THE NILPOTENCE CLASS OF CORE-FREE QUASINORMAL SUBGROUPS

ROBERT H. BRADWAY, FLETCHER GROSS AND W. R. SCOTT

1. Introduction. If H is a subgroup of the group G, H is said to be quasinormal in G if HK = KH for each subgroup K of G. H is corefree in G if H contains no nonidentity normal subgroup of G. Itô and Szép [2] proved that a core-free quasinormal subgroup of a finite group must be nilpotent. The question raised by Deskins [1] of whether such a subgroup must be abelian was resolved first by Thompson [4] and later by Nakamura [3] who gave examples where the subgroup had class 2. In the present paper, it is shown that the nilpotence class is unbounded. More specifically, if n is a positive integer and p is a prime > n, there is a finite p-group containing a core-free quasinormal subgroup of class n. Using these examples, we show that the theorem of Itô and Szép is false for infinite groups. It is true, however, that a core-free quasinormal subgroup of an infinite group is residually finite nilpotent.

Our final result generalizes a theorem of Nakamura [3]. Suppose H is a core-free quasinormal subgroup of the finite p-group G. Nakamura proved that if H has exponent p, then H is abelian. Our generalization of this is that if H has exponent p^n , then H has a normal series of length n in which the factor groups all are elementary abelian.

2. Notation and assumed results. If H is a subgroup of G, H_G , the core of H in G, is the largest normal subgroup of G contained in H. Equivalently, $H_G = \bigcap_{x \in G} x^{-1}Hx$. $\phi(G)$ is the Frattini subgroup of G and $\phi^n(G)$ is defined inductively by $\phi^0(G) = G$, $\phi^{n+1}(G) = \phi(\phi^n(G))$. If G is a finite group, f(G), the Frattini length of G, is the smallest integer n such that $\phi^n(G) = 1$. If G is a p-group, $\Omega_n(G)$ is the subgroup of G generated by all elements of order at most p^n and $\mathfrak{V}^n(G)$ is the subgroup generated by all p^n th powers of elements of G. Commutators are defined inductively by $[x, y] = x^{-1}y^{-1}xy$ and $[x_1, \dots, x_n] = [[x_1, \dots, x_{n-1}], x_n]$.

The following results are well known and easily proved. Hence we merely state them here.

Copyright © Rocky Mountain Mathematics Consortium

Received by the editors July 22, 1969 and, in revised form, October 23, 1969. AMS 1970 subject classifications. Primary 20D15, 20D40; Secondary 20F30, 20E25.

Key words and phrases. Quasinormal subgroups, nilpotence class, p-groups.

2.1. If $N \leq H \leq G$ and N is normal in G, then H is quasinormal in G if, and only if, H/N is quasinormal in G/N.

2.2. If $G = \langle x, y | x^{p^2} = y^p = 1, y^{-1}xy = x^{p+1} \rangle$, where p is an odd prime, then $\Omega_1(G) = \langle x^p, y \rangle$, $U^{-1}(G) = \langle x^p \rangle$, and $\langle y \rangle$ is quasinormal in G.

2.3. The class of finite nilpotent groups G satisfying $f(G) \leq n$ for some fixed integer n is closed under the operations of taking homomorphic images, subgroups, and finite direct products.

3. Construction of the examples.

3.1. THEOREM. Let n be a positive integer and let p be a prime > n. Then there is a finite p-group G which contains a core-free quasinormal subgroup H such that H has class n.

PROOF. If n = 1 and $p \neq 2$, this follows from 2.2. If n = 1 and p = 2, let $G = \langle x, y \mid x^8 = y^2 = 1$, $y^{-1}xy = x^5 \rangle$ and $H = \langle y \rangle$. We now assume that $n \ge 2$ and so p is odd. Set m = (n-1)p + 1 and let V be a vector space of dimension m over GF(p) with basis v_1, v_2, \dots, v_m . We adopt the convention that $v_i = 0$ if $i \le 0$. V_k will denote the subspace of V spanned by the v_i for $i \le k$. Next let X be the linear transformation of V defined by $v_i X = v_i + v_{i-1}$ for all $i \le m$. $(X - 1)^m$ is both the minimal and characteristic polynomial of X. It follows from this that $(X - 1)^{p^2} = 0 \ne (X - 1)^p$ and so X is an element of order p^2 in the group L = GL(V).

Now $C_V(X) = C_V(X^{p+1}) = V_1$. It follows from this that X and X^{p+1} have the same Jordan normal form. Hence X and X^{p+1} are conjugate in L. If $Y^{-1}XY = X^{p+1}$, then $Y^p \in C_L(X)$. This implies that X and X^{p+1} are conjugate under a p-element of L. Next, since $V_k/V_{k-1} = C_{V/V_{k-1}}(X)$ for $1 \leq k \leq m$, an inductive argument yields that V_k , $1 \leq k \leq m$, is invariant under $N_L(\langle X \rangle)$. It follows from this that $N_L(\langle X \rangle)$ consists entirely of lower triangular matrices.

Let S be the subgroup of L consisting of those lower triangular matrices whose eigenvalues all equal one and let P be the subgroup of S consisting of those elements of S which leave invariant the subspace spanned by v_2, v_3, \dots, v_m . Then S is a Sylow p-subgroup of L and S contains all lower triangular matrices that are p-elements. The previous discussion implies that X and X^{p+1} are conjugate in S.

An easy calculation yields that the $m \times m$ matrix (a_{ij}) commutes with X if, and only if, $a_{ij} = 0$ for $1 \leq i < j \leq m$ and $a_{ij} = a_{i+1, j+1}$ for $1 \leq i, j \leq m-1$. It follows readily from this that $|C_S(X)| = p^{m-1}$ and $C_S(X) \cap P = 1$. Since $[S:P] = p^{m-1}$, this implies that $S = PC_S(X)$. Thus P contains a unique element U such that $U^{-1}XU$ $= X^{p+1}$. Since $U^p \in P \cap C_S(X)$, we have $U^p = 1$. Thus the minimal polynomial for U is $(U-1)^r$ where $r \leq p$. To obtain further information on r we need a lemma.

LEMMA. $v_k U \equiv v_k - k v_{k-p+1} \pmod{V_{k-p}}$.

PROOF. This is certainly true for k = 1. Assume now that k > 1 and that $v_k U \equiv v_k + \sum_{i=1}^{p} a_i v_{k-i} \pmod{V_{k-p-1}}$. Using induction on k, we obtain

$$v_k X U \equiv v_k + (a_1 + 1)v_{k-1} + \sum_{i=2}^{p-1} a_i v_{k-i} + (a_p - k + 1)v_{k-p} \pmod{V_{k-p-1}}.$$

On the other hand,

$$v_k U X^{p+1} \equiv v_k + (a_1 + 1) v_{k-1} + \sum_{i=2}^{p-1} (a_i + a_{i-1}) v_{k-i} + (1 + a_p + a_{p-1}) v_{k-p} \pmod{V_{k-p-1}}.$$

But $XU = UX^{p+1}$. Thus we obtain $a_1 = a_2 = \cdots = a_{k-2} = 0$ if $k \leq p$, while $a_1 = a_2 = \cdots = a_{p-2} = 0$ and $a_{p-1} = -k$ if k > p. In either case, this implies $v_k U \equiv v_k - kv_{k-p+1} \pmod{V_{k-p}}$ and the lemma is proved.

A consequence of the lemma is

$$v_k(U-1)^r \equiv (-1)^r k(k+1) \cdots (k+r-1) v_{k-r(p-1)}$$

(mod $V_{k-r(p-1)-1}$)

It immediately follows that the minimal polynomial of U is $(U-1)^n$.

Next let A be the group of order p^5 with generators x and u and relations $x^{p^3} = u^{p^2} = 1$, $u^{-1}xu = x^{p+1}$. Then the mapping $x \to X$, $u \to U$ determines a homomorphism of A onto $\langle X, U \rangle$. Let B be the semidirect product AV where A operates on V as indicated. We now use multiplicative notation for V. Let $C = \langle u, v_2, \dots, v_m \rangle$. It is easily verified that $\langle x^{p^2}v_1^{-1}, u^pv_2 \rangle$ is a normal subgroup of order p^2 in B. Finally, let G be the factor group B modulo this subgroup and let H be the image of C in G. We assert that G and H satisfy the conclusion of 3.1.

Let W, x_1 and u_1 be the images of V, x, and u, respectively, in G. If H is not core-free in G, then H contains an element z of order pin Z(G). But $C_{W \cap H}(x_1) = 1$. Thus $z \notin W \cap H$. Since $[H: H \cap W]$ = p, this would imply that $H = (H \cap W) \times \langle z \rangle$ and so H would be abelian. Since u_1 does not centralize $H \cap W$, this is impossible. Therefore H is core-free in G. The fact that H has class n follows from the fact that the minimal polynomial of U is $(U-1)^n$. It only remains to show that H is quasinormal in G. This is a consequence of the next theorem.

3.2. THEOREM. Assume the following:

(a) $G = \langle x \rangle H$ is a finite p-group, p > 2.

(b) W is a normal elementary abelian subgroup of G.

(c) H is a subgroup of $G, u \in H$.

(d) $W = (W \cap \langle x \rangle) \times (W \cap H), H = (W \cap H) \langle u \rangle.$

- (e) $x^{p^2} \in W, u^p \in W, u^{-1}xu = x^{p+1}$.
- (f) If y is an element of order p^2 in $\langle x \rangle$ and $v \in W$, then

$$\begin{array}{l} (p-1) \ times \\ [v, y, y, \cdots, y] \ = 1. \end{array}$$

Then H is quasinormal in G.

PROOF. All of the above conditions are satisfied by the group G and its subgroup H which were constructed above. (The assumption in Theorem 3.1 that p > n is necessary to ensure that condition (f) is satisfied.) Thus Theorem 3.1 will be proved once the above theorem is proved.

We now assume that G is a minimal counterexample to Theorem 3.2. HW/W is quasinormal in G/W from 2.2. If $\langle x \rangle \cap W = 1$, then $W \leq H$, and then 2.1 would imply that H is quasinormal in G. Hence $\langle x \rangle \cap W \neq 1$. Also $x^p \neq 1$ since otherwise [G:H] = p which would imply that H is normal in G.

Next suppose H contains a nontrivial normal subgroup N of G. Then, replacing G, H, W, x, and u, respectively, by G/N, H/N, WN/N, xN, and uN, we find that the hypothesis of the theorem is satisfied. Hence, by induction, H/N is quasinormal in G/N. But this implies that H is quasinormal in G. Thus $H_G = 1$. Since $G = H\langle x \rangle$, this implies $\bigcap_i (x^{-i}Hx^i) = 1$. Since $C_H(x) \leq x^{-i}Hx^i$ for all i, we have $C_H(x) = 1$. It now follows that $C_G(x) = \langle x \rangle$.

Now let K be a subgroup of G. We will finish the proof of the theorem by showing that HK is always a subgroup of G. We consider four distinct cases.

Case 1. $K \leq \langle x^p \rangle H$.

It is easy to see that $\langle x^p \rangle H$ is a proper subgroup of G. Then, replacing x by x^p , $\langle x^p \rangle H$ satisfies the hypothesis of the theorem. Hence, by induction, H is quasinormal in $\langle x^p \rangle H$. Therefore HK is a subgroup of $\langle x^p \rangle H$.

Case 2. $K \cap W \not\equiv H \cap W$.

In this case we must have $W = (K \cap W)(H \cap W)$. But then

378

 $HK = H(H \cap W)(K \cap W)K = HWK$. Since HW/W is quasinormal in G/W, HWK must be a subgroup of G.

Case 3. $K \not\subseteq \langle x^p \rangle H$, $K \cap W \subseteq H \cap W$, $x^{p^2} \neq 1$.

From 2.2, $\Omega_1(G/W) = H\langle x^p \rangle/W$ and $\mathfrak{O}^1(G/W) = \langle x^p \rangle W/W$. It now follows that K must contain an element y such that $y^p \equiv x^p$ (mod W). Hence $y^p = x^p v$ for some $v \in W$. Then $(x^p v)^p \in K \cap W$ $\leq H \cap W$. But an easy calculation shows that

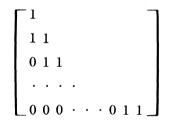
$$(p-1) \text{ times}$$
$$(x^{p}v)^{p} = x^{p^{2}}[v, x^{p}, x^{p}, \cdots, x^{p}] = x^{p^{2}}$$

since x^p is an element of order p^2 in $\langle x \rangle$. Since x^{p^2} does not belong to $H \cap W$, we have a contradiction. Thus this case cannot occur.

Case 4. $K \not\subseteq \langle x^p \rangle H$, $K \cap W \subseteq H \cap W$, $x^{p^2} = 1$.

In this case x has order p^2 and so, since $\langle x \rangle \cap W \neq 1$, $x^p \in W$. Then $\langle x^p \rangle H = WH$. Since $u^{-p}xu^p = x^{(p+1)p} = x$, $u^p \in C_H(x)$. Thus $u^p = 1$.

Now since $|C_W(x)| = p$, the Jordan normal form of \overline{x} , the transformation of W_+ (W written additively) induced by x, must be



Since we must have $(\bar{x} - 1)^{p-1} = 0$, this implies that W_+ has dimension at most p-1. In particular, then, any transformation of W_+ has minimal polynomial of degree at most p-1. Reverting to multiplicative notation, this implies that

$$(p-1)$$
 times
 $[v, y, y, \cdots, y] = 1$

for all $y \in G$, $v \in W$. An immediate consequence of this is that $(yv)^p = y^p$ for all $y \in G$, $v \in W$.

Since $K \not\equiv HW$, K must contain an element of the form $y = u^i x^j v$ where $v \in W$ and p does not divide j. Then $y^p = (u^i x^j)^p = u^{ip} x^{je} = x^{je}$ where $e = [(p+1)^{ip} - 1]/[(p+1)^i - 1]$. Since p does not divide j, p^2 does not divide je. This implies that $x^p \in K \cap W$ which is a contradiction. This finishes the proof of Theorems 3.1 and 3.2.

Before showing that the theorem of Itô and Szép is false for infinite groups, we require a preliminary result about the direct product of

379

quasinormal subgroups. In general if H_i is a quasinormal subgroup of G_i for $i = 1, 2, H_1 \times H_2$ is not necessarily a quasinormal subgroup of $G_1 \times G_2$. For example, let G_1 and G_2 both be nonabelian of order p^3 and exponent p^2 where p is an odd prime. Let H_i , i = 1, 2, be a nonnormal subgroup of order p in G_i . Then H_i is quasinormal in G_i , but $H_1 \times H_2$ is not quasinormal in $G_1 \times G_2$.

3.3. THEOREM. Let $\{G_i \mid i \in I\}$ be a collection of periodic groups such that if $i \neq j$, $x \in G_i$, and $y \in G_j$, then x and y have relatively prime orders. Assume that H_i is a quasinormal subgroup of G_i for each $i \in I$. Then $\sum_{i \in I} H_i$ is quasinormal in $\sum_{i \in I} G_i$.

PROOF. Here $\sum_{i \in I} G_i$ is the restricted direct product of the groups G_i . Let $G = \sum_{i \in I} G_i$, $H = \sum_{i \in I} H_i$. *H* is quasinormal in *G* if, and only if, for each pair $x \in H$, $y \in G$, there is an integer *n* such that $y^{-n}xy \in H$. Accordingly, assume $x \in H$, $y \in G$. Then $y = y_{i_1}y_{i_2} \cdots y_{i_m}$ for some *m* where $y_{i_k} \in G_{i_k}$. Let e_k be the order of y_{i_k} and let x_{i_k} be the i_k -component of *x*. Then, since H_{i_k} is quasinormal in G_{i_k} , there is an integer n_k such that $y_{i_k}^{-n_k}x_{i_k}y_{i_k} \in H_{i_k}$. By the Chinese. Remainder Theorem, there is an integer *n* such that $n \equiv n_k \pmod{e_k}$ for $1 \leq k \leq m$. It now follows that $y^{-n_x}y \in H$.

3.4. THEOREM. There is a countable, solvable, locally finite, locally nilpotent group G containing a nonnilpotent, metabelian, core-free quasinormal subgroup H.

PROOF. Let p_1, p_2, \cdots be all the odd primes. By Theorem 3.1, there is a finite p_i -group G_i containing a core-free quasinormal subgroup H_i of class $p_i - 1$. Let $G = \sum_i G_i$ and $H = \sum_i H_i$. An examination of the groups constructed in the proof of 3.1 reveals that G_i and H_i can be chosen so that G_i has derived length 3 and H_i is metabelian. It now is verified easily that G and H satisfy the conditions in the theorem.

4. Residual nilpotence of core-free quasinormal subgroups.

4.1. THEOREM. If H is quasinormal in G = HC, $H \cap C = 1$, and C is infinite cyclic, then H is normal in G.

PROOF. Using 2.1, it may be assumed that H is core-free. We also may assume $H \neq 1$. Let $C = \langle x \rangle$. Since $H \cap C = 1$, if $h \in H$ and n > 1, then $hx \notin H\langle x^n \rangle = \langle x^n \rangle H$. Hence $hx \in xH$ or $x^{-1}H$. Similarly, $hx^{-1} \in xH$ or $x^{-1}H$, $xh \in Hx$ or Hx^{-1} , and $x^{-1}h \in Hx$ or Hx^{-1} . If $hx = xh_1$ and $hx^{-1} = xh_2$ with $h_i \in H$, then

$$x^2 = (hx^{-1})^{-1}(hx) = (xh_2)^{-1}(xh_1) \in H$$
,

a contradiction. Therefore, if $hx \in xH$, then $hx^{-1} \in x^{-1}H$. By this and an analogous argument, we have

(1) either
$$hx \in xH$$
 and $hx^{-1} \in x^{-1}H$
or $hx \in x^{-1}H$ and $hx^{-1} \in xH$.

Let $K = \{h \in H \mid hx \in xH\} = H \cap xHx^{-1}$. If follows from (1) that K also equals $H \cap x^{-1}Hx$. Thus $x^{-1}Kx = x^{-1}Hx \cap H = K$. This implies that $K \leq \bigcap_{g \in G} g^{-1}Hg = H_G = 1$. Hence $hx \in x^{-1}H$ for all nonidentity elements of H. Then, if $h, h' \in H - \{1\}, h'hx \in h'x^{-1}H = xH$, which implies h'h = 1.

Thus |H| = 2. Therefore C is normal in G, and either $G = H \times C$ or G is the infinite dihedral group. In the latter case H is not quasinormal since it does not permute with other subgroups of order 2. Hence the first case holds and H is normal in G.

4.2. THEOREM. A core-free quasinormal subgroup H of a group G is residually finite nilpotent. If, in addition, H satisfies the minimum condition on normal subgroups, then H is nilpotent.

PROOF. If *H* is residually nilpotent, its lower central series reaches 1 in ω steps. Thus the first statement implies the second.

Since \overline{H} is core-free, $\bigcap_{x \in G} H^x = 1$. It will therefore suffice to prove the following statement:

(2) If
$$x \in G$$
, then there is a normal subgroup N_x of H such that $N_x \subseteq H^x$ and H/N_x is finite nilpotent.

If $x^n \notin H$ for all n > 0, then the preceding theorem shows that (2) holds with $N_x = H$. Suppose that some $x^n \in H$ with n > 0. Then [K:H] is finite, where $K = H\langle x \rangle$. Therefore K/H_K is finite with quasinormal core-free subgroup H/H_K . By [1], H/H_K is nilpotent. Since H_K is normal in $K, H_K \subseteq H^x$, and (2) again holds.

5. Quasinormal subgroups of finite p-groups.

5.1. THEOREM. Suppose G is a finite p-group, |G| > 1, such that G = HK where H, K are subgroups, K is cyclic, and $H_G = 1$. Let $p^m = |K|$ and let p^n be the exponent of H. Then

(a) $f(H) \leq m - 1$, f(G) = m, and n < m.

(b) If H is quasinormal in G, then f(H) = n.

PROOF. If $m \leq 1$, then H is normal in G which implies $H = H_G = 1$. We now assume m > 1 and proceed by induction on |G|. Since $1 = H_G = \bigcap_{x \in G} x^{-1}Hx = \bigcap_{x \in K} x^{-1}Hx$, we must have $C_H(K) = 1$. Hence $C_G(K) = K$ and $H \cap K = 1$. This implies that $Z(G) \leq K$. A consequence of this is that $\Omega_1(K) \leq Z(G)$.

381

Now let $L/\Omega_1(K)$ be the core of $H\Omega_1(K)/\Omega_1(K)$ in $G/\Omega_1(K)$. Then, by induction, f(G/L) = m - 1 and $f(H\Omega_1(K)/L) \leq m - 2$. Since $\Omega_1(K) \leq L \leq H\Omega_1(K)$, we must have $L = \Omega_1(K)(H \cap L) = \Omega_1(K)$ $\times (H \cap L)$. But this implies that $x^{-1}(H \cap L)x$ is a normal subgroup of index p in L for all $x \in G$. Since $\bigcap_{x \in G} x^{-1}(H \cap L)x = 1$, L is a subdirect product of groups of order p. Hence L is elementary abelian. From this follows $f(G) \leq m$ and $f(H) \leq m - 1$. Since Gcontains an element of order p^m , $f(G) \geq m$. Similarly, $f(H) \geq n$. (a) now follows.

Now assume *H* is quasinormal in *G* and let K_1 be the subgroup of *K* of order p^n . $K_1 \neq K$ since n < m. If *x* is an element of order $\leq p^n$ in *G*, then, since $\langle x \rangle H$ is a group and $[\langle x \rangle H : H] \leq p^n$, we have $\langle x \rangle H = (\langle x \rangle H \cap K) H \leq K_1 H$. Therefore, $\Omega_n(G) = K_1 H$, and so $K_1 H$ is normal in *G*. Let *M* be the core of *H* in $K_1 H$. Then, by part (a), $f(K_1 H/M) = n$. Since $\bigcap_{x \in G} x^{-1} M x = 1$, $K_1 H$ is the subdirect product of *p*-groups of Frattini length *n*. It follows from this and 2.3 that $n \leq f(H) \leq f(K_1 H) \leq n$. Hence (b) is proved.

COROLLARY. Suppose H is a core-free quasinormal subgroup of the finite p-group G. Let p^n be the exponent of H. Then

(a) f(H) = n.

(b) The exponent of G is $\geq p^{n+1}$.

PROOF. By applying the theorem to $\langle x \rangle H$ where x runs through the elements of G, we obtain that H is the subdirect product of groups of Frattini length $\leq M$ in $\{n, m-1\}$ where p^m is the exponent of G. Since $f(H) \geq n$, the corollary follows.

References

1. W. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125-132. MR 27 #3699.

2. N. Itô and J. Szép, Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168–170. MR 25 #2119.

3. K. Nakamura, Über einige Beispiele der Quasinormalteiler einer p-Gruppe, Nagoya Math. J. 31 (1968), 97-103. MR 36 #5224.

4. J. Thompson, An example of core-free quasinormal subgroups of pgroups, Math. Z. 96 (1967), 226-227. MR 34 #7658.

UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112