stage sample sizes, since an optimal selection (in terms of 
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the total sample size of both stages) would depend on the unknown 
parameters of the distribution. For a discussion of this problem for 
Stein's procedure, see Seelbinder [6] and Moshman [5], In terms of 
controlling total sample size it is probably better to take too large a 
first sample than one which is too small since the second stage sample 
size is often relatively sensitive to errors of estimation in the first stage. 
In lieu of no prior information, one might suggest initial sample sizes 
offrom25to50. 

Secondly, note that in the two-stage procedures given here the pre
selected length of the confidence interval, 2L, is not used until the cal
culation of the second stage sample sizes. It is therefore possible after 
the first stage is completed to adjust L to obtain smaller second stage 
sample sizes, and still preserve the confidence coefficient. Thus an 
initially "unrealistic" selection of L can be adjusted. Such a "mixed" 
scheme destroys the fixed length property, but will prove to be a useful 
(and necessary) technique in many cases. 

For the convenience of potential users, the procedures are given in 
the body of the paper and all proofs are relegated to a later section. 

2. Confidence interval for the parameters of a single normal distri
bution. LetXji,Xi2, * * *,Xim , i= 1,2, be independent, identically distri
buted N(JJL, <72) random variables. We will use subscripts 1 and 2 on 
sample sizes and estimators throughout to denote the stage of sampling 
to which that statistic applies. In all cases, 1 — a and 2L will denote 
the preassigned confidence coefficient and confidence interval length. 
Xi and S{2 will denote the sample mean and variance calculated by 

1 n i 

Xt = 2 L ^y> 
3 i = 1, 2. 

m - 1 i - i 
For completeness, Stein's procedure is included. 

A. Confidence interval for [A (Steins procedure). 
Stage 1. A first sample size nY is selected. (See [5], [6] for guide

lines on the selection of the first sample size.) On the basis of the first 
sample of ni observations, Xx and sx

2 are computed. If ta denotes the 
solution of the equation 

P ( f n i _ 1 ^ g = a/2, 

where tn { has Student's t distribution with ni — 1 degrees of freedom, 
then the confidence interval 

Xi - SitjVrTi ^ fi ^ Xi + sltjVnl 
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can be used, without further sampling, if 

SxtjVfh^ L. 

If this inequality is not satisfied we must proceed to: 
Stage 2. A second sample of size n2 = n — nY is taken where 

n = [si2ta
2IL2] + 1. (Here and henceforth, [x] denotes the largest 

integer strictly smaller than x. Thus, for example, [7.5] = 7 but 
[7] = 6.) _ 

Now, if X denotes the sample mean based on the total sample of n 
observations, the desired 100(1 — a)% confidence interval is 

X - L ^ / x ^ X + L . 

B. Confidence interval for <J2. 
Stage 1. For a preselected sample size n1? a 100(1 — al2)% upper 

confidence limit forcr2 is obtained: 

&,2 = (m - i)si2/B«,2, 

where B ^ is the solution of 

P ^ , ! ^ 8^2) = a/2, 

and Xnx -1 has the chi-square distribution with r^ — 1 degrees of free
dom. 

Stage 2. The exact second sample size, n2, is the smallest integer for 
which 

(2.1) p ( n a - ^ S x î i - , S « a + - ^ ) s i - f . 

(Throughout, "exact" is to be interpreted to mean that the prescribed 
level and confidence coefficient are guaranteed by use of the exact 
sample size.) 

It is shown in [3] that n2 is a well defined random variable and in 
§4 that the appropriate 100(1 — a)% confidence interval is 

^ ^ - * 2 2 - L ^ * 2 ^ ^ ^ s 2
2 + L. 

n2 n2 

If [(n2 — l)/n2]s2
2 "" L< 0, the lower endpoint of the interval can 

be replaced by 0. 
An approximate but explicit expression for the second sample size 

n2 based on an application of the central limit theorem is 

_ r 2x^4 (2.2) n2*= p^L]+i, 



FIXED LENGTH CONFIDENCE INTERVALS 591 

where xa is the solution of the equation 

<D(x) = 1 - o/4 

andO is the standard normal N(0,1) distribution function. 
The use of the approximate value of n% may cause the computed 

confidence interval to have confidence coefficient somewhat smaller 
than 1 — a. When this is to be avoided, the explicit expression will 
lead to a good "first guess" toward computing the exact sample size by 
means of (2.1). 

This procedure can also be used to obtain a 100(1 — a)%, length 
2 V L confidence interval fora. See reference [3]. 

C. Confidence interval for r = o7/m (the coefficient of variation) 
when it is known that JLL > c for some constant c > 0. The coefficient 
of variation, r = al/x, is a useful parameter for measuring the (normal
ized) variability of a nonnegative random variable when the distribu
tion of such a random variable is approximated by a normal distribu
tion. It is often the case that a positive lower bound, c, is known for JLL. 
In such cases, fixed length confidence intervals for T can be constructed 
in two stages of sampling. When no such bound for /x is known, it can 
be shown [2] that a purely sequential scheme is required to obtain 
confidence intervals of prescribed length. 

Stage 1. On the basis of the first sample of size n l v 100(1 — oJ4)% 
confidence intervals foro* and n are obtained: 

where 

' - ( 
*= l (ni - w y/2

; 
Ba/4 ' 

M = m a x ( x 1 - ^ , c) , M = Xx + ^ -
\ Vni J Vni 

and where 

Bait satisfies P(X^-i = B^4) = a/4 

and 

k/4 satisfies P(tni_l è £«/4) = a/8. 

Stage 2. Let \, be the unique positive real solution of the cubic 
equation 

2 V2 V2 
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As before 2L is the preselected length of the confidence interval for 
T. Let lß = 4.2/V2ö\ Now the exact second sample size n2 can be 
computed as the larger of the integers n ' and n" where n ' = [k2^2!^2] 
+ 1 and k is the solution of the equation 4>(fc) = 1 — a/8, and n " is the 
smallest integer satisfying the inequality 

/ n"l2 -, n"l2 \ 

Since Za and lß were selected to make n ' and an approximate expres
sion for n" equal, the choice n2* = [k2^2/^2] + 1 is an approximate, 
explicit solution for n2. 

Now, let 

M-* = max [& X2 - lß], M* = min [/X, X2 + Q, 

and 
a* = max [0, ((n2 - l)/n2)s2 - / J , 

(j* = min [&, ((n2 - l)/n2)s2 + t ] . 

If /A* ^ /x* and a* ^ a*, set r = (rJfJL*, r = a*//u*. Otherwise, set 
T = 0,f = 2L. 

Then, T = r = f is a 100(1 — a)% confidence interval for r of 
(maximum) length 2L. 

3. Confidence intervals for the parameters of two normal distribu
tions. Let X1? X2, • • •; Yl5 Y2, • • • be independent random variables. 
The X/s are all assumed to have the N(/JLX, crx

2) distribution and the 
Y/s the N(fJLY, &Y2) distribution. First and second stage sample sizes 
will be denoted by nxi, WYI and nx2, Ŷ2 respectively. 

A. Confidence interval for fix — MY-
Stage 1. Upper 100 V I — a/2% confidence limits are obtained for 

ax2 andoy2 on the basis of the first samples of size nX\ and ny\\ 

-2 _ (nXi - l)^xi -2 _ (nY1 - l)%2i 
O-Xl - R , ^Yl - ~ 

where Bx and By satisfy the equations 

p(x̂  g Bx) = i - v r ^ ë 
P(xl 2^ßy) = 1 - V i - a / 2 

and 
Wi = nXi — 1, m2 = nYi — 1. 

Stage 2. Let fca be the solution of the equation 
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<D(jg = 1 - a/4. 

The second sample sizes n*2 and rty2 are selected so as to minimize 
the cost of the second sample as a whole subject to the restriction 

(3.1) J ^ + ^ ) " 2 g L 

If Cx and Cy are the unit sampling costs for the two populations then 
the cost of the second sample is 

CxnX2 + cYnY2. 

An explicit allocation of sample sizes which minimizes this cost 
subject to (3.1) is 

r ka
2 Vcxßx + VCY&Y, _ I , , 

n* 2 = VU VFx °* J + 1 > 

nY2== r h? v ^ x + VCY<TY 
L 1/ VCY J Vcy 

These sample sizes are exact in the sense previously defined but are 
possibly larger than the implicitly defined solution. In the case of 
equal unit sampling costs, cx = Cy, these expressions become 

[ k2 _ _ 1 

-JÎ <rx<Px + cry) J + 1, 

[ k2 _ _ _ 1 
-JT (TY((Jx + cry) J + 1. 

The 100(1 — a)% confidence interval is now 

X2 - Y2 - L^fxx - M Y ^ X2 - Y2 + L. 

B. Confidence interval forax
2fry2. 

Stage 1. A joint 100(1 — ô 2)% confidence region foro^2 andoy2 is 
obtained based on the initial samples of sizes nX\? nyi: 

„ 2 - (nXl - 1)^X1 - 2 _ (ttxi - 1)^X1 

o«,x A*,x 

where A^x, B«,x satisfy 

P « , - , S 4,,*) = ^ ^ 

P/Y2 < R \ - ^ ~ °^ 2 

PQ(nxl-l = BaJC) ä 
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Upper and lower limits of the confidence interval for <7y2 are ob
tained from the same expressions with X replaced by Y. 

Stage 2. The (exact) second stage sample sizes nX2, ^Y2 are again 
selected to minimize the total cost of the second stage of sampling: 
Let nX2 — ™>i 4- 1, nY2 = ra2 + 1. Then, mi and m2 are to be the 
integers for which cxmi + Cyrai is smallest subject to the condition 

F(l - ULYW S Fmi> m 2 g 1 + L<fY2/<7x2) i= 1 - a/2, 

where Fmi,m2has the F-distribution with (ra1? ra2) degrees of freedom. 
Explicit values of mi an (3 m2 based on an approximation detailed in 

the proof are 

* 

_ * = {2ffx4K(Vcx + Ver) 
L%y2Vcy [ m2*= A T , . > - r / + 1 

when, as before, cx and Cy are the unit sampling costs and ka is 
the solution of the equation 

*(ßK) - *(-K) = i - f , ß = l*°£*2 • 
In the case c x = cy, 

_ r 4*x4K - — . - [-f^]+1 
'(I Y 

A simpler equation for fca, which leads to a somewhat larger value 
of ka thus to larger sample sizes, is 

<D(fca) = 1 - a/4. 

Finally, the desired 100(1 — a)% confidence interval for (JX
2I(JY2 is 

SXJSY2 - L ^ <TX
2I(TY2 ^ SXJSY2 + L-

C. Confidence interval for <TX
2 "" O"Y2- The procedure of 2.B is 

used to obtain lOOVl — a% confidence intervals for ax
2 and ay2 

separately. 

Stage 1. Let 

= o = (nxi - l)éi - o = ( n Y i - 1)*Y2I 
X Bx * Y

 BY 

when Bx is the solution of the equation 
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1 -

1 -

V I -
2 

V l -

a 

a 

P(Xlt g Bx) = 

and BY is the solution of 

P(Xl2 g ß y ) = 

for mi = nxi — 1, m2 = nYi — 1. 
Stage 2. The computation of exact sample sizes nX2, ^Y2 to mini

mize cxnX2 + cYnY2 can be carried out as follows: Fix y, 0 < y < 1, 
and determine the smallest integers m\ = m^y) and m2 = m2(y) such 
that 

r V m i äx 2 " ; ( m ' - l s W l + äx2 / = 2 
and 

P( m2 - j a i l ^ s x ^ g m2 + ̂ _-2
y)L) ^ ^ ^ 

<TY &Y 

As y varies between 0 and 1, ra^y) and m2(y) will vary discontinu-
ously. For some interval of y values, Cx^i(y) + cyra2(y) w ^ assume 
its minimum among the possible values it can assume for 0 < y < 1. 
If y* is any value of y in this interval, set 

nX2 = rniiy*), nY2 = m2(y*). 

Approximate but explicit expressions for nX2 and nY2 are 

,* = [2xjäx
4(u + vf 1 

L L 2u 2 J ' nx2 

ny2 " L v^ J + 1? 

where 

u=(cxäx4)113, v = (CYäY
4)m 

and xa is the solution of the equation 

. , . 3 + V l - a 
<*>(*)= . 

4 
If cx = cY, 

n*x2 = [°xmD] + 1, n% = [ffy^D] + 1, 

where D = 2xa
2(äx

4/3 + äY
4l3)IL2. Finally, the desired 100(1 - a)% 

confidence interval for ax
2 ~ O'r2 is 
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nv2 — 1 o raya " 1 2 r < : _ 2 2 
-JLÀ Sx2 *Y2 - L ^<TX

2- <TY2 

nX2 nY2 

< nX2 - 1 2 _ nY2 - 1 2 , r 
= SX2 5 y 2 -T L/ . 

rcx2 nY2 

4. Proofs. The proofs for the various procedures will be given using 
the notation established in the main part of the paper as much as 
possible. For clarity, it will be necessary to introduce some new nota
tion in places and to emphasize the underlying probability space 
(ft, ß ) upon which all the random variables are defined. Our notation 
will follow that of Loève [4]. For simplicity, we will designate the 
various schemes by their section and letter indices. Thus, Stein's 
procedure (which we do not reprove) would be designated as 2.A. 

2.B. First, the second sample size, the smallest integer satisfying 
(2.1), is a well defined random variable. The details of the proof of the 
measurability and finiteness of n2(o>) are given in [3]. The proof in 
[ 3] is the prototype of the arguments for the remainder of the implicit
ly defined sample sizes, and we will omit these discussions hereafter. 

Next, we show that the confidence interval given in 2.B has the 
prescribed length and confidence coefficient. Let 

Aa= [ a ^ f f ! 2 ] and B„ = [ 
I n2 I o"i2 

Recall that s2
2 depends on o> both through the second sample size 

n2(o)) and through the second stage random sample. 
Now if co G Aa Pi Ba7 then 

- ^ -*2
2(a>)-(72 1 ^ _°* ,L^L, since _ °* . ^ 1. 

n 2 I O i (û>) <Ti (Û>) 

Thus, 
n2 — 1 9 

H *22 

I n2 

- a2 | ^ L ] D Aa H Ba. 

If P^a(A) denotes the probability of the event A based on the 
N(ji, a2) distribution, we obtain from the well known inequality 

P(A n ß ) § P(A) + P(B) - 1, 

the inequalities 

p""( \J^r1 s*2 ~ a' I = L ) - Pß-a{K n Ba) 
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But by the construction of o^2, 

P„a{K) = P(X2
ni-i =

 B«/2) = 1 - ^ 2 . 

Moreover, 

* i 2 = l ) P^(n,df) , 

where 52
2(n) is the random variable s2

2 based on a second sample of 
size n and P^(n, f ) = P ^ (n2 = n, ö^2 ^ £). 

Now, let F(n, €) = P(|Xn-i - n\ ^ nIVf) and let Cn be the set of 
values of à i 2 which lead to n2 = n through the definition of n2. It 
follows that F(n, £) i£ 1 - a/2 for every f £ C n and, since [n2 = n] 
= [a!2 E Cn] , PM)(r(n2 = n, âx2 G B) = P^{n2 = n, â ^ G Cn Pi B) 
for every Borei set B. Moreover, since the events [ |(n — l)s2

2(n)la2 

— n\ = nLfê] depend only on the observations of the second sample, 
whereas events of the form [n2 = n, a i 2 G B] depend only on the 
observations from the first sample, the independence of the sample 
observations implies the independence of the two types of events. 
It follows that the conditioning on n2 = n and &x

2 = £ in the last 
expression for P^ a(Ba) can be omitted. 

Furthermore, under the condition that fx and a2 are the true mean 
and variance of the observations, (n — l)s2

2(n)/o-2has the X2_l distri
bution. Thus, 

/ I (n - l)s2
2(n) | < n L \ , ., 

Finally, we obtain 

S(1-f)|,F- ("'C" ) 
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since 2n°°=1 ?^(n, Cn) = PJJL ^ n2 < oo ) = l. 
We next indicate the basis for the approximate expression for n2. 

For even moderate values of n the difference between the distribution 
of X„2 and X2_i is negligible. Since E(Xn

2) = n and V(Xn
2) = 2n, the 

Central Limit Theorem implies that 

'(fwi81)"2*1"-1' 
Thus, if xa is the solution of the equation 

<P(xa) = 1 - a/4, 

we will have 

v I v^r \- a i 2 • 

/ IXn2-! - n I < V^L \ = , _ a_ 
U V2Ä I = V2â,2 / 2 * 

But n2 is to be the smallest integer for which 

P(ptë_i - n| ^ nLA^2) ^ 1 - a/2. 

Thus, n2 will approximately satisfy the equation 

lai°-

This suggests the approximation 

VU2*L _ * r 2*a
2g1

4 1 , , 

2.C. The confidence interval for r given here is based on Theorem 
3 of [2], and is given in detail in reference [3]. 

3.A. The statistics äX\ and ä§i are independent random variables 
since each depends on a different sample and they are the standard 
upper endpoints of lOOVl — a/2% confidence intervals for ax

2 and 
ay2 respectively. If we let 

A = [<7X
2 ^ âX

2, ay2 ^ ay2] 

and A = ()ULX,/bLy, ax
2 ,ay2) , it follows that PA( A) = 1 — a/2. 

Let ka, nX2 and ny2 be selected as described in the text and take 

B = F |X2 - Y2 - d,x - M l =i ka ( ^ + ^ Y ' 2 l . 
L \rix2 nY2 / J \ n X 2 ^Y2 -

Then 

A n B C C = [|X2 - Y2 - (fix - MY)I ^ L], 

file:///rix2
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since, by definition of n*2 and ny2, if <o €: A D B then 

|X«(«) - Y2(o>) - fo - My)! S k j - ^ - + - ^ - Y ) 1 / 2 

V nX2(co) nY2(cü) / 

g f c / ^ 2 ( o > ) + g r a H V / 2 g L 
a V nX2(o>) nY2(û>) / 

But, if X2j and Y2£ denote the second stage sample means based 
on sample sizes of; and I respectively, then 

7-1 «=1 V 

(3.A.1) £ K ( ^ + * £ ) 1 / 2 | n X 2 = j , n Y 2 = i l ) 

X JPA(nx2=7>nr2 = £). 

By the independence of the first and second stage samples the con
ditioning in the last expression can be omitted as in the proof of 2.B. 
Furthermore, when A is the "true" vector of parameter values, 
%2j — Y2Äp is normally distributed with mean JJLX " M Y and variance 
<*X2lj + OTy2Ä. T h u s , 

P*(|X2i - Y2Ä- fa - ßY)\ S ka(^ +°£j^=2<t>(ka) - 1 

= 1 - -?-
for all j , k ^ 1. It follows from (3.A.1) that 

*VB)= S ì ( l - f )^(nx2=7,ny2 = i l ) = l - f . 

Finally, PA(C) â PA(A H B) ^ PA(A) + P±(B) - 1 = 2(1 - a/2) 
— 1 = 1 — a. Thus, the confidence interval has the desired length 
and confidence coefficient. 

The explicit expressions for the second sample sizes were obtained 
by replacing the original minimization problem by the continuous 
version in which x and y are to be found which minimize cxx + Cyt/ 
subject to the restriction 

V x y I 

The Lagrange multiplier method readily leads to the solution 
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x = k4S^(^xâx + Vcffy), y = T 3 ? 7rr( V ^ ä x + V ^ ä y ) . 

The integer values of nx2, nY2 given in the text, which are obtained 
by taking the smallest integers larger than x and y, can be no smaller 
than the optimal integer solution. Consequently, both length and 
confidence coefficient specifications are met by the explicit solution. 

3.B. The proof that the confidence interval given in the text has 
the correct confidence coefficient follows closely the pattern of the 
proofs of 2.B and 3.A with 

A = [ g x
2 ^ ( 7 x 2 ^ â x 2 , g y 2 ^ a Y

2 ^ â Y
2 ] , 

2 

and 

- | " ? Ü _ £ °x 2 g y 2 ^ sx2 < ° x 2
+ J,0*2 ° Y 2 ] 

L a y 2 CTy2 < 7 X
2 _ SY2 ~ <7y2 CTY

2 OjC2 J 

L a y 2 $Y2 C7y- J LSy2 d'y- 5y2
 J 

We omit this proof. 
The explicit expressions for the second stage sample sizes were ob

tained by the following argument. The given minimization problem 
is equivalent to minimizing m2 + Krrii subject to the constraint 

P(l - a ^ Fm i ,m 2 ^ 1 + b) ^ 1 - a/2 

where K = Cx/cy, a = L(<7Y
2/âx2) and £> = L(äy2/gx2). If we 

allow L to approach 0, necessarily rrti and m2 tend to infinity. For 
large m\ and ra2, the distribution of Fmi,m2 is very nearly the same as 
the distribution of the ratio of independent normal random variables 
by the Central Limit Theorem: 

where Wx and W2 are independent N(0, 1). By a linear change of 
variables from Wu W2 to C7l5 C72 this last probability can be written 
in the form 

where Ui and U2 are bivariate N(0,1) with correlation coefficient 

p = - {(1 - aY + r}~1/2{(l + fo)2 + r}-1 /2{(l - a)(l + b) + r}, 

and r = ra2/rai. The quantities c and d are c = a/Vûï, d = b/Vt^ 
where 
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vl = 2((1 - a)'2m2-
1 + m r 1 ) , v2 = 2((1 + b)2m2-

1+ m r 1 ) . 

We restrict attention to sequences of mi and m2 values which tend 
to infinity with L in such a manner that L2mi and L2m2 have limits 
(possibly 0 or oo ) as L—» 0. It follows that c and d have limits c0 and 
do (possibly 0 or oo ) and p —» — 1 as L —> 0. Thus, the joint distribution 
of U\ and C/2 becomes singular along the line y = — x so that for 
small L 

PiU^c, U2^d) = P{-c0^U2^dç>) 
(3.B.1) 

It is easily seen from the above expressions for c and d that d0
 = ßco 

where ß is the quantity given in the text. 
We now replace the original minimization problem by the following: 

Minimize m2 + Km\ subject to the constraint 

(3.B.2) <D(£c) - 4>(-c) = 1 - a/2, 

where c is the function of mx and m2 given above (which is close to 
Co for small L). Now let ca be the solution of (3.B.2). Then, ignoring 
the fact that mi and m2 are integers, the new constraint is equivalent 
to the equation 

(3.B.3) m 2 - 1 + m 1 - 1 = fl2/(20-

The minimum value of m2 + Kmx subject to this condition is 
achieved for m2 = ^/Krrii. The explicit values of mx and m2 are now 
obtained by substituting this expression into (3.B.3). The integer 
versions of the solutions are those given in the text. 

Note that expression (3.B.2) implies that c0 and do are necessarily 
finite and positive. The alternate choice of ca is justified by the in
equality 

<ï>(/3c) - * ( - c ) > 2$(c) - 1 

which is valid since ß > 1. 
3.C. We also refer the interested reader to [3] for the proof of this 

procedure. 

Acknowledgement. We have profited from discussions of these 
procedures with Judah Rosenblatt. 
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