ON LIAPUNOV'S DIRECT METHOD

JAMES S. MULDOWNEY
We shall consider the system of ordinary differential equations

$$
\begin{equation*}
x^{\prime}=f(t, x), \quad t \in[0, \infty), \quad x \in D \tag{1}
\end{equation*}
$$

where D is an open connected subset of R^{n} containing the zero vector and f is a function from $[0, \infty) \times D$ to R^{n} such that solutions to (1) exist locally in the Carathéodory sense (cf. [4, p. 42]). We denote by $\mathcal{L}(1)$ the class of real-valued functions $V(t, x)$ on $[0, \infty) \times D$ such that $V(t, x(t))$ is nonincreasing whenever $x(t)$ is a solution of (1). A sufficient condition for $V \in \mathcal{L}(1)$ is that V be continuous in (t, x), locally Lipschitzian in x and satisfy

$$
\limsup _{h \rightarrow 0+}[V(t+h, x+h f(t, x))-V(t, x)] / h \leqq 0
$$

for all (t, x), when f is continuous (cf. [14, p. 4]).
All of the applications of Liapunov's direct method with which we are here concerned are based on the observation that if $V \in \mathcal{L}(1)$ and $\left(t_{0}, x_{0}\right),\left(t_{1}, x_{1}\right)$ are such that $t_{0}<t_{1}$ and $V\left(t_{0}, x_{0}\right)<V\left(t_{1}, x_{1}\right)$ then there is no solution $x(t)$ of (1) such that $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$.

Notation. (i) A solution $x(t)$ such that $x\left(t_{0}\right)=x_{0}$ will often be denoted $x\left(t ; t_{0}, x_{0}\right)$.
(ii) If $x_{0} \in R^{n}, r \in(0, \infty)$, then $B\left(x_{0}, r\right)=\left\{x:\left|x-x_{0}\right|<r\right\}$, where ||denotes any norm.
(iii) $2^{D}=\{X: X \subset D\}$.
(iv) Let $x, y \in R^{n}$:

$$
\begin{aligned}
& \rho(x, y)=|x-y|, \quad \text { if } x \neq \infty, y \neq \infty \\
& \rho(x, y)=\frac{1}{|x|}, \text { if } y=\infty \\
& \rho(x, X)=\inf \{\rho(x, y): y \in X\}, \quad \text { if } X \subset R^{n}
\end{aligned}
$$

and $x \rightarrow X$ means $\rho(x, X) \rightarrow 0$.
(v) If $X \subset R^{n}$ then \bar{X} and ∂X denote the closure and boundary of X respectively.

[^0]\[

$$
\begin{align*}
& V_{*}(t, x)=\inf \{V(\tau, x): 0 \leqq \tau \leqq t\} \tag{vi}\\
& V^{*}(t, x)=\sup \{V(\tau, x): 0 \leqq \tau \leqq t\}
\end{align*}
$$
\]

Definitions. (i) A solution $x(t), t \geqq t_{0}$, exists in the future if there is a (not necessarily unique) continuation of $x(t)$ throughout $\left[t_{0}, \omega\right.$) for each $\omega>t_{0}$.
(ii) A solution $x(t), t \geqq t_{0}$, is bounded in D if there is a compact $\Delta \subset D$ such that $x(t) \in \Delta$ for all $t \geqq t_{0}$.
(iii) The solutions of (1) are uniformly bounded in D if, for each compact $E \subset D$, there is a compact $\Delta(E) \subset D$ such that $x_{0} \in E$ implies $x\left(t ; t_{0}, x_{0}\right) \in \Delta(E)$ for all $t \geqq t_{0}$ and all $t_{0} \geqq 0$.
(iv) A solution $x(t), t \geqq t_{0}$, is unique in the future if it has at most one continuation throughout $\left[t_{0}, \omega\right]$ for each $\omega>t_{0}$.
(v) A solution $x(t), t \geqq 0$, which exists in the future, is stable if, for each $\boldsymbol{\epsilon}>0$, there exists a $\delta(\boldsymbol{\epsilon})>0$ such that $x_{0} \in B(x(0), \delta(\boldsymbol{\epsilon}))$ implies $x\left(t ; 0, x_{0}\right)$ exists in the future and $x\left(t ; 0, x_{0}\right) \in B(x(t), \epsilon)$ for all $t \geqq 0$.
(vi) A solution $x(t), t \geqq 0$, which exists in the future, is uniformly stable if, for each $\epsilon>0$, there exists a $\boldsymbol{\delta}(\boldsymbol{\epsilon})>0$ such that $x_{0} \in$ $B\left(x\left(t_{0}\right), \delta(\epsilon)\right)$ implies $x\left(t ; t_{0}, x_{0}\right)$ exists in the future and $x\left(t ; t_{0}, x_{0}\right) \in$ $B(x(t), \epsilon)$ for each $t \geqq t_{0}$ and each $t_{0} \geqq 0$.

Let C be a function from $[0, \infty)$ to 2^{D}.
(vii) If E, B are such that $E \subset D, E$ compact, $B \subset \bar{D}$ then C separates E from $B, E|\subset| B$, if for each $t \in[0, \infty)$ there exists a neighborhood $U(t)$ of B such that:
(a) $U(t) \cap E=\varnothing$.
(b) Every connected subset of D which intersects $U(t)$ and E also intersects $C(t)-(U(t) \cup E)$.

If, furthermore, U above may be chosen independently of t then we say C separates E from B uniformly and write $E\|C\| B$.

If $A \subset D$ and $B \subset \bar{D}$ then we write $A|\subset| B \quad(A\|C\| B)$ if $E|\subset| B(E\|\subset\| B)$ for each compact $E \subset A$.

For example, consider $D=B(0,1)$. Let

$$
\begin{aligned}
& C_{1}(t)=\bigcup_{n=1}^{\infty} \partial B\left(0,1-\frac{e^{-t}}{2 n}\right) \\
& C_{2}(t)=\bigcup_{n=1}^{\infty} \partial B\left(0,1-\frac{e^{t}}{\left(e^{t}+1\right) n}\right) \\
& C_{3}(t)=\bigcup_{n=1}^{\infty} \partial B\left(0, \frac{e^{-t}}{2 n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C_{4}(t)=\bigcup_{n=1}^{\infty} \partial B\left(0, \frac{1}{n}\right) \\
& C_{5}(t)=D
\end{aligned}
$$

then $D\left|C_{1}\right| \partial D, \quad D\left\|C_{2}\right\| \partial D, \quad D-\{0\}\left|C_{3}\right|\{0\}, \quad D-\{0\}\left\|C_{4}\right\|\{0\}$, $D\left\|C_{5}\right\| \partial D$ and $D-\{0\}\left\|C_{5}\right\|\{0\}$.
Theorem 0.1. Let $V \in \mathcal{L}(1)$.
(a) Suppose $V(t, x) \rightarrow+\infty$ as $x \rightarrow \partial D$ uniformly on [$0, T$] for each $T \in(0, \infty)$.

If $V\left(t_{0}, x_{0}\right)<+\infty$ then each solution $x\left(t ; t_{0}, x_{0}\right)$ exists in the future (cf. [5], also [11]).
(b) Suppose there is a real-valued function ω on D such that $\omega(x) \rightarrow+\infty$, as $x \rightarrow \partial D$, and $\omega(x) \leqq V(t, x)$, for $(t, x) \in[0, \infty) \times D$.

If $\mathrm{V}\left(t_{0}, x_{0}\right)<+\infty$, then each solution $x\left(t ; t_{0}, x_{0}\right)$ is bounded in D (cf. [16]).
(c) If there exist real-valued functions ω_{1} and ω_{2} on D such that ω_{1} is bounded above on compact subsets of $D, \omega_{2}(x) \rightarrow+\infty$ as $x \rightarrow \partial D$ and $\omega_{2}(x) \leqq V(t, x) \leqq \omega_{1}(x)$ for every $(t, x) \in[0, \infty) \times D$, then the solutions of (1) are uniformly bounded in D (cf. [16]).

Theorem 0.2. Let $V \in \mathcal{L}(1)$.
(a) Suppose $V(t, x)>0$, for $x \neq 0, t \geqq 0$.

If $V(0,0)=0$, then $x(t) \equiv 0$ is a solution of (1) which is unique in the future (cf. [2]).
(b) Suppose there is an increasing function θ on $[0, \infty)$ such that $\theta(0)=0$ and $\theta(|x|) \leqq V(t, x)$ for all $(t, x) \in[0, \infty) \times D$.

If $V(0,0)=0$ and $V(0, x)$ is continuous at $x=0$, then $x(t) \equiv 0$ is a solution of (1) which is stable (cf. [15]).
(c) If there exist real-valued functions θ_{1} and θ_{2} on $[0, \infty)$ such that $\theta_{i}(0)=0, i=1,2, \theta_{2}$ is increasing and θ_{1} is continuous at 0 and $\theta_{2}(|x|)$ $\leqq V(t, x) \leqq \theta_{1}(|x|)$, for all $(t, x) \in[0, \infty) \times D$ then $x(t) \equiv 0$ is a solution of (1) which is uniformly stable (cf. [15]).

Although stated here only as sufficient conditions, the conditions of Theorems 0.1 and 0.2 are, under very general circumstances also necessary (e.g. cf. [14, Chapter V]). Nevertheless, because of the difficulty of finding functions $V \in \mathcal{L}(1)$ for specific equations of the type (1), it is of interest to relax these conditions. In particular, a number of authors (see [3] and [14, p. 18], for references) have profitably studied functions V satisfying less restrictive requirements than the assumption that $V(t, x(t))$ be nonincreasing. A more restrictive requirement is often used in other contexts, for example, asymptotic stability. In the present paper we devote our attention to relaxing the restrictions on
the range of V; for example our generalization of Theorem 0.2 (c) allows us to conclude that $x(t) \equiv 0$ is uniformly stable from the existence of a function $V \in \mathcal{L}(1)$ which may be of indefinite sign or even unbounded above and below in every neighborhood of $x=0$. We also show in Theorems 2 and 3 how an infinite collection of functions V may be used to obtain information about the stability and boundedness of solutions to a system of differential equations.

Theorem 1.1. Let $V \in \mathcal{L}(1)$.
(a) Suppose there exists a function C from $[0, \infty)$ to 2^{D} such that:
(i) $V_{*}(t, x) \rightarrow+\infty$, as $x \rightarrow \partial D, x \in C(t)$, for each $t>0$.
(ii) $D|C| \partial D$.

If $V\left(t_{0}, x_{0}\right)<+\infty$ then any solution $x\left(t ; t_{0}, x_{0}\right)$ exists in the future.
(b) Suppose there is a real-valued function ω on D such that:
(i) $\omega(x) \rightarrow+\infty$, as $x \rightarrow \partial D$,
(ii) if $C(t)=\left\{x: V_{*}(t, x) \geqq \omega(x)\right\}$ then $D\|C\| \partial D$.

If $V\left(t_{0}, x_{0}\right)<+\infty$ then any solution $x\left(t ; t_{0}, x_{0}\right)$ is bounded in D.
(c) Suppose there exist real-valued functions ω_{1} and ω_{2} on D such that:
(i) $\omega_{2}(x) \rightarrow+\infty$, as $x \rightarrow \partial D$, while ω_{1} is bounded above on each compact subset of D :
(ii) if $C_{1}(t)=\left\{x: V^{*}(t, x) \leqq \omega_{1}(x)\right\}, C_{2}(t)=\left\{x: V_{*}(t, x) \geqq \omega_{2}(x)\right\}$ then $D\left\|C_{i}\right\| \partial D, i=1,2$.

Then the solutions of (1) are uniformly bounded in D.
Theorem 1.2. Let $V \in \mathcal{L}(1)$.
(a) Suppose $C(t)=\left\{x: V_{*}(t, x)>0\right\}$ is such that $D-\{0\}|C|\{0\}$.

If $\mathrm{V}(0,0)=0$ then $x(t) \equiv 0$ is a solution of (1) which is unique in the future.
(b) Suppose there exists a function θ on $[0, \infty)$ such that:
(i) θ is increasing and $\theta(0)=0$,
(ii) if $C(t)=\left\{x: V_{*}(t, x) \geqq \theta(|x|)\right\}$ then $D-\{0\}\|C\|\{0\}$.

If $V(0,0)=0$ and $V(0, x)$ is upper semicontinuous (u.s.c.) at $x=0$ then $x(t) \equiv 0$ is a solution of (1) which is stable.
(c) Suppose there exist real-valued functions θ_{1} and θ_{2} on $[0, \infty)$ such that:
(i) $\theta_{i}(0)=0, i=1,2, \theta_{1}$ is continuous at 0 and θ_{2} is increasing.
(ii) If $C_{1}(t)=\left\{x: V^{*}(t, x) \leqq \theta_{2}(|x|)\right\}, C_{2}(t)=\left\{x: V_{*}(t, x) \geqq \theta_{2}(|x|)\right\}$ then $D-\{0\}\left\|C_{i}\right\|\{0\}, i=1,2$.

Then $x(t) \equiv 0$ is a solution of (1) which is uniformly stable.
Theorems 0.1 and 0.2 are special cases of Theorems 1.1 and 1.2, respectively, with $D=C(t)=C_{i}(t), i=1,2$.

Proof of Theorem 1.1 (a). Suppose there is a solution $x(t)$ $=x\left(t ; t_{0}, x_{0}\right)$ which does not exist in the future, i.e., $x(t)$ exists on a right-maximal interval $\left[t_{0}, T\right), T<+\infty$. Then $x(t) \rightarrow \partial D$ as $t \rightarrow T-$ (cf. [7, p. 12]). Condition (a) (i) implies that there is a compact subset E of D such that $x_{0} \in E$ and

$$
\begin{equation*}
\text { if } x \in C(T)-E, \quad \text { then } V_{*}(T, x)>V\left(t_{0}, x_{0}\right) \tag{2}
\end{equation*}
$$

Since (a) (ii) holds, there is a neighborhood $U(T)$ of ∂D such that $E \cap U(T)=\varnothing$ and
if $G \subset D, G$ connected, $G \cap E \neq \varnothing$,

$$
\begin{equation*}
G \cap U(T) \neq \varnothing, \text { then } G \cap\{c(T)-[U(T) \cup E]\} \neq \varnothing \tag{3}
\end{equation*}
$$

Thus, by (3), there exists $t_{1}, t_{0}<t_{1}<T$, such that $x\left(t_{1}\right) \in C(T)$ - $[U(T) \cup E]$, and hence

$$
\begin{aligned}
V\left(t_{1}, x\left(t_{1}\right)\right) & \geqq V_{*}\left(t_{1}, x\left(t_{1}\right)\right) \\
& \geqq V_{*}\left(T, x\left(t_{1}\right)\right), \quad \text { since } t_{1}<T \\
& >V\left(t_{0}, x_{0}\right), \quad \text { by }(2), \text { since } x\left(t_{1}\right) \in C(T)-E .
\end{aligned}
$$

But this contradicts $V\left(t_{1}, x\left(t_{1}\right)\right) \leqq V\left(t_{0}, x_{0}\right)$ (i.e., $\left.V \in \mathcal{L}(1)\right)$ so that we must have $T=+\infty$; i.e., $x(t)$ exists in the future.

Proof of Theorem 1.2 (b). If $\boldsymbol{\epsilon}>0$, (b)(ii) implies that there exists $\delta_{1}(\epsilon), 0<\delta_{1}(\epsilon)<\epsilon$, such that:

Every connected set which intersects $B\left(0, \boldsymbol{\delta}_{1}(\boldsymbol{\epsilon})\right)$ and
$\partial B(0, \boldsymbol{\epsilon})$ also intersects $C(t)-\left[B\left(0, \boldsymbol{\delta}_{1}(\boldsymbol{\epsilon})\right) \cup \partial B(0, \boldsymbol{\epsilon})\right]$, for each $t \geqq 0$.

Since $V(0, x)$ is u.s.c. at $x=0$ then, by (b) (i) there exists $\boldsymbol{\delta}(\boldsymbol{\epsilon})$, $0<\boldsymbol{\delta}(\boldsymbol{\epsilon})<\boldsymbol{\delta}_{\mathbf{1}}(\boldsymbol{\epsilon})$, such that:

$$
\begin{equation*}
\text { If } x_{0} \in B(0, \boldsymbol{\delta}(\boldsymbol{\epsilon})) \quad \text { then } V\left(0, x_{0}\right)<\boldsymbol{\theta}\left(\boldsymbol{\delta}_{1}(\boldsymbol{\epsilon})\right) \tag{5}
\end{equation*}
$$

Consider $x(t)=x\left(t ; 0, x_{0}\right)$; if there exists $T>0$ such that $x(t) \in$ $\partial B(0, \epsilon)$ then, by (4) there exists $t_{1}, 0<t_{1}<T$, such that

$$
x\left(t_{1}\right) \in C(T)-\left[B\left(0, \delta_{1}(\epsilon)\right) \cup \partial B(0, \epsilon)\right]
$$

and hence

$$
\begin{aligned}
V\left(t_{1}, x\left(t_{1}\right)\right) & \geqq V_{*}\left(T, x\left(t_{1}\right)\right), \quad \text { since } t_{1}<T \\
& \geqq \theta\left(\left|x\left(t_{1}\right)\right|\right), \quad \text { since } x\left(t_{1}\right) \in C(T) \\
& \geqq \theta\left(\delta_{1}(\epsilon)\right), \quad \text { since }\left|x\left(t_{1}\right)\right| \geqq \delta_{1}(\epsilon) \\
& >V\left(0, x_{0}\right), \quad \text { by }(5), \text { since }\left|x_{0}\right|<\delta(\epsilon)
\end{aligned}
$$

contradicting $V \in \mathcal{L}(1)$. The conclusion of Theorem 1.2 (b) is now apparent.

Proof of Theorem 1.2 (c). If $\boldsymbol{\epsilon}>0$, it follows from (c) (ii) that there exists $\boldsymbol{\delta}_{2}(\boldsymbol{\epsilon}), 0<\boldsymbol{\delta}_{2}(\boldsymbol{\epsilon})<\boldsymbol{\epsilon}$, such that:

Every connected set which intersects $B\left(0, \boldsymbol{\delta}_{2}(\boldsymbol{\epsilon})\right)$ and $\partial B(0, \epsilon)$ also intersects $C_{2}(t)-B\left(0, \delta_{2}(\boldsymbol{\epsilon})\right)$ for each $t \geqq 0$.

There exists $\boldsymbol{\delta}_{1}(\boldsymbol{\epsilon}), 0<\boldsymbol{\delta}_{1}(\boldsymbol{\epsilon})<\boldsymbol{\delta}_{2}(\boldsymbol{\epsilon})$, such that:

$$
\begin{equation*}
\boldsymbol{\theta}_{1}\left(\boldsymbol{\delta}_{1}(\boldsymbol{\epsilon})\right)<\boldsymbol{\theta}_{2}\left(\boldsymbol{\delta}_{2}(\boldsymbol{\epsilon})\right) \tag{7}
\end{equation*}
$$

There exists $\boldsymbol{\delta}(\boldsymbol{\epsilon}), 0<\boldsymbol{\delta}(\boldsymbol{\epsilon})<\boldsymbol{\delta}_{\mathbf{1}}(\boldsymbol{\epsilon})$, such that:
Every connected set which intersects $B(0, \boldsymbol{\delta}(\boldsymbol{\epsilon}))$ and $\partial B\left(0, \delta_{1}(\epsilon)\right)$ also intersects $C_{1}(t) \cap B\left(0, \delta_{1}(\epsilon)\right)$.
We assert that if $x_{0} \in B(0, \delta(\boldsymbol{\epsilon}))$, then $x\left(t ; t_{0}, x_{0}\right) \in B(0, \boldsymbol{\epsilon})$ for all $t \geqq t_{0}$ and all $t_{0} \geqq 0$. If there were a solution $x(t)$ such that $x\left(t_{0}\right)$ $=x_{0} \in B(0, \delta(\epsilon))$ and $x(T) \in \partial B(0, \epsilon)$ for some $T>t_{0}$ then, by (6) and (8), there exist t_{1} and t_{2} such that $t_{0}<t_{1}<t_{2}<T$ and

$$
x\left(t_{1}\right) \in C_{1}(T) \cap B\left(0, \delta_{1}(\epsilon)\right), \quad x\left(t_{2}\right) \in C_{2}(T)-B\left(0, \delta_{2}(\epsilon)\right)
$$

Therefore,

$$
\begin{aligned}
V\left(t_{2}, x\left(t_{2}\right)\right) & \geqq V_{*}\left(T, x\left(t_{2}\right)\right) \\
& \geqq \theta_{2}\left(\left|x\left(t_{2}\right)\right|\right), \quad \text { since } x\left(t_{2}\right) \in C_{2}(T) \\
& \geqq \theta_{2}\left(\delta_{2}(\epsilon)\right), \quad \text { since }\left|x\left(t_{2}\right)\right|>\delta_{2}(\epsilon) \\
& >\theta_{1}\left(\delta_{1}(\epsilon)\right), \quad \text { by }(7) \\
& \geqq \theta_{1}\left(\left|x\left(t_{1}\right)\right|\right), \quad \text { since }\left|x\left(t_{1}\right)\right|<\delta_{1}(\epsilon) \\
& \geqq V^{*}\left(t, x\left(t_{1}\right)\right), \quad \text { since } x\left(t_{1}\right) \in C_{1}(T) \\
& \geqq V\left(t_{1}, x\left(t_{1}\right)\right),
\end{aligned}
$$

i.e., $V\left(t_{2}, x\left(t_{2}\right)\right)>V\left(t_{1}, x\left(t_{1}\right)\right)$, contradicting $V \in \mathcal{L}(1)$.

The proofs of the other sections of Theorems 1.1 and 1.2 follow a similar pattern to those above. These are not the most general results that can be obtained in this direction. For example, the conclusion of Theorem 1.1 (b) holds if $\lim _{x \rightarrow{ }_{D D}} \omega(x)=a>V\left(t_{0}, x_{0}\right)$ (cf. [9]) and, in fact, a solution $x\left(t ; t_{0}, x_{0}\right)$ exists in the future (is bounded) if $C(t)=\left\{x: V_{*}(t, x)>V\left(t_{0}, x_{0}\right)\right\}$ satisfies $\left\{x_{0}\right\}|C| \partial D\left(\left\{x_{0}\right\}\|\subset\| \partial D\right)$. Also we may have $\lim _{x \rightarrow \partial D} V(t, x) \leqq V\left(t_{0}, x_{0}\right)$ for all $\left(t_{0}, x_{0}\right)$ and still conclude that the solutions are uniformly bounded; this is the case if
the function $V(t, x)=(1 /|x|) \sin ^{2}|x|\left(D=R^{n}\right)$ belongs to the class $\mathcal{L}(1)$, since $V_{*}(t, x)=V^{*}(t, x)=V(t, x)$ and if $C_{1}(t)=\{x: V(t, x)=0\}$ and $C_{2}(t)=\{x: V(t, x)>0\}$ then $D\left\|C_{i}\right\| \partial D, i=1,2$.

Example 1. Consider the system

$$
\begin{equation*}
x_{1}^{\prime}=x_{2}, \quad x_{2}^{\prime}=\left(t-\left|x_{1}\right|^{-1 / 2}\right) x_{1} \tag{9}
\end{equation*}
$$

which is equivalent to the scalar equation

$$
x^{\prime \prime}+\left(|x|^{-1 / 2}-t\right) x=0
$$

Let $V\left(t, x_{1}, x_{2}\right)=\left|x_{1}\right|^{3 / 2}\left(4 / 3-t\left|x_{1}\right|^{1 / 2}\right)+x_{2}{ }^{2}$; then $(d / d t) V\left(t, x_{1}(t), x_{2}(t)\right)$ $=-\left(x_{1}(t)\right)^{2} \leqq 0$ whenever $\left(x_{1}, x_{2}\right)(t)$ is a solution of (9). Also $V_{*}\left(t_{1}, x_{1}, x_{2}\right)=V\left(t, x_{1}, x_{2}\right)>0$ whenever $\left(x_{1}, x_{2}\right) \in C(t)$, where

$$
C(t)=\left\{\left(x_{1}, x_{2}\right) \neq(0,0): 0 \leqq\left|x_{1}\right|<16 /\left(9 t^{2}\right)\right\}
$$

Then $R^{2}-\{0\}|\subset|\{0\}$ and the solution $\left(x_{1}, x_{2}\right)(t) \equiv(0,0)$ is unique in the future, by Theorem 1.2 (a).

Notice that $V\left(t, x_{1}, x_{2}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$ if $x_{1} \neq 0$.
Example 2. Consider the scalar equation

$$
\begin{align*}
x^{\prime} & =a(t)|x|^{1 / 2} \sin (1 / x), & & \text { if } x \neq 0, \tag{10}\\
& =0, & & \text { if } x=0,
\end{align*}
$$

where $a(t)$ is of constant sign $(a(t) \leqq 0$, say). Define $V(x)=\cos (1 / x)$ if $x \neq 0, V(0)$ arbitrary. Then

$$
\frac{d}{d t} V(x(t))=a(t)|x(t)|^{-3 / 2} \sin ^{2} \frac{1}{x(t)} \leqq 0
$$

whenever $x(t) \neq 0$ is a solution of (10). Let $\theta_{1}(r)=\theta_{2}(r)=r, r \geqq 0$. It can be seen that the functions $C_{i}, i=1,2$, as defined in Theorem 1.2 (c) satisfy $R-\{0\}\left\|C_{i}\right\|\{0\}$ and hence the solution $x(t) \equiv 0$ of (10) is uniformly stable.

Example 3. The system

$$
\begin{equation*}
x_{1}^{\prime}=x_{2}, \quad x_{2}^{\prime}=-\phi\left(x_{1}, x_{2}\right) x_{2}-h\left(x_{1}\right), \quad \phi\left(x_{1}, x_{2}\right) \geqq 0 \tag{11}
\end{equation*}
$$

where ϕ and h are continuous, is equivalent to the Lienard equation

$$
x^{\prime \prime}+\phi\left(x, x^{\prime}\right) x^{\prime}+h(x)=0
$$

Theorem 1.1 (c) with

$$
V\left(x_{1}, x_{2}\right)=2 H\left(x_{1}\right)+x_{2}^{2}, \text { where } H(x)=\int_{0}^{x} h
$$

implies that the solutions are uniformly bounded if

$$
\limsup _{|x| \rightarrow \infty} H(x)=+\infty
$$

In particular it is known that if $\lim _{|x| \rightarrow \infty} H(x)=+\infty$ then the solutions of (11) are uniformly bounded (cf. Utz [12]). The reader is also referred to the paper of Willett and Wong [13] where the role of the function $\phi\left(x_{1}, x_{2}\right)$ is investigated more thoroughly.

Theorem 1.2 (c), with V as above, implies that $\left(x_{1}, x_{2}\right)(t) \equiv(0,0)$ is a solution of (11) which is uniformly stable if there exists a sequence $\left\{\alpha_{n}\right\}$ such that

$$
(-1)^{n} \boldsymbol{\alpha}_{n}>0, \quad H\left(\boldsymbol{\alpha}_{n}\right)>0, \quad \lim _{n \rightarrow \infty} \boldsymbol{\alpha}_{n}=0
$$

In particular these conditions hold if $x h(x)>0, x \neq 0$, in a neighborhood of $x=0$.

For a study of some equations it may be convenient to use more than one (and possibly infinitely many) functions V. For example, if, for each $\epsilon>0$, there exists a $\delta(\epsilon), 0<\delta(\epsilon)<\epsilon$ and $V_{\epsilon}(t, x)$ such that:
(i) $V_{\epsilon}(t, x(t))$ is nonincreasing when $x(t)$ is a solution of (1) and $x(t) \in B(0, \epsilon)$.
(ii) $C_{\epsilon}(t)=\left\{x: V_{\epsilon^{*}}(t, x)>\sup V_{\epsilon}(0, y),|y|<\delta(\epsilon)\right\}$ satisfies $\partial B(0, \epsilon)\left|C_{\epsilon}\right| B(0, \delta(\epsilon))$.

Then $x(t) \equiv 0$ is a solution of (1) which is stable. We illustrate this by extending some known results for the systems

$$
\begin{gather*}
x_{1}^{\prime}=x_{2}, \quad x_{2}^{\prime}=-\phi\left(x_{1}, x_{2}\right) x_{2}-h\left(x_{1}\right)+e(t) \tag{12}\\
x_{1}^{\prime}=\frac{1}{p(t)} x_{2}, \quad x_{2}^{\prime}=-q(t) f\left(x_{1}\right) \tag{13}
\end{gather*}
$$

which are equivalent to the scalar equations

$$
x^{\prime \prime}+\phi\left(x, x^{\prime}\right) x^{\prime}+h(x)=e(t), \quad\left(p(t) x^{\prime}\right)^{\prime}+q(t) f(x)=0
$$

respectively.

Theorem 2. Suppose

(i) ϕ and h are continuous on R^{2} and R, respectively, and $\phi \geqq 0$.
(ii) There exist $\alpha_{n} \in(n, \infty), \alpha_{-n} \in(-\infty,-n), n=1,2, \cdots$, such that

$$
\lim _{n \rightarrow \infty}\left\{H\left(\boldsymbol{\alpha}_{ \pm n}\right)+H\left(\boldsymbol{\beta}_{n}\right)\right\}=+\infty
$$

where $H(x)=\int_{0}^{x} h$ and $H\left(\boldsymbol{\beta}_{n}\right)=\inf \left\{H(x): x \in\left[\boldsymbol{\alpha}_{-n}, \boldsymbol{\alpha}_{n}\right]\right\}$.
If e is measurable and $\int_{0}^{t}|e|$ exists and is finite for each $t \in[0, \infty)$ then the solutions of (12) exist in the future.

If, in addition, $\int_{0}^{\infty}|e|<+\infty$ then the solutions of (12) are uniformly bounded.
Remarks. If $H(x) \geqq H_{0}>-\infty$ for all x then the condition (ii) is simply

$$
\limsup _{|x| \rightarrow \infty} H(x)=+\infty .
$$

This result has been proved by Antosiewicz [1] for the case $H(x) \geqq 0$, $\lim _{|x| \rightarrow \infty} H(x)=+\infty$.

For the case $e(t) \equiv 0$ see Example 3 above; in this case there is no restriction on $H\left(\boldsymbol{\beta}_{n}\right)$.
Proof. Let $V_{n}\left(t, \quad x_{1}, \quad x_{2}\right)=\left(2 H\left(x_{1}\right)-2 H\left(\beta_{n}\right)+x_{2}^{2}\right)^{1 / 2}-\int_{0}^{t}|e|$, $t \in[0, \infty), x_{1} \in\left(\alpha_{-n}, \alpha_{n}\right), x_{2} \in R, n=1,2, \cdots$. If $\left(x_{1}, x_{2}\right)(t)$ is a solution of (12) then

$$
\begin{equation*}
\frac{d}{d t} V_{n}\left(t, x_{1}(t), x_{2}(t)\right) \leqq 0, \quad \text { if } x_{1}(t) \in\left(\alpha_{-n}, \alpha_{n}\right) . \tag{14}
\end{equation*}
$$

Suppose there is a solution $\left(x_{1}, x_{2}\right)(t)$ which does not exist in the future, i.e., $\left(x_{1}, x_{2}\right)(t)$ exists on a right-maximal interval $\left[t_{0}, T\right), T<+\infty$. Hence $x_{1}(t)$ and/or $x_{2}(t)$ must be unbounded on [$\left.t_{0}, T\right)$. Condition (ii) implies that there exists a positive integer n such that $x_{1}\left(t_{0}\right)$ $\in\left(\boldsymbol{\alpha}_{-n}, \boldsymbol{\alpha}_{n}\right)$ and

$$
\begin{equation*}
H\left(\alpha_{ \pm n}\right)+H\left(\beta_{n}\right)>2 H\left(x_{1}\left(t_{0}\right)\right)+\left(x_{2}\left(t_{0}\right)\right)^{2}+\left(\int_{t_{0}}^{T}|e|\right)^{2} . \tag{15}
\end{equation*}
$$

But (14) implies that if $x_{1}(s) \in\left(\boldsymbol{\alpha}_{-n}, \boldsymbol{\alpha}_{n}\right)$ for $s \in\left[t_{0}, t\right]$ then

$$
V_{n}\left(t, x_{1}(t), x_{2}(t)\right) \leqq V_{n}\left(t_{0}, x_{1}\left(t_{0}\right), x_{2}\left(t_{0}\right)\right)
$$

from which it follows that

$$
\begin{aligned}
2 H\left(x_{1}(t)\right)+2 H\left(\beta_{n}\right) & +\left(x_{2}(t)\right)^{2} \\
& \leqq 4 H\left(x_{1}\left(t_{0}\right)\right)+2\left(x_{2}\left(t_{0}\right)\right)^{2}+2\left(\int_{t_{0}}^{T}|e|\right)^{2} .
\end{aligned}
$$

Therefore, from (15), $x_{1}(t) \in\left(\alpha_{-n}, \alpha_{n}\right)$ and $x_{2}(t)$ is bounded, $t \in\left[t_{0}, T\right)$, so that $\left[t_{0}, T\right)$ is not a maximal interval if $T<+\infty$.

The statement about boundedness follows analogously if we let $T=+\infty$ above.

Lemma. Suppose:
(i) fis continuous on R.
(ii) p and q are measurable and $1 / p, q$ are locally integrable on $[0, \infty)$.
(iii) There exists a function ϕ on $[0, \infty)$ such that ϕ / p and ϕq are nonincreasing.

Let $F(x)=\int_{0}^{x} f$. If $F(x) \geqq F_{0}>-\infty$ for all $x \in(a, b)$ then

$$
V=2 \phi q\left(F\left(x_{1}\right)-F_{0}\right)+\frac{\phi}{p} x_{2}^{2}
$$

is nonincreasing if $\left(x_{1}, x_{2}\right)(t)$ is a solution of (13) and $x_{1}(t) \in(a, b)$.
Proof. We prove this lemma by means of an integration by parts technique used by Klokov [8] . (13) implies

$$
\phi q f\left(x_{1}\right) x_{1}^{\prime}+\frac{\phi}{p} x_{2} x_{2}^{\prime}=0
$$

Therefore

$$
\begin{aligned}
0= & 2 \int_{t_{1}}^{t_{2}} \phi q d\left(F\left(x_{1}\right)-F_{0}\right)+\int_{t_{1}}^{t_{2}} \frac{\phi}{p} d\left(x_{2}{ }^{2}\right) \\
= & {\left[2 \phi q\left(F\left(x_{1}\right)-F_{0}\right)+\frac{\phi}{p} x_{2}{ }^{2}\right]_{t_{1}}^{t_{2}} } \\
& -2 \int_{t_{1}}^{t_{2}}\left(F\left(x_{1}\right)-F_{0}\right) d(\phi q)-\int_{t_{1}}^{t_{2}} x_{2}{ }^{2} d\left(\frac{\phi}{p}\right)
\end{aligned}
$$

Since $d(\phi / p) \leqq 0$ and $d(\phi q) \leqq 0$ it follows that

$$
0 \geqq\left[2 \phi q\left(F\left(x_{1}\right)-F_{0}\right)+\frac{\phi}{p} x_{2}^{2}\right]_{t_{1}}^{t_{2}}=V\left(t_{2}\right)-V\left(t_{1}\right)
$$

if $t_{1}<t_{2}$ and $x(s) \in(a, b), t_{1} \leqq s \leqq t_{2}$.
Remarks. If $p q>0$ and $\log p q$ is locally of bounded variation on $[0, \infty)$ then

$$
V=2 \exp (-N)\left(F\left(x_{1}\right)-F_{0}\right)+\frac{1}{p q(0)} \exp (-P) x_{2}{ }^{2}
$$

satisfies the hypotheses of the lemma where $P(t)$ and $N(t)$ denote the positive and negative variation respectively of $\log p q$ on $[0, t]$. In this case $\phi(t)=(1 / q(t)) \exp (-N(t))$. This result has been proved by Gollwitzer [6], using Stieltjes integral inequalities in the case that p and q are positive, locally of bounded variation and continuous. Here, however, it is not assumed that $p q$ is continuous. If $p q$ is locally absolutely continuous and positive then this is a special case of a result of Petty and Leitmann ([10, Lemma 1]) for a more general equation than (13).

Our main purpose in the following theorem is to extend known stability results for (13) to the case where F may change sign infinitely often in a neighborhood of an equilibrium and to extend boundedness theorems to include the possibility $\lim \inf _{|x| \rightarrow \infty} F(x)=-\infty$. We achieve this by the use of one-parameter families of Liapunov functions.

In Theorem 3, whenever $\lim _{t \rightarrow \infty} \lambda(t)$ exists for some function λ we denote this limit by $\boldsymbol{\lambda}(\infty)$.

Theorem 3. Let conditions (i), (ii), and (iii) of the lemma hold.
(a) Suppose:
(i) $\phi(t) / p>0, \phi q(t)>0$, for each $t \in[0, \infty)$.
(ii) There exist $\alpha_{n} \in(n, \infty), \alpha_{-n} \in(-\infty,-n), \quad n=1,2, \cdots$, such that

$$
\lim _{n \rightarrow \infty} F\left(\alpha_{ \pm n}\right)+\left[\frac{\phi q(0)}{\phi q(t)}-1\right] F\left(\beta_{n}\right)=+\infty
$$

for each $t \in[0, \infty)$, where

$$
F\left(\boldsymbol{\beta}_{n}\right)=\inf \left\{F(x): x \in\left[\boldsymbol{\alpha}_{-n}, \boldsymbol{\alpha}_{n}\right]\right\}
$$

Then the solutions of (13) exist in the future.
Furthermore if (a) (i) and (a) (ii) hold at $t=+\infty$ then the solutions of (13) are uniformly bounded.
(b) Suppose:
(i) $\phi(t) / p>0, \phi q(t)>0$, for each $t \in[0, \infty)$.
(ii) For each $\epsilon>0$ there exist $\alpha_{\epsilon} \in(0, \epsilon), \alpha_{-\epsilon} \in(-\epsilon, 0)$ such that

$$
F\left(\alpha_{ \pm \epsilon}\right)+\left[\frac{\phi q(0)}{\phi q(t)}-1\right] F\left(\beta_{\epsilon}\right)>0
$$

for each $t \in[0, \infty)$, where

$$
F\left(\boldsymbol{\beta}_{\epsilon}\right)=\inf \left\{F(x): x \in\left[\boldsymbol{\alpha}_{-\epsilon}, \boldsymbol{\alpha}_{\epsilon}\right]\right\}
$$

Then $\left(x_{1}, x_{2}\right)(t) \equiv(0,0)$ is a solution of (13) which is unique in the future.

If (b) (i) and (b) (ii) hold at $t=+\infty$ then $\left(x_{1}, x_{2}\right)(t) \equiv(0,0)$ is also uniformly stable.

Remarks. If $F(x) \geqq F_{0}>-\infty$ for all x, then condition (a) (ii) is $\lim \sup _{|x| \rightarrow \infty} F(x)=+\infty$ and is independent of ϕq.

If $F(x)>0, x \neq 0$, in a neighborhood of $x=0$ then condition (b)(ii) holds independently of ϕq, since $F\left(\boldsymbol{\beta}_{\boldsymbol{\epsilon}}\right)=0$.

Also if $p q$ is nondecreasing and positive we may choose $\phi=1 / q$ and then (a) (ii) and (b) (ii) are $\lim \sup _{|x| \rightarrow \infty} F(x)=+\infty$ and $F\left(\boldsymbol{\alpha}_{ \pm \epsilon}\right)>0$,
respectively, without any restriction on $F\left(\boldsymbol{\beta}_{\boldsymbol{n}}\right)$ or $F\left(\boldsymbol{\beta}_{\boldsymbol{\epsilon}}\right)$ since, in this case, $\phi q(0) / \phi q(t)-1=0$.

Proof of Theorem 3(b). By the lemma, the function $V_{\epsilon}=$ $2 \phi q\left\{F\left(x_{1}\right)-F\left(\beta_{\epsilon}\right)\right\}+\phi x_{2}{ }^{2} / p$, for each $\epsilon>0$, is nonincreasing whenever $\left(x_{1}, x_{2}\right)(t)$ is a solution of (13) satisfying $x_{1}(t) \in\left(\alpha_{-\epsilon}, \alpha_{\varepsilon}\right)$. Hence

$$
\begin{align*}
& 2 \phi q(t)\left\{F\left(x_{1}(t)\right)+\left[\frac{\phi q\left(t_{0}\right)}{\phi q(t)}-1\right] F\left(\beta_{\epsilon}\right)\right\}+\frac{\phi}{p}(t)\left(x_{2}(t)\right)^{2} \tag{16}\\
& \leqq 2 \phi q\left(t_{0}\right) F\left(x_{1}\left(t_{0}\right)\right)+\frac{\phi}{p}\left(t_{0}\right)\left(x_{2}\left(t_{0}\right)\right)^{2}
\end{align*}
$$

for each $t \geqq t_{0}$ such that $x(s) \in\left(\boldsymbol{\alpha}_{-\epsilon}, \boldsymbol{\alpha}_{\epsilon}\right), t_{0} \leqq s \leqq t$.
We first prove that $\left(x_{1}, x_{2}\right)(t) \equiv(0,0)$ is a solution which exists and is unique in the future. Suppose $x_{1}(0)=x_{2}(0)=0$ and $\left|x_{1}(T)\right|=\epsilon>0$ for some $T>0$; then $x_{1}\left(t_{1}\right)=\alpha_{ \pm \epsilon}$ for some $t_{1}, 0<t_{1}<T$. We assume that t_{1} is the least such number and hence, from (16)

$$
2 \phi q\left(t_{1}\right)\left\{F\left(\boldsymbol{\alpha}_{ \pm \epsilon}\right)+\left[\frac{\phi q(0)}{\phi q\left(t_{1}\right)}-1\right] F\left(\boldsymbol{\beta}_{\epsilon}\right)\right\}+\frac{\phi}{p}\left(t_{1}\right)\left(x_{2}\left(t_{1}\right)\right)^{2} \leqq 0
$$

which is obviously false if (b)(i) and (b)(ii) hold for each $t \in[0, \infty)$. Thus $x_{1}(t) \equiv 0$ and, for every $\epsilon>0$,

$$
\frac{\phi}{p}(t)\left(x_{2}(t)\right)^{2} \leqq 2\left[\phi q(t)-\phi q\left(t_{0}\right)\right] F\left(\beta_{\epsilon}\right) .
$$

But $F\left(\beta_{\epsilon}\right)=o(1)$ as $\epsilon \rightarrow 0$ so that $x_{2}(t) \equiv 0$.
The statement about uniform stability follows from the fact that (16) implies

$$
\begin{align*}
& 2 \phi q(\infty)\left\{F\left(x_{1}(t)\right)+\left[\frac{\phi q(0)}{\phi q(\infty)}-1\right] F\left(\beta_{\epsilon}\right)\right\}+\frac{\phi}{p}(\infty)\left(x_{2}(t)\right)^{2} \tag{17}\\
& \leqq \phi q(0) F\left(x_{1}\left(t_{0}\right)\right)+\frac{\phi}{p}(0)\left(x_{2}\left(t_{0}\right)\right)^{2}
\end{align*}
$$

if $x(s) \in\left(\boldsymbol{\alpha}_{-\epsilon}, \boldsymbol{\alpha}_{\epsilon}\right)$, for $t_{0} \leqq s \leqq t$. Now suppose (b) (i) and (b) (ii) hold at $t=+\infty$. Since F is continuous at 0 and $F(0)=0$ there exists a $\delta(\boldsymbol{\epsilon})>0$ such that if $\left|\left(x_{1}, x_{2}\right)\left(t_{0}\right)\right|<\delta(\boldsymbol{\epsilon})$ then the right-hand side of (17) is strictly less than

$$
2 \phi q(\infty)\left\{F\left(\boldsymbol{\alpha}_{ \pm \epsilon}\right)+\left[\frac{\phi q(0)}{\phi q(\infty)}-1\right] F\left(\boldsymbol{\beta}_{\epsilon}\right)\right\} .
$$

Thus $x_{1}(t) \in\left(\boldsymbol{\alpha}_{-\epsilon}, \boldsymbol{\alpha}_{\epsilon}\right) \subset(-\boldsymbol{\epsilon}, \boldsymbol{\epsilon})$ for all $t \geqq t_{0}$. Then $F\left(x_{1}(t)\right) \geqq F\left(\boldsymbol{\beta}_{\epsilon}\right)$ for $t \in\left[t_{0}, \infty\right)$ and therefore

$$
\frac{\phi}{p}(\infty)\left(x_{2}(t)\right)^{2} \leqq \phi q(\infty)\left\{F\left(\alpha_{ \pm \epsilon}\right)-F\left(\beta_{\epsilon}\right)\right\}=o(1)
$$

as $\epsilon \rightarrow 0$.
Part (a) may be proved similarly by considering the functions

$$
V_{n}=2 \phi q\left\{F\left(x_{1}\right)-F\left(\beta_{n}\right)\right\}+\frac{\phi}{p} x_{2}{ }^{2}, \quad n=1,2, \cdots
$$

Acknowledgments. The author is indebted to Professor J. W. Macki for his comments on this paper. Research supported by the National Research Council of Canada, grant NRC A-7197.

References

1. H. A. Antosiewicz, On non-linear differential equations of the second order with integrable forcing term, J. London Math. Soc. 30 (1955), 64-67. MR 16, 477.
2. F. Brauer and S. Sternberg, Local uniqueness, existence in the large, and the convergence of successive approximations, Amer. J. Math. 80 (1958), 421-430. MR 20 \#1806.
3. F. Brauer, The use of comparison theorems for ordinary differential equations, Proc. NATO Advanced Study Institute, Padua, Italy, Edizioni "Oderisi," Gubbio, 1966, pp. 29-50.
4. E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022.
5. R. Conti, Sulla prolungabilità della soluzioni di un sistema di equazioni differenziali ordinarie, Boll. Un. Mat. Ital. (3) 11 (1956), 510-514. MR 18, 736.
6. H. E. Gollwitzer, Non-linear second order differential equations and Stieltjes integrals, University of Tennessee Technical Report, Knoxville, Tenn., 1969.
7. P. Hartman, Ordinary differential equations, Wiley, New York, 1964. MR 30 \# 1270.
8. Ju. A. Klokov, Some theorems on boundedness of solutions of ordinary differential equations, Uspehi Mat. Nauk 13 (1958), no. 2(80), 189-194, English transl., Amer. Math. Soc. Transl. (2) 18 (1961), 289-294. MR 20 \#2527; MR 23 \#A1881.
9. J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations 4 (1968), 57-65. MR 36 \#5454.
10. C. M. Petty and G. Leitmann, A boundedness theorem for a nonlinear, nonautonomous system, Monatsh. Math. 68 (1964), 46-51. MR 28 \#4191.
11. A. Strauss, A note on a global existence result of R. Conti, Boll. Un. Mat. Ital. (3) 22 (1967), 434-441. MR 37 \#1673.
12. W. R. Utz, Boundedness and periodicity of solutions of the generalized Liénard equation, Ann. Mat. Pura Appl. (4) 42 (1956), 313-324.
13. D. W. Willett and J. S. W. Wong, The boundedness of solutions of the equation $\ddot{x}+f(x, \dot{x})+g(x)=0$, SIAM J. Appl. Math. 14 (1966), 1084-1098. MR 34 \#7901.
14. T. Yoshizawa, Stability theory by Liapunov's second method, Publ. Math. Soc. Japan, no. 9, The Mathematical Society of Japan, Tokyo, 1966. MR 34 \#7896.
15. On the stability of solutions of a system of differential equations, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 29 (1955), 27-33. MR 17, 738.
16. Liapunov's function and boundedness of solutions, Funkcial. Ekvac. 2 (1959), 95-142. MR 22 \#5789.

University of Alberta, Edmonton, Alberta, Canada

[^0]: Received by the editors September 9, 1969 and, in revised form, December 13, 1969.

 AMS 1970 subject classifications. Primary 34D05, 34D20; Secondary 34A10, 34A15.

