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EIGENFUNCTION EXPANSIONS AND SCATTERING THEORY 
FOR PERTURBATIONS OF - A 

NORMAN SHENK AND DALE THOE 

1. S.urvey of results. Let ft be the unbounded domain exterior to a 
compact C2 hypersurface F in Rn (n = 2) and q(x) a real-valued func
tion such that e2a\x\q(x) is bounded and uniformly a-Holder con
tinuous in f i U r for certain constants a > 0 and 0 < a < 1. 

We let H denote the selfadjoint operator — A + q in L2(12) acting 
on functions which are zero on T. Specifically, we define 

D(H) = {g : (d/d%)«gE L2(fì) for \a\ ^ 2 and g | r = 0}, 

Hg= - A g + 9 g f o r g G D(H). 

Here differentiation is interpreted in the space £ò'(fì) of distribu
tions on fi and g | r is interpreted in an L2 sense (see §4). 

We treat H as a perturbation of the selfadjoint operator H0 = — A 
inL2(R"), 

( L 2 ) D ( H 0 ) = {f : (dldxYf <=L*(R«) for \a\ ^ 2 } , 

H o / = - A / forf G D(H0). 

The Fourier transform 

(1.3) fe) = l.i.m. (2TT)-»'2 J [ B j(x) «-«*•«& ( | <E fi») 

is a unitary map 

L2(R")Bf^>fEL2(Rn) 

which "diagonalizes" Ho, i.e., which transforms Ho into multiplica
tion by |£ |V 

(1.4) (Hoif(l) = KI2/(£). 

The plane wave &x'* is an eigenfunction of the differential operator 
- A , 
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but is not in L2(Rn) and is not an eigenfunction of Ho. Nevertheless, 
]{€), the formal inner product off with ëx*y may be thought of as the 
corresponding Fourier coefficient of f Then the inversion formula 

(1.5) fix) = l.i.m. (277)-»/* j[n fa) e!** M 

expresses f as the "sum" (integral) of the Fourier coefficients times 
the corresponding eigenfunctions. The Fourier transform is called 
an improper eigenfunction expansion for H0, and {e***:f £ B n } is 
called a complete set of improper eigenfunctions of H0, 

Write H = S-ook dEk and set F = J*o+ dEx. 
We will see that the spectrum of H in (— °°, 0] consists of eigen

values kj ^ 0 with corresponding eigenfunctions <f>j, 

H<f,j = kf<t>h JoteNx=i, 

while HP is absolutely continuous and has two complete sets of im
proper eigenfunctions {<£+(*> f) : 0 ^ £ G Rn] and {<£_(*> f) : 

0 ^ f G fln}. The so-called distorted plane waves <f>± are determined 
by the equations 

( - A + q(x)- k2)<l>±(xj) = 0 f o rx in f ì , 
(1.6) 

4>±(x, f) = 0 for x on T 

and the requirement that 

v+(%,€) = 0+(x,f) - ^ [t?-(x,f) = <Mx,f) - ***] 

satisfy the outgoing [ incoming] Sommerfeld radiation conditions 

v±(xj)= 0(\x\(i-n»z) 
(L7) / a \ 

( â R : F < l T ± ( ï , f l = ö(W(1-n)/2) 
as |x|—> °°. 

For g in L2(fl), we set 

(1.8) g,- = fag(x)b(xrdx 

and 

(1.9) g±(f ) = l.Lm. (2TT)-^2 J «±(X, €)*g(x)dx (0 ^ £ G fl"). 

We will see that for gGL2(fì) 
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(Lio) Jjg(*)N* = 2I&I + jRn IgHtpdt, 

and 

(1.11) g(x) = Urn. 2 ^ + Um.(ar)-/2|0±(x,f)ê±(f)df ; 

that 

(1.12) (Hgfj = kf &, (Hgr -d) = £ i 2 r (£)> 

for g G D(JC/); and that 

A± : PL2(ü)-^L2(Rn) 

are unitary. 
F o r / G D(H0) and g G D(H), the solutions u0(t) and t*(f) of 

(1.13) ~7JtU°^ = HoM(f) ' Wo(0) = f 

and 

(1.14) ^~ d t ^ = HuM> u ^ = § 

are given by u0 (t) = £~ if / /o/and w(£) = e~itHg. 
To compare the unitary groups £~itH<> and e_ i t / / , we introduce 

a cut-off function /LL(X) G C°°(Kn) with pt(x) = 0 inside and near T 
and/ot(x) = 1 for large x. Then for/ G L2(Rn), the limits 

(1.15) W-H f = lim eitH'fie-Mof 

exist and define the wave operators 

W± : L 2 (R n )^L 2 ( f ì ) . 

W± are independent of the choice of/x, are isometric, and satisfy 

(1.16) e~itHW±=W±e~itHo 

for all £ and 

(1.17) e~itH W±f~e~itHof as *-> ± oo 

We will see that 

W ± : L2(R")-»PL2(fì) 
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are unitary and that the wave operators are related to the eigenfunc-
tions by the equations 

(1.18) (W+f) ~+ =f= (W_fy- f o r / G L*(R"). 

Thus we have the commuting diagram of unitary operators 

L%Rn) 1+ L2(Rn) 

PL2(il) 

and the corresponding diagram for W_. 
Now consider g G L2(il) and set u(t) = e~itHg. If g is an eigen-

function <j)j of H, then u(t) = <f)j exp ( —itfc2) does not tend to zero over 
bounded sets as £—> ± <*> and therefore cannot behave asymptotically 
like a free-space solution e~itH<>f. 

If Pg = g, however, then we set f± = Wt g to obtain the unique 
functions in L2(Rn) satisfying W±f± = g and we have 

(1.19) e~itHof_ ^ e~itHg ~x e-itHof+. 

The scattering operator S maps the free-space solution on the 
left side of (1.19) into the free-space solution on the right side. We 
label these solutions by their values at t = 0. Thus we set £f- = /+ 
or S = W* W_ and S is a unitary operator on L2(Rn). 

The Fourier transform of J> has the form 

(1.20) (j;f)"(k,a>)=S(k)f(k,-)(<o). 

Here we have introduced polar coordinates £ = (k, co) with k > 0 
and co Œ Sn_1, the (n— l)-sphere, and S(fc), the scattering matrix, is 
for each fc>0 a unitary operator on L2(Sn_1). We will derive a 
specific formula for S(fc) which will show that it has a meromorphic 
extension to |Im k\ < a (and k ^ 0, —ir < arg fc ̂  IT if n is even). 

EXAMPLE. Consider n = 2, 9 = 0, and T = unit circle parametrized 
by 0, 0 ̂  0 ̂  2TT. Then in this case 

V - » / — H<i|(fc) 

where JFf̂  and H(^} are the Hankel functions (multiple-valued analytic 
function of k j^ 0 with a logarithmic branch point at k = 0). 
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The poles of S(fc) for — TT < arg k ^ TT are at the zeros of H^ (k) and 
lie in the lower half fc-plane. Suppose fco is such a pole. Then 

u(r, 6) = e^H^Xkor) 

is a nonzero solution of 

( - A ~kl)u= 0, r> 1, 

u = 0, r = 1, 

satisfying the generalized outgoing radiation condition to be described 
in the next section. We call such a function a resonant state. In §5 we 
will show, with specific formulas, that this example is typical, i.e., that 
fc (Im fc < 0) is a pole of S(fc) if and only if there exist resonant states 
atfc. 

2. Generalized outgoing radiation conditions. As in the last section, 
let a and a be constants with a > 0 and 0 < a < 1. Let % be the sub
set {fc: |Im fc| > — a} of the complex plane, if n is odd, and {fc^ 0: 
|Im fc| > — a and — TT < arg fc ̂  TT} if n is even. Consider fc in %. 

The outgoing fundamental solution F& (x) for — A — fc2 in Rn is given 
by 

(2.1) Ffo) = -fC—TT )"#< V (*I*L), P = (n-2)/2, 

and has the asymptotic form 

<2-2> ( ^ ) " F ' W " < * > " ( 2 « ) ' " " ' " ^ C " W ( 1 + 0 ( H ) ) 

( m = 0,1,2, • • -)as | z | -* » . 

We say that a function M E C^f ìUr) Pi C2+Ö(ft) is outgoing at k if 

(2.3) (-A-fc2)u(x) = 0(e-rtW) as x ^ » 

and if for each x in fl 

(2.4) / |x|^[%)^r Ffa-y)-Pt(x-y)-^-yu(y)]dsv^o 

as N—» °°. Green's formula shows that for functions u satisfying (2.3), 
condition (2.4) is equivalent to the equation 



94 NORMAN SHENK AND DALE THOE 

«(*)" jt[^)-^Ffa-y)-rfe-y)£-«(!i)}®y 
(2.5) 

+ j^x-yX-à - k*)u(y)dy. 

(Py is the unit exterior normal at (/.) 
Thus the outgoing radiation condition requires that u(x) be built up 

from the outgoing fundamental solution. 
Because of the asymptotic form (2.2) of F£, condition (2.4) is equiva

lent for Im k ^ 0, to the Sommerfeld outgoing radiation condition 

u(x)= o(|*p-">/2) 
(2.6) as x —» oo 

(y^-ik) "(*) = o(N(1-n>/2) 

For Im k < 0, however, nonzero outgoing functions grow exponential
ly as |x|—» oo . 

(A thorough discussion of the material in §§2 and 3 can be found 
i n [ l ] . ) 

3. The Dirichlet problem with the outgoing radiation condition. 
Let A denote the region interior to the surface T and for ß ^ 0 let 
C^(ftUA) denote those functions/G C^f tUAWhich have Cß exten
sions from ft to ft U r and from A to A U T. C^(ft) is defined analo
gously. Set 

B2 = {r E C(ftUA): e-a\xW(x) is bounded}, 

B2 = { T E Ca(ftUA): e-aWr(x) is bounded and uniformly 

a-Hölder continuous inftUA}. 

B2 and B2 are Banach spaces with the norms 

||r||2 = sup |T(X)|, 
and xenuA 

l|r||2= | |T| |2+ I sup + sup J y — • — ^ , 

respectively. Set B = Ca(T) X B2 and B ' = Cl+a(T) X B'2. For [r?, r] 
in B and x in Rn, we define the double-layer and volume potentials 

(D(fc>j)(x) = 2 J ^ - ^ F ^ - t t f d S , , 
and 
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(V(k)r)(x) =\Rn r(y) Ffo-y) e^dy. 

L e t / i be a function in Cl+a(T) a n d ^ a function such that e^l/^x) 
is bounded and uniformly a-Hölder continuous in OUT. We will look 
for outgoing solutions u G C1 (fì) Pi C2 +a(0) of 

lim u(x+€vx)= fi (x) for x on T, 
(3.1) € i ö 

( - A + q(x) - fc2)u(x) = f2(x) forxinf ì 

in the form 

(3.2) u(x) = <fc (fc) [% T] (X) = D(fc>Kx) + V(k)r(x)9 xGÜ, 

with [TJ,T] E ß ' . 
To describe this construction, we need to summarize some results 

from potential theory. The operator <U (k) is an analytic function 
of k G % with values in the countably seminormed space 

L(B', CKf tUA)nC 2 + «pjA)) 

of continuous linear operators from B ' to C ,(fìUA)riC2+a(fìUA). 
Set 

k(x,k) = q(x) e2a\*\ for % in H , 

(3.3) 
= (fc2+i)e2aM for x in A 

and 

Then M(k) is an analytic function ofk E. 9( with values in the Banach 
space L(B,Bf) of bounded linear operators from B to B'. 

Consider [TJ, T] in B ' and define u(x) by (3.2) for x in HUA. Then u 
is in C l(fìUA)nC2+a(fìUA) and satisfies the equations 

(3.5) lim u(x±€Vx) = ±ri(x) + Dq(x) + Vr(x) for x on T, 

€ 4 , 0 

(3.6) (-A-fc2)w(x) = T(x)e-2aM forxinfìUA. 

We rewrite equation (3.6) in the form 

( - A + g(x)-fc2)u(x) = ß-2aN[r(x) + qf(x)ß2aWw(x)] 

for x in ft and 
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( - A + i)ti(x) = ^-2ftW[r(x)-h(/c2 + i)^Ww(x)] 

for x in A. Noting definition (3.3) of X we obtain 

e-2a\x\[T + kDr] + XVT](X) = (-A + q(x)-k2)u(x) for* in ft, 

(3.7) 
= ( — A + i)u(x) for x in A . 

With equations (3.5) and (3.7) we obtain the following lemma. 

LEMMA 3.1. Define f2\ A to be any function in Ca(A). Suppose that 
[t], T] G Bisa solution of 

(3.8) (I+M(fc))h,T] = [/„ e*Mf2]. 

Then [rj, r] is in B'. Furthermore u = CU (&)[*?, T] is in C'(ftUA) D 
C2+a(ftUA) and is a solution of (3.1) and of the auxiliary differential 
equation 

(3.9) ( - A + i)u(x) = f2(x) for x in A. 

PROOF. [fÌ9 e2a\xf2] is in B and M(k) maps B into B. Hence (3.8) 
implies that [TJ, T] is in B ' and the lemma is a consequence of the above 
comments. Q.E.D. 

We now turn to the proof that the function u(x) of Lemma 3.1 is 
outgoing. 

LEMMA 3.2. Let each of the functions u(x) and u(x) be in one of the 
forms 

(i) Ft(x-z\ 
(ii) IMy)Fk(x-y)dSy, 
(iii) / r a(y)(dldvy)Fk(x- y)dSy, or 
(iv) IRnb(y)F£(x-y)dy 

with k in D(, z a point in ii, a(y) a continuous function on T, and b(y) 
a Holder continuous function on flUA such that \b(y) | = C e~aM for 
ally €Eiì UA. Then 

(3.10) 
= J |x |^ [u(—k—k2)ü—ü(—& — k2)u]dx^>0 

asN-* oo. 

PROOF. For 0 < Im k < a, the functions u, ü and their first and 
second order derivatives tend to zero exponentially as |x | —> oo so that 
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(3.10) is immediate. Both integrals in (3.10) are analytic functions of 
fc G^f. Consequently, the equation in (3.10) holds for all k G^f . 
The volume integral tends to zero for any k G D( by a direct estimate. 

COROLLARY 3.1. For any [17, r] G Z?? u — <VL{k)[% T] is outgoing 
forkGÜi. 

PROOF. Set ü(x) = F£(X-Z) (zEtl) in (3.10) to obtain (2.4) for 
u= Dq and u = Vr. Q.E.D. 

COROLLARY 3.2. If u and u are both in Cl(£l) nC 2 + a (H) and are 
both outgoing for the same value ofk G 3(, then Green s formula 

(3.11) 
= [u( — A — fc2)£ — fi(—A — k2)u]dx 

Ja 
holds. 

PROOF. Equation (2.5) shows that each of u and ti is a sum of func
tions in the forms studied in Lemma 3.2. Q.E.D. 

Let 0(k) denote the vector space of outgoing solutions v G Cl((ï) 

n c2+«(n) of 
/o io \ v(x+0vx) = 0 for* on r , 

(-A + q(x)-k2)v(x) = 0 for x i nß . 
Corollary 3.2 yields the following necessary condition on fl9 f2 for 
there to exist outgoing solutions of (3.1). 

COROLLARY 3.3. If there exists an outgoing solution u of (3.1), then 

<3-13) Jr / l ^ S * + L /2üdx = ° 
for all v in 0(k). 

We will see shortly that (3.13) is also a sufficient condition for there 
to be outgoing solutions of (3.1). 

Let 9 (k) denote the space of those [f, e2aWf2] in B which satisfy 
(3.13) for all v in 0(k). 

LEMMA 3.3. dim 0(k) = codim D (k). 

LEMMA 3.4. Image (/ + M(k)) C <?(*). 
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PROOF. The expression on the left side of (3.13) is of the form 
T(v)[fi, e2"'*^] with T(v) a continuous linear functional on B. Hence 
0(k) is a closed subspace of B. Lemma 3.3 is immediate because 
linearly independent functions v in O(fc) yield linearly independent 
linear Junctionals T(v) on B. 

For [17, T] in B ' with T of bounded support, we define [fÌ9 e2a\x fiz] 
= (/+M(fc))h,T]. 

Then u = ll(k)[% r] is an outgoing solution of (3.1) so that, by 
Corollary 3.3, \fl9 e2a\*\f2] is in 0(k). This establishes Lemma 3.4 
because such [17, T] are dense in B. 

This procedure of constructing outgoing solutions of (3.1) is an 
adaptation and extension of a procedure used by Peter Werner [3] to 
study (3.1) for Im k = 0. The next lemma generalizes the key calcula
tion in [3]. 

LEMMA 3.5. Ti(k) : Null space (I + M(k))—> 0(k) is one-to-one 
for each k G U{. 

PROOF. Lemma 3.1 and Corollary 3.1 show that IX (k) maps the null 
space of / 4- M(k) into 0(k). Suppose that [ih, TL] and [172, T2] are 
in the null space of I + M(k) and yield the same function in 0(k). 
Set [17, T] = [TJI, TI] - [172, T2] and v=<U(k)[% T] . v is in Cl(A) 
H C2+a(A) and is identically zero in ft. The normal derivatives of 
Dq and of Vr are continuous across T, so 

lim -—v(x—evx) = 0 for x in I\ 

Also 

( —AH-i)ü(x) = 0 for x in A 

so by Green's formula 

0 = iv^dSx= f( |Vt; |2 + i|i;|2)dx. 
JT dv M 

The imaginary part of the last equation implies that v(x) is also iden
tically zero in A. Hence 

T(x)e-2flM = ( - A - k2)v(x) = 0 for x in ft U A 

and 

2r)(x) = lim [v(x+€vx) — v(x—evx)] = 0 for x inT. 

This shows that 17 and T are zero and completes the proof of the lemma. 
From Lemmas 3.3, 3.4, and 3.5 we obtain the inequalities 
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dim 0(k) = codim 0(k) ^ codim Image (I + M(k)) 

dim 0(k) ^ dim null space (I + M(k)). 

Since M(k) is compact, the numbers on the right sides of inequalities 
(3.14) are equal and finite, and all the numbers in (3.14) are equal. 
Referring again to Lemmas 3.4 and 3.5, we see that 

(3.15) O (k) = Image (I + M(k)) 

and that 

(3.16) <U (k) : null space (I + M(k)) -» 0(k) 

is an isomorphism. Thus we have established the following theorem. 

THEOREM 3.1. Consider a fixed k G % and functions fi andf2 satis
fying the conditions stated above problem (3.1). Problem (3.1) has an 
outgoing solution u G Cl(ü) fì C2+a(iì) if and only if condition (3.13) is 
satisfied for all v in 0(k). 

Set fi = 0 in A. Then HX (k) is an isomorphism between the finite 
dimensional space of solutions [17, r] of (3.8) and the space of out
going solutions of (3.1). 

We next state without proof the following well-known result. 

LEMMA 3.6. Outgoing solutions of (3.1) are unique for 0 â Im k. 

Lemmas 3.5 and 3.6 combine to show that J + M(k) is one-to-one 
for 0 ^ Im fc. M(k) : B—» B is compact for each k because M(k) : 
B-+B' is bounded. Hence (I + M(k))~l : B—» B is analytic for 
0 ^ Im k, and, by a general result of Steinberg [2], (I + M(fc))1 : 
B-» B is meromorphic for — a < Im k < 0. Since M(k) : B-* B' is 
analytic, M(k)(I H- M(fc))-1 is analytic [meromorphic] as an operator 
from B to B ' and hence from B ' to B ' f o r O g ImJfc [ - a < Imfc < 0] . 
The equation 

(/ 4- M(k))~l = I - M(k)(I + M(fc))-1 

thus shows that (/ + M(k))~l is analytic [meromorphic] with values in 
L(B\ B') for O^Imfc [ - a < l m f c < 0 ] . Since <U(k) : B ' -> 
C^OUA) PI C2+«(ftUA) is analytic, <U(k)(I + M(k))~l : B ' - > 
C-^OUA) fi C2+*(fìUA) is analytic for 0 S Im fc and meromorphic for 
— a < Im k < 0. By Theorem 3.1, fc is a pole of (I + M(fc))-1 if and 
only if outgoing solutions of (3.1) are not unique. Set 

5(i =!K \{fc : fcisapoleof(Z+ M(k))~1}. 

We have established the following result. 
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THEOREM 3.2. Consider fi in C1 + a(r) and eaWf2(x) bounded and 
uniformly a-Hölder continuous on CIUF. Setf2(x) = Ofor x in A. Then 

(3.17) u{x, k) = Il (k)(I + M(k))-l\fl9 e2a\%] 

is an analytic function of k E.J(i and a meromorphic function of 
k t£9(, and is, for each k in !J(i the unique outgoing solution of (3.1). 

If [fi, e2aMf2] G B depends continuously or analytically on an 
auxiliary parameter, then the corresponding dependence of u G 
Cl(ty fi C2+a(fì) can be read off from (3.17). We give two such appli
cations of Theorem 3,2 which will be needed below. 

For co G Sn_1, the unit sphere in Rn, and for k G Ud, let v+(x, k, co) 
be the outgoing solution of 

v+(x, k,o))= - eikxù> for x on T, 
(3.18) V ' 

(— A + q(x) — k2)v+(x,k, co) = — q(x)ékx'tû forxinfì. 
(For 0 ^ G R " , w e write v+(x, f) for v+(x, \d\9 €/\&).) Then the 
difFracted plane wave v+ is an analytic function of k G 9{\ and a 
meromorphic function of A: G %, 

For f G Rn and k ^ 0 with Im k ^ 0 let vx(x, k; f ) be the outgoing 
solution of 

Vi(x, k; €) = — eix* for x on T, 
(3.19) 

( - A + q(x) - k^v^x, k; f ) = -q(x)ëx'* for x in ft. 

üi is only used to prove the eigenfunction expansion theorem in the 
next section. We have the following estimates which are needed in 
that discussion. 

Let K be a compact subset of {k j ^ 0 : 0 ^ arg k ^ TT and k is not 
a pole of (I + M(k))~1}. There is a constant C depending only on K 
such that 

Mx,M)|+ î|-^-t>i(*,lU)| 
j=i I ax,- i 

(3.20) 

^ C(l + |£|2)exp{-min(a,Imfc)|:*:|} 

for xGOUr , ££R» and kGK. 

4. Eigenfunction expansions for H. We now consider the exterior 
boundary value problem 

(-A + q(x)-k2)u(x) = fix), xEil, 
(4.1) 

u(x) = 0, x(Er, 
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in the L2-sense, i.e. we consider the problem of solving (4.1) in L2(fì) 
for the case/£L2(fl) . This leads to the study of the selfadjoint operator 
H, and in particular to the development of an eigenfunction expansion 
fortf. 

For functions fin 

D(H') = {fife cKour) n c2(n),/|r = o,and/,- A/+ 9/e-iß((i)} 
define the operator It by setting 

ITj{x) = - A/(%) + q(x)f(x), x G a 

H' is a real, symmetric, densely-defined operator in L2(fì), and it will 
be shown to be esentially selfadjoint with closure H. The spectral 
theorem allows us to express H in the form 

H-f">^-
We will calculate the spectral projections Ex from the well-known 
formula 

j ((Eb + + Eb_)/,/) - j ((Ea+ + Ea„)ff) 

(4-2) 

«-»0 ff Jo " 

For functions / in Co{R"), £ G. R" and k a regular point of 
[ I + M(k)] - ' with Im k > 0, set 

(4.3) Wkf(x) = (tor)-«* f # ) [ l £ l 2 - f c 2 ] -%+(* , fc, f ) # , x G ft, 

where 

u?+(s, k, €) = #** + ÜI(X, fc, I), 

and Ü! is given by (3.19). The definition of v\ and the Fourier inversion 
formula show that W^f can be written in the form 

Wkf[x) = (Ho-k*)-%x) 

+ (&)-** JRBjte)[|É|*-fc2]-i 

• ntfäU+Mik)]-1 [-eix(, -q{x)ë*?]dt, 

which is simply 

(4.4) Wkf(x) = hk(x) + <U(k)[ 1+ M(k)] - » [ - hk, - qhk], 

with 
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hk(x) = (Ho-* 2 )" 1 / 

Equation (4.4) shows that Wrfis the outgoing solution of 

(-A+9(*)-**M*) =/(*), * e a 
(4.5) 

u(x) = 0, x G T. 

If w = (H — fc2)-1(/]n), then to is also an outgoing solution of (4.5). 
This is a consequence of the following lemma, which is proved in [4]. 

LEMMA 4.1. If u Œ D(H) and (H-k2)u = /|n, with / G Co(Rn\ 
then 

(i) u is bounded on ft 
(ii) u is outgoing. 

The uniqueness of outgoing solutions therefore implies that 

(4.6) wtfx) = (#-**)- >(ft)(*), * e n . 
Thus Wj/G D(tf) and (H-k^W^x) = j[x), xSii. But (4.4) shows 
that Wfc/G C ^ H U n n C ^ n ) , so that W f c /GD(tf ) and (tf-fc2)W»/ 
= f. It therefore has deficiency indices (0, 0), and is essentially self-
adjoint, with closure H. 

Equation (4.6) gives a representation of (H—fc2)_1(f|n) in terms of 
the distorted plane waves w+. We will apply (4.2) by determining a 
representation of ||[H — (fi—k)] _ 1 / | |2 in terms of the functions u>+, 
as follows. 

For / G C0"(fì), and g G C0"(R") we have 

fa(H-T*)-Wx)g(xrdx = jofa) ( f f - f c 2 ) - > ( g b ) W * 

= j0A*) wkg(xrdx. 
Substitute the defining expression for W*g into the last integral and 
reverse the order of integration to obtain the equation 

(4.7) f {H-k*)-if{x)g(x)*dx=\ [|fl2-#]-£(f)ê(f)*#, 

where 

(4.8) £ ( f ) = (2n)-^ Jo/(x)tü+(x, *, £)*dx, £ G R». 

Estimates (3.20) and the construction of Ü^X, fc, f ) show thatjk G C(Rn). 
Concerning the integrability of fa we have the following 
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LEMMA 4.2. For each f&CÔ(ii) and each compact subset K of 
{k\lm k S 0, [I + M(k)] ~l is regular}, there exists a constant C(f9 K) 
such that 

for all k G K. 

We will give proof of Lemma 4.2 following the eigenfunction ex
pansion Theorem 4.1. 

If we extend the function (H—k2)~lf appearing on the left side of 
(4.7) by setting (H-k2)~lf(x) = 0 for x in A, the Plancherel Theorem 
and (4.7) show that 

(4.10) [(H - **)-!/] "(*) = (lÉl2-*2)-1 /^), * G B", 

and 

(4.11) IkH-ÊV/llî^, = IKKI2-*2)-1/«^,, 
for/G Co (A) and fc a regular point of [ I + M(k)] ~l with Im k > 0. 

Define transforms/+ for functions/G Co"(ß) by setting 

(4.12) /+(£) = ( ä r ) -» (afix^+(x,Çfdx, O ^ G R » , 

with 
*+<*, €) = é** + v+(x, £), c+(x, f) = c+(*, m, è) 

given by (3.18). The transform/+belongs to C(Rn - {0}). Set P = 
So+dEx. We consider first die part of H in PL2(ii). 

THEOREM 4.1. (i) Forf£CZ(ii),f+ is in L2(Rn) and 

(4.13) \Rn\H)\2àè=\a\?f{xpdx. 

The mapf—*f+ can be extended to a unitary mapping ofPL2(Cl) onto 
a closed subspace M ofL^R").1 

(ii) ForfG L2(fì), 0 < a < b < « , 

(4.14) (Eb - Ea)j{x) = (2ir)-«i* \ a<„|2<fc ^(fl*+(x,f)df 

inL2(£l), the integral converging absolutely for each x in ftUr to a 

*It will be shown subsequently that M = L2(Rn). See §5. 
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function in Cl(ü(Jr) nc 2 + a ( f i ) which satisfies the boundary condi -
Hon u = 0 on T. In L2(ft), 

Pj(x)= lim f f(^+(xj)di. 

(iii) fGD(HP) «=*/«« |£|4 | /+(£)|2e#< » a™* 

(ifP/)*+(f) = |£|2/+(£) forfG D(HP). 

PROOF. Let a,b be fixed with 0 < a < b < oo, and choose 8 > 0 so 
that 8 < a < b < 8 1 . Write fc2 = jut + ie (Im fc ̂  0) for 8 g ^ ^ 8"1, 
0 ̂  € ̂  €o where 60 > 0 is chosen so as to have 

K= {fc|/c2=/x+ie, 8^fJL^Ô~K 0 g e â € 0 } 

belong to the domain of regularity of [J + M(k)] ~l. F o r / G Co°°(^), 
(4.2) and (4.11) give 

%((Eb+ + Eb.)fif) - \ ((£fl+ + Ea_)fif) 

(4.15) = h ± r»^ e m m . 
The integral over Rn we split into two parts: 

and treat each of the corresponding terms in (4.15) separately. For 
the second term, |f | 2 = 8 - 1 and so for fx with a = n=b, 

(ft* -*)* + €<• * ( | £ | 2 +C)2 

where C = min(a~8, 8 _ 1 — b). Lemma 4.2 therefore implies that 

For £ 2 < 8 _ 1 we observe diat/fc(£) is bounded uniformly; 

toi g M for k G K, I^P^S-1, 

so that 

(4-17)
 ff J„ (|||2-M)2 + € 2 = M | p n

 6 J a | = C -
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Fubini's Theorem therefore applies, and 

(4.18) 

- ÌSIÉ»*.-1 * •*•/. ,^o Jlfl <s * J« (l£l2-|*)2+ «2 ' 

For each f G Rn, J^(£) is continuous in-fc G K and so is continuous in 
€ and jn for 0 ^ € ^ € 0 , 8 ^ / J L ^ 8 1 , with 

hm m=H)-
k-*\g\; Im fc>0 

Therefore (see Titchmarsh, Introduction to the Theory of Fourier 
Integrals, p. 31) 

iim — f ni
(l)Ct * - w ifa < i^i2 < f o ' 

(419) '"° "" ( P l 2 - M r + «2 

= 0 i f | f | 2 < a o r | ^ | 2 > b . 

Formulas (4.17), (4.18) and (4.19) together with the Lebesgue Bounded 
Convergence Theorem now show that 

(4.20, ta i £ 4,}|f|!<s_, j j j ^ M * - _ j ^ f . (0 |W 

(4.15), (4.16) and (4.20) then give 

(4.21) ± ((Eb++Eb.)f,f)- ± ((E0++Ea.)f,f)=\a<^2<b |f+(|)|*d£ 

Let a approach b in (4.21) to find 

((Eb+ - Eb.)f,f) = 0, 

so that Eb+ = Efc_ = Ei, for all fo > 0, and consequently (4.21) be
comes simply 

(4.22) ((Eb - Ea)ff) = j a < ^ 2 < b | f (£) |2# . 

Let a -» 0 and b -» oo in (4.22) to obtain formula (4.13) of part (i) of 
the theorem. The extension to arbitrary functions/G L2(fì) is obvious. 

By polarization, (4.22) gives 
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(4.23) ((Eb - Ea)f, g) = / fl<w2<b /•(£)g+(f)*#, 

which shows that {(Eb - Ea)f}~+ is the projection of X[a, fo](|£|2)/+(f) 
onto the range of "Ä +". Here X[a fo] denotes the characteristic func
tion of the interval [a, b]. Since'(Eb - £ f l) /G PL2(ft) for 0 < a < b 
< oo, and because " * +" is an isometry from PL2(£l) to L2(Rn), it follows 
that 

(4.24) {(Eb - Ea)fr +(f ) = X[a, W(|f P)>(Q. 

Part (iii) of the thoerem is a consequence of (4.24). 
To prove (ii), let f G L2(ü) and g £Coi[fl), substitute the defining 

expression for g+ into (4.23) and invert the order of integration to find 

(4.25) ((Eb-Ea)f, g) = (2n)-^jfìg(xrdx \a<^<b H)*4x,€)d€. 

The interchange of order of integration is valid because f+ŒLl 

(a^\S\2=b) and <£+(*> f) i s bounded for a^\è\2=b, x G supp(g). 
Part (ii) of the theorem now follows easily from (4.25). 

The above theorem gives an expansion for functions in PL2(Cl) in 
terms of the generalized eigenfunctions <f>+(x, £), i.e. solutions of 

( -A + q(x) - |£|2)<M*> Ç) = 0, x in O, 

<M*> f ) = o, x in r, 

of the form <£+(*, f ) = eix^ + t?+(x, £), i?+(x, f ) outgoing. A corre
sponding result holds with <£+(x, €) replaced by <£-(*, f ) = <£+(*, —f )*. 

The part of H in (Z— P)L2(fl) has pure point spectrum. This is a con
sequence of the 

LEMMA 4.3. For Im Jfc > 0, 0(k) = Null space (H - fc2). 

The proof of this lemma follows easily from Theorem 3.1 and Lemma 
4.1. 

Lemma 3.5 states the 0(k) is nonempty if and only if the null space 
of I+M(k) is nonempty, i.e. if and only if k is a pole of [Z+ M(k)] _ 1 . 
Thus Lemma 4.3 shows that if H—k2 is one-one, then k must be a 
regular point of [Z+ Af(fc)] _ 1 , and so k is a pole of [Z+ Af(fc)] - 1 if and 
only if k2 is an eigenvalue of H. Let fci = u*i, &2 = *<*2> 0 < «i < a2, 
be two consecutive poles of [Z-hM(fc)] _ 1 (necessarily on the positive 
imaginary axis). If a, b < 0 are chosen so that —a2< a < b < — «i, 
then the segment k = it, V( — &) = £ = V( — a) is free of poles of 
[Z+ M(fc)]-1. Set 
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K = {fc|fc2 = / A + Ì 6 , ^ X = f e , 0 ^ € ^ € o } 

where €0 > 0 is chosen so small that K belongs to the domain of 
regularity of [7+ M(k)] _ 1 . A glance at formula (4.15) with this choice 
of a, b and K shows that the factor [(\£|2—/x)2+€2] _ 1 is dominated by 
[ |£|2 + b] ~2, so that Lemma 4.2 and equation (4.15) yield 

(Eb+ + Eb_) - (E a + + Ea_) = 0, 

i.e. there is no other spectrum of H in (— » , 0) other than the point 
spectrum. 

An immediate consequence of Lemma 4.3 is 

COROLLARY 4.1. The multiplicity of each eigenvalue k2 of H is finite, 
and equal to dim 0(k). 

In case of odd space dimensions n, [I+M(fc)] _ 1 is meromorphie in 
Im fc > — a, so that the lower semiboundedness of H and Lemma 4.3 
gives 

COROLLARY 4.2. The point spectrum of H is finite ifn is odd. 

PROOF OF LEMMA 4.2. The formula (4.9) is true with fr replaced by 
/ , so it will suffice to prove that 

(4.26) | \Rn itövtä-jimds |^ c(f,K)JHB [i+ m*mM 

holds for all g G Co(R"), k G K. _ 
The defining equation (4.8) forfk gives 

MQ - M) = ( ^ ) - n / 2 1 0 i<:*w*, *> tydx, 

so by reversing the order of integration, 

(4.27) \Rn | ( f ) $ ( £ ) - # ) ] • # = j a Qkg(x)f{xrdx, 

with 

(4 28) Qkg(x) = (27r)"n/2 L ê t f W*' h *>* 
= cU(fc)[ /+M(fc)] - i [ -g , -9g] 

(The last equation follows exactly as in (4.4).) The above equation 
identifies Qkg as the outgoing solution of the inhomogeneous boundary 
value problem 



108 NORMAN SHENK AND DALE THOE 

/ 4 0QN (-* + q(x)-k*)u(x)=-q(x)g(x), xGii, 
(4.zy) 

u(x) = —g(x), x G T. 

In view of equation (4.27), it will suffice to prove the estimate 

(4.30) IK?*glFL*(D, ^ C(f) f [1+ |£|2]2 |g(£)l2# 

with D = supp(/), for the Schwartz inequality applied to (4.27), to
gether with (4.30), implies (4.26). Estimate (4.30) is an immediate 
consequence of special estimates for the Green's function G(x, y, k) 
for the boundary value problem (4.1). We state below the properties of 
G which imply (4.30). The construction of G and the proof of the 
estimates depend on a careful application of the potential theory 
developed in the initial sections of this paper, and can be found in 
§ 5 o f [ l ] . 

THEOREM 4.2. Let i /Gf ì , and let K be as in Lemma 4.2. 
(i) The Greens function G(x, y, k) exists for k G K, and is the out

going solution of 

( - A x + qr(x)-*2) G(x, y, k) = 0, x Gf t - {y}9 

G(x, y, k) = 0, x G T, 

which behaves like F£{x—y) near x—y = 0. 
(ii) If u is outgoing for k and u G H2(Ü)nC2+a(ü\ then 

u(x) = £ [<(*/)— G(y> x> k ) ~ G(?/> x>k) ~^-(y) ] dsy 
(4.31) r 

+ \nG(y>x,k)(- à + q(y)-**My)dy 

for all x G H. 
(iii) For each compact subset D of fì öftere is a constant C(D, K) 

such that 

(a) \(dldy)TG(y,x,k)\^C(D,K) 

for \m\ ^ 1, (/ G r , k G Kandx G D; 

(b) Jn |9(y)G(y,x,fc)|dy^C(K,D) 

/ o r i e D . i G K ; 
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(c) \D\G{y,x,k)\dx^C(K,D) 

jbryGCKkGK. 

In order to prove the estimate (4.31), apply (4.30) to represent Qrf 
in terms of G. The estimates in (iii) of Theorem 4.2 can then be used 
to show that (4.30) is true. We only remark that it is necessary to use 
the estimate (see [5] ) 

(4.32) £ [ | ( d / d x ) w g ( x ) | 2 d x ^ M £ [ \(dldx)m g(x)\2 dx 

in obtaining (4.30) from the representation of Qkf. 

5. The operators W± and S. Let *x GC0°°(Rn) be a function which 
vanishes inside of and near T, and equals 1 for large x. Define / : 
L 2 ( R " ) ^ L 2 ( n ) by (Jf)(x) = n(x)j{x). Clearly ||/|| g 1, and / maps 
D(Ho) into D(H). Set 

(5.1) W(t) = eitHJe~itH\ - o o < £ < o o ? 

and define the wave operators W± by 

(5.2) W± = s-lim W(t). 

It is clear that 

(5.3) | | W ( t ) | | ^ l , -<»<t<™. 

THEOREM 5.1. (i) W± exist, are independent of the choice offi, and 
are unitary maps ofL2(Rn) onto PL2((l). 

(5.4) (ii) ( w + y ) - - = ^ = ( w _ y r + forfGL2(Rn). 

PROOF. We shall consider the case n = 3, as the case n = 2 requires 
an additional argument. Let fG L2(Rn) be such that fŒ£o(Rn\ 
fig) = 0 near f = 0. Choose ay h, 0<a<b<°°, so that fljtf »= 0 if 
|£|2 (f A = [a, b]. An application of Theorem 4.1 gives 

[E(A)W(ttfT-(fl 
(5.5) 

= X^\2)(^ynl2 \n<l>-(xJrKx)(eim2-"o]ß(x)dx. 

Since / belongs to the Schwartz class J>, ei(tlfl wo]/£:<=S, and for £ 
with |£|2 G A, 

(5.6) K^"*2-"•!/)(*) I + | -jff (««M2-«.!/)(*) | g C(/)r»'2 
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for |*| = 1, oc G Rn. (See the Kato-Kuroda lectures for estimate (5.6).) 
Differentiate (5.5) with respect to t9 and then integrate by parts: 

-JL[E(A)W(*)/T-(|) 

(5-7) =XA(|£|2)i(2,r)-'2 £<M*> * W * ) ( A + |f |2)(e"W2 "MX*)** 

=X^\mH»-nl2 jn(e"TM2-«oJ/)(*)(A + |fP)D*(x)*_(x,fHcfa. 

The last line of (5.7) shows that 

(5.8) - ^ L [ E ( A ) W ( t y r - ( £ ) = 0 ( r » / 3 ) as |*|-* co, 

uniformly in f, since 

( A + | £ | X * > M x , f) = /t (*)</(*)*_(x, f) + 2V/t(x).V*_(x, f) 

+ (A/i(x))*_(x,É) 

is bounded in L^R*1) for f with |f |2 G A, and estimate (5.6) holds for 
such f. Therefore [E( A)W(T)/J **"(£) converges uniformly in f as 
T—>oo, as integration of (5.8) readily shows. We now calculate 
limace [E( A)W(T)/] A -(f) by taking the Abelian limit, 

lim [£( A)W(T)j] A - ( f ) - [E(A)/jT-(f) 

= lim+ r e-* -j- [E( *)W(t)f\~-(f)dt. 
tno+ Jo at 

Multiply both sides of (5.7) by e~€t, e > 0, integrate over [0, <» ] with 
respect to t and use the equation 

J V*(^W2-H0]/)(x)<fc = i([ A + |f |2 + ie] -i/)(x) 

to obtain 

(5.10) 

with 

| " e - - - | - [ E ( A ) W ( t i / ] - - ( f ) _ « 

u+(x, *) = - j Ffa, y ^ d y , fc* = |f p + fc. 
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As e -» 0+, u+(x, k) converges to 

(5.11) u+(x)=-jRnF^(x,y)fy)dy 

uniformly in x G R". u+ is the outgoing solution of 

(5.12) (A + |fP)u+(*)=/(x), xGR». 

Consequently, (5.9), (5.10) and (5.11) yield 

lim [E( A)W(T)f\ * -(f) - [ E( A)Jf\ * ~(£) 
(5.13) T— r 

= -(27T)-«/2XA(|fP) Jn «+(«)(A + |fP)[M(«^_(x,«*]ifa. 

We now make two trivial modifications in the integral on the right 
side of (5.13). Since ( A + |£|2)/A<£>_ has its support in fl we can 
replace the region of integration il by Rn. We can replace the term 
(A + | f | > * _ b y (A + |fP)M*)<M*,f)- e-**) since (A + |£|*)e-<*< 
= 0. The result of these modifications in (5.13) is 

lim [22(A)WOOfT-(*)- [E(A)JfJT-(f) 
T-+0 0 

(5.14) 
= _ (ar)-«/2xA(|f|2)f M+(x)(A + |f|2)Mx>Mx,f) -ë^fdx. 

For large values of oc, /ut(x)<̂ _(x, f) — e«** equals Ü_(X, £)*, which is 
outgoing. Since u+(x) is also outgoing we can integrate by parts in 
(5.14) and apply (5.12), with the result 

lim [E(A)W(T)/r - (£)- [E(A)/iT-(£) 

(5.15) = - (St)-«/* X A( |f P) J W ^ _ ( x , f )* - e-^)f(x)dx 

= XA(£i 2 ) [ü! / r - (£)-#)] . 

This shows that 

(5.16) lim [E(A)W(T#r-(f)=./te) 

uniformly in f E Rn, since both sides of (5.15) are zero if |f p $ A. 
Consequently, 

(5.17) [E(A)W(rtfT- ^ / in tf(fl-). 

Since £( A )W(iy G PL2(il), (4.13) and (5.17) yield 

(5.18) Hm IE( A)W(T)/1| w = |lf|| t w = |l/| LHm . 



112 NORMAN SHENK AND DALE THOE 

Because of (5.3) we have 

11(1 - E( A))W(T)/||2 = || W(T)/||2 - ||E( A)W(T)/p 

S | [ f | p - | | E ( A ) W ( T ) / f , 

so that (5.18) implies 

(5.19) Hm | | ( I - E( A))W(T)/|| Lm = 0. 

Therefore 

[(l-E(A))W(T)f\'-T-^0 in L*(R»), 

which together with (5.17) shows that 

(5.20) lim [W(T)f\"-=f in L2(R"). 

Finally, (4.13) and (5.20) imply that PW(T)f converges in L2(fì) as 
T-> oo. However, from (5.19) it follows that 

(I-P)W(T)f ^ 0 inL2(fì) 

so we obtain the existence of 

lim [PW(T)f+ (I-P)W(T)f] = lim W(T)f= W+f 

in L2(fl). Equation (5.20) now implies that 

(5.21) [W+f\'-=f, 

which proves half of (5.4), at least for the class of functions / con
sidered. The extension of (5.21) to arbitrary f G L2(Rn) is immediate. 

(5.21) shows that the transformation "A~" is a unitary transformation 
from PL2(il) onto L2(Rn). Let F_ : PL2(fl)-> L2(Rn) denote the 
transformation / - > / " , and let F : L2(Rn) -+ L2(Rn) denote the 
Fourier transformation/—»/. Then (5.21) can be written as 

(5.22) F-W+ = F, 

which implies that 

(5.23) W+ = F*F 

is unitary from L2(Rn) onto L2(Rn). In addition, (5.23) yields the 
formula 

(5.24) W+j{x) = {2rr)-«i2 \ f{è)4>-{x,è)dè in L2(R"). 

If we define F+ : PL2(tl)-+ L2(Rn) to be the transformation / - > / + , 



EIGENFUNCTION EXPANSIONS AND SCATTERING THEORY 113 

a proof analogous to the above shows the existence and unitarity of 
W_; L2(Rn)-*PL2(Ü\ and 

(5.25) W_ = FtF. 

This completes the proof of Theorem 5.1 and establishes the unitarity 
of F+ and F_, and so completes the proof of Theorem 4.1 also (see 
the footnote following Theorem 4.1). 

The scattering operator S = L2(Rn) -> L2(Rn) is defined by 

(5.26) S = Wlw_, 

and is clearly unitary. S can also be written in the form 

(5.27) S = F*F-F IF. 

The "scattering matrix" S is defined by setting 

(5.28) S = F_F t , 

and is unitary since S = F*SF. We shall now obtain a representation 
of the scattering matrix S. 

L e t / E L2(fì") be such that fGCo(Rn), with f{Ç) = 0 near £ = 0. 
It follows from (5.25) that 

(5.29) Sf= F _ W _ / = [W_jT" . 

Proceeding as in the proof of Theorem 5.1, we calculate S/ as an 
Abelian limit: 

(5.30) lim f° e* - £ - [W(t)fl--(fldt = ( # ) - ( £ ) " (S/)(*). 

In this situation, however, we obtain 

( 5 ' 3 1 ) = (2TT)-»'2 f «_(*, *)( A + |f |2)(W*)*-(*, f )0)<fa» 
•>R« 

where 

«_(*, *) = - f F;(X, y)f{y)dy, k* = |f f - f c . 

As e —» 0+ , M_(X, fc) converges to 

«-(*) = -jRn
Fd*>y)fi.y)dy 

uniformly in x G Rn. u_ is the incoming solution of 

(A + | f | > - ( * ) = / (*) , ï £ f i " . 
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As before, we modify the integrand on the right side of (5.31) by in
serting the term 0 = ( A + |f \2)e~ix^, and let €—» 0+ to obtain from 
(5.30) and (5.31) the equation 

wr-tf)-(sj)tf) 
(5.32) 

= (27r)-«/2JRnW_(x)(AH-|fP)(/Lt(x)^_(x,|) - e***)*dx. 

Here the factor pi(x)</>_(x, f) — &*'** equals t>_(x, f)* for large values 
of x, and so is outgoing for large x, while the factor w_(x) is incoming. 
Integration by parts in (5.32) will now introduce a boundary term: 

(#)*-(*)-(s/)(fl 

(5.33) 

The boundary integral in (5.33) may be evaluated by utilizing the 
asymptotic expressions for ü_ and w_. Setting x = R0, where 
R= |x|, 0 = |x| -1x, a n d £ = |f |CÜ, with w = |£|_1£, we have 

J^(R*)~-i|fMR*). 

i>_(R«, III, c ) * ~ *_(«, If |, < » ) 4 ^ ! ^ , 

(R0, |f|, «)* ~ i|f|o-(Rfl, | l | , « ) ' 
a I*. 

as R—» oo, Therefore, we obtain 

lim (ar)-«« f f „ _ ( x ) Ì 5 = - - 0 t ( x , f ) Ì H = - ( x ) ] d S l 

(5.34) = (_m_ y - i ) / 2 j s n i Mtf> |f (> w ) ^ | f |5 _e)dfl 
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(5.33) and (5.34) now establish the 

THEOREM 5.2. The scattering matrix S has the following représenta-
Hon: 

where s_(0, |f |, CÙ) is given by 

as \x\-> oo 9 x = |x|0, and £ = |£|Û>. 

For k > 0 we define the scattering matrix S(k) : L^S""1)-* L2(Sn~l) 
by setting 

(S(k)h)(0) = h(6) + ( - £ - ) ( n ~ 1 ) / 2 j s n i s_(-<o,k, Orh(o>)d<o. 

The next section will be devoted to studying the meromorphic con
tinuation of S(k) to the strip |Im k\< a. 

6. Resonant states and poles of the scattering matrix. For simplicity 
we restrict our attention in this section to the case of n = 3 and ft = R3. 
Thus we assume that e2aWq(x) is bounded and uniformly Holder 
continuous in R3. The general case is discussed in [6]. 

A nonzero outgoing solution of 

(6.1) ( - A + q - k2)u(x) = 0, xŒ R3, 

is an eigenfunction of H if Im k > 0, but grows exponentially as |x| -* oo 
if Im k < 0. We call a nonzero outgoing solution of (6.1) with Im k 
< 0 a resonant state at k. We show in this section that resonant states 
occur at k ( — a < Im k < 0) if and only if k is a pole of the scattering 
matrix S(k). 

The discussion is given in two parts. We first consider k with 
Im k < 0 and k2 not an eigenvalue of H and then the more difficult 
case of k on the negative imaginary axis such that k2 is an eigenvalue 
of/f. 

It was shown in the last section that the scattering matrix S(k) : 
L2(S2) —» L2(S2) is for each k > 0 a unitary operator. 

(6.2) S(k)h(oj) = h(oj) + - | j - j _ h(0)s4-$, k, oj)*d6 
1*1=1 
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where s_ is the transmission coefficient, the radiation pattern of the 
incoming diffracted plane wave 

(6.3) v-(x, fc, co) ~ s_(0, k, co) e~ikrlr as r -> oo 

(x = r$). Here t>_ satisfies the integral equation 

I r e-ik\x-y\ 
(6.4) Ü_(X, fc, co) = - — J q(y)4>-(y> K <*>)dy 

with 

(6.5) <£_(*, k> «•>) = ^fcx'w + M * > fc, co) 

the generalized eigenfunction of H used in the eigenfunction expan
sion A ~. 

Equations (6.3) and (6.4) show that 

s_(0X *>)* = -=±- \e-*y'°q(y)<l>_(yX - co)*di/ 

(6.6) ^ 

= -^- \ e-ik»dq(y)<l>Ay> K - co)%. 

We have used the equation <£_((/, fc, co)* = </>+(*/, fc, — co) which follows 
from the radiation conditions. Since, by the results of §3, 4>+(y, fc, — co) 
is a meromorphic function of k with |Im k\ < a, S(fc) is also meromor-
phic in that region and a pole of S(k) must be a pole of t/>+(x, fc, co) and 
hence of (7+M(fc))_1. Therefore Theorem 3.1 gives the following 
result. 

LEMMA 6.1. If k0 with — a < Im ko < 0 is a pole ofS(k), then O(fc0) 
j£ {0}, i.e., then there exist resonant states at fc0. 

Similarly, Lemma 4.3 shows that a nonzero pole of S in the closed 
upper half plane must lie on the positive imaginary axis and be the 
square root of an eigenvalue of H. 

Case I. Consider fc0 with Im fc0 < 0 and fco not an eigenvalue of H. 
Since S(fc) is unitary for k > 0, its inverse is S(fc)*. Formula (6.2) 

yields 

(6.7) S(fc)*(0) = h(6) + - ^ - f h((o)s.(-6, fc, co)dco. 
Z7H J |Û,| = 1 

Hence S(fc)* is also meromorphic for |Im k\< a and fco is not a pole 
of S(fc)* since it is not a pole of <f>+(y, fc, -co)* (see equation (6.6)). 
Now, by analytic continuation 
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(6.8) S(*)= [S(*)*]-i 

in a deleted neighborhood of/c0. 

LEMMA 6.2. ko is a pole ofS(k) if and only if Null space S(£)* ^ {0}. 

PROOF. If S(k0)*h = 0 and h f^O, then equation (6.8) gives 
h = S(k)S(k)*h for k near k0. Since S(k)*h—> 0 as fc—» fc0> S must have 
a pole at fc0. _ _ 

If the null space of S(fc0)*
 i s trivial then [S(fc)*]-1 exists and is 

analytic in a neighborhood of ko, so that by (6.8) S is analytic at k0. 
Q.E.D. 

We will introduce some notation and make some preliminary cal
culations before stating our results. 

For fly) with |f(t/)| ^ ceaM for all y in R3 and for x in R3 and 0 
in S2, set 

(6.9) Tftx) = -=± \R3 - ^ - q(y)j{y)dy 

and 

(6.10) BfrO) = -=±- J R 3 e-<**y->q(y)Jiy)dy. 

Then 

(6.11) T^rtf) ~ B^(0) e±ifcr/r as r - • » 

and 

(6.12) B W = B3(-J). 
/ = Tjf/ if and only if / is an {outgoing (incoming)} solution of 
( - A + 9 - fc2)/= 0. 

Also, noting equation (6.4), we obtain u_ = T ^ _ which implies 

(6.13) (I - r i )*- ( - , fc, w)(x) = e**--

and 

(6.14) *_(«, fc, a») = B^_(- , fe, »)(*). 

LEMMA 6.3. For any f such that \fly)\ = cef^jor all y, 

ki 
2TT 

(6.15) (Tfc
+- T ^ x ) = -j- | **•<>#faWa. 

PROOF. Since 

0**1*1 _ g-*fcl«l _ _jti_ 

1*1 1*1 27r Jul 
I eikx«du>, 
Ju=i 
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we have 

(Ti-TM*) = ^ | R 3 ViyMy) ( ~ j w = i é*-*>-dm )dy 

which is the desired result. Q.E.D. 

THEOREM 6.1. Consider fco with Im fc0 < 0 and fco not an eigen
value ofH. 

(i) SupposeOfhG L2(S2) is in the null space of S(k0)*. Then 

CD (6.16) U(x)= [ Ä(»)*_(x,*b,o»)d 

is a resonant state at fc0 and 

(6.17) I7(r0) ~ -^-HO) eik^ as r -> oo. 
ifcof 

(ii) Suppose that u(x) is a resonant state at fc0. Define h G L2(S2) 

a 
u(rO) r~h(6) eikor as r -> oo 

tfc0r 
and d^/in^ U(x) by (6.16). 77ien u = U and S(Tc0)*h = 0, h ^ 0. 

(Thus equations (6.16) and (6.17) provide an isomorphism between 
resonant states at fc0 and the null space of S(E)*.) 

PROOF, (i) Equation (6.13) yields 

(6.18) (l-TÜo)U(x)= | fc(o>)g*o*-»da>, 

while (6.12), (6.14), and (6.7) give 

Bfc; 17(0) = Bfc; 17(- 0) = J h(«)*_(- 0, fco, cü)dcü 
(6.19) U l _ 1 

= ^-[h(e)-s(ko)*h(e)]. 

From the last equation and (6.15) we have 

(6.20) (T*o - Tk) U(x) = f eiko**> [h(<j>) - S(fc0)* h(o))]d(o. 
J l û ) | — 1 
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Subtract (6.20) from (6.18) to obtain 

(6.21) (Z - lfc0)t/(z) = / * * * • • S$o)*h(ù>)da>. 

Since S(k0)*h = 0, we have U = Tk U and therefore U is a resonant 
state and 

U(r6)~BtBU(O)^=j^h(0)e*»' 

by (6.19). U is not zero because h is not zero. 
(ii) Since u is a resonant state, u = Tfc0w and by (6.15) 

(I - Tk- )u(x) = (T£t - Tfc; )u(x) = -**- f e**»h(<o)d» 

which equals (/ — Tk~)U(x). Thus (C7 — u) = Tj~(U — u) is an in
coming (L2) solution of (—A + q — fco)(£7 — «) = 0. Since all such 
solutions are zero, we have u = U. From (6.21) we obtain 

0 = J eifco*- S(k0)*h((o)d<o 

for all x in R3. For a = (a1? a2>
 a3) a n y triple of nonnegative integers 

we have 

° = ( ~h Ï / ***'" S(fc0)̂ (û>)da>Uo 

= [ (ifc0o>)« S(k0)*h((o)dù) 

and hence S(fco)*/i ^ 0. fo is not zero because w, given by (6.16), is 
not zero. 

Case II. Consider fc0 with Im fco < 0 and fc| an eigenvalue of H. 
In this case, <f>-(x, fc, o>) and S(fc)* do not exist at fc = fco, and Lemma 
6.2 no longer can be used to assert the existence of a pole of S(fc) at 
fco. We now obtain new conditions which guarantee a pole of S(fc) at 
fc0, and characterize the resonant states at fc0. 

For fc near fc0, the resolvent operator (fc2 — H)~l can be written in 
the form 

(6.22) (fc* - H ) " ' = -j^Z]-2-+ «o + Hi(fc), :-.fli(*b) = 0, 

with fi_!, Bo, Ri(k) bounded linear operators in L2(R3) mapping L2(R3) 
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into D(H). R-i is the projection onto the eigenspace of H at fco, i.e. 
if {c/>j}jlx are an orthonormal basis for the eigenspace of H at fco, 

U<t>j = fco<fe, j= 1,2, • • -,N, 

then N 
(R-if)(x)= 2 (/;*)*(*). 

The </>,• can be taken to be real, since fco — H is real. The reduced 
resolvent fìo satisfies 

(6.23) (ko1- H)Ro=l- R _ L 

An alternate expression for <f>-(x, fc, co) for fc near fc0 is given by 

(6.24) <M*> fc, *>) = eikx<ü + (fc2 - H)-l(E(-, fc, co))(x) 

with 

E(x, fc, co) = q(x)eik(üX. 

E(-, fc, co) : {k\-a< Im fc < 0}-» L2(R3) is analytic, so (6.24) and 
(6.6) allow us to obtain a Laurent expansion for s_(0, fc, co) in a neigh
borhood of fc0: 

(6.25) *_(«, fc, co) = s_i(0, co)/(fc-fc0) + so(0, co) + 5 l(0, fc, co). 

If we define Sj(0) and CTJ(O) by 

Wit-*')* 
then straightforward but tedious calculations show that 

(6.26) s_x(0, co) = - ^ S ^ (%(co) , 

N 

SO(0, CO) = - - y ^ 2 SjWSjiu) 

(6.27) + - ^ - 5 ; [ai(«)%(W)+o>(cü)%(«)] 

+ [ß^o(',fco,co)](0), 
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with 

(6.28) <fo(*> fco, ») = e*«*'" + Ho(E(-, fco, »))(*).. 

Equation (6.25) and the definition (6.7) of S(fc)* lead to the following 
Laurent expansion for S(7c)* near k = fco: 

(6.29) S(fc)* = S_!/(fc-fc0) + So + Si(fc), 

where 

(6.30) 

- « • 2 (L- i «•>*<->*. )*<-#x 

(6.31) (Soh)(0)= h(0)+ - ^ V f So(-0,a>)h(a>)da>, 

(6.32) Si(jfc) is analytic at *<,, S1(fc0) = 0. 

(6.30) shows that Range S_i is the space spanned by the functions 

W-o)}. 
We shall need to use the following integral equation which is satis

fied by <f>Q\ 

(I-T^)fa(',ko,*>)(x) = ***'-
(6.33) N r 

J=l J * 3 

Equation (6.33) follows from (6.23), which shows that 

(fc§ - 9(x) + A)Bo(E(-, fco, oi))(x)= (I-R-JEt fc0, co)(x) 

which in turn implies that 

i**As (I-Tk-)Ro(E(;ko,w))(xy 
(0.04) _ r 

= Tko(eiko")(x) - 4TT S5i(û>)JR3Ffc0(x-?/)^(?/)d î/. 

Equation (6.33) now follows readily from (6.34). 
Lemma 6.3 and (6.27) yield 
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(Tk0- Tfc~#o(-,fcb, CÜ)(X) 

(a35) - ÌMm-t «"*"{*<-•••> + ̂ 2 *•>*(-•> 

- - ^ 2>/-»W«) + a,(o,)Si(-ö)]}dö. 

LEMMA 6.4. Suppose ft ^ 0 satisfies 

(6.36) S^ft = 0, SofcG Range S ^ . 

TTien fc0 is a pofe o/S(fc). 

PROOF. If S(fc) does not have a pole at fc0, then in a neighborhood of 
fc0 we can write 

(6.37) S(fc) = G0 + G^fc-fco) + G2(fc)(fc-fc0)
2 

with G2(fc) analytic at fc0. Consequently 

(6.38) / = S(fc)S(fc)* = GoS_!/(fc-fco) +G0S0 + G^-! + G3(fc) 

with G3(fc) analytic at fc0. Apply (6.38) to ft and let fc—» fc0 to obtain 
ft = GoS0ft. But Soft = S_!£ for some£, so 

ft = G0S0ft = GoS_!Ìl = 0, 

as (6.38) shows. Thus any solution ft of (6.36) must be zero if S(fc) is 
regular at fc0, and so the hypothesis of the lemma implies that S(fc) has 
a pole at fco-

For the next lemma we assume that a Rellich-type theorem holds 
for the differential equation 

(6.39) ( - A + q(x) - Jfcg)tt(x) = 0, x G R3, 

i.e. we assume that a solution u of (6.39) which satisfies 

u(x) = o(e~ikMl\x\) as |x|-> 00 

vanishes identically outside of some sphere. This is exactly the 
Rellich theorem in the case q has compact support, and is easy to 
prove if q is eventually radially symmetric. We believe it holds for the 
class of potentials q under consideration here. 

LEMMA 6.5. The {SJ(0)} are linearly independent. 

For the proof see [6], 
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The next lemma follows easily from an application of Green's for
mula; see [6]. 

LEMMA 6.6. If u(x) is a resonant state at ko, its radiation pattern 
(Bk

+
ou) (0) is orthogonal to the {Sj(0)} in L2(S2). 

THEOREM 6.2. Consider fc0 with Im fc0 < 0 and fc| an eigenvalue of 
H. 

(i) Suppose h^ 0 satisfies (6.36). Define ßj(h) (uniquely by Lem
ma 6.5) by 

(6.40) (soh)(0) = - ^ 2 / % w % ( - e), 

and set 

(6.41) u(x) = J" /i(<o)0o(*> fco, a>)da> - £ [a,(h) + #(/*)] <fe(x), 
Ul=i J=l 

with 

<*i(h) = - " 2 ^ " / <rj(<»Mù>)dc 

TTien w(x) is a resonant state at fc0, and 

9m-
(6.42) tt(rö) - - ^ - htO)****. 

ik0r 

(ii) Suppose fc0 is ö po/# of S(fc). TTien £/iere #xis£ resonant states at 
ko. Let u be a resonant state at fco, and define h(0) by (6.42). Then h 
satisfies (6.36) and u(x) is given by (6.41), so in particular hy^O. 

PROOF OF (i). Set 

U(x) = I h(u))<l>o(x, fco, o))dco, 

and write 

(i-r#c/(x) = (z - rfc;)i/(x) - (TVO- r ^ * ) -
Note that S_i h = 0 since h is orthogonal to the {sj}9 so (6.33), (6.35) 
and the definition (6.31) of S0 yield 

(6.43) (I-KMx) = J <*r» [Sô (Ö)+ ^ S ^ ( % ( - « ) ] d0. 
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Since <j)j is an eigenfunction of H at fco, <f>j = Tk <f>j so it follows that 

(6.44) (7 - T^ ft = (Tk-o - Tk\to = - - ^ - J | # H 1 e^Sj(- 6)d0. 

(6.40), (6.43) and (6.44) combine to show that (7 - Tk\ )u(x) = 0, i.e. 
u defined by (6.41) is a resonant state. (6.42) follows from Lemma 6.3, 
(6.35) and (6.44). 

PROOF OF (ii). The existence of resonant states at fco follows from 
Lemma 6.1. Let u(x) be a resonant state at fc0, and define h(d) by 
(6.42). Lemma 6.6 shows that S^/i = 0. 

Since u is a resonant state, u = Tko u, and so 

(6.45) (I - Tk-Mx) = (7*; - Tk- )u(x) = f e
ik°*«h(a>)d<o 

J l « | = l 

by (6.15). If we set 

U'(x) = \ h(<a)^>o(x,k0,(ù)d(o, 
J | t ü | - l 

then (6.33) shows that 

(6.46) (I- Tk-)U'(x)= [ Jiv-h(w)da>. 
J \(o\ = l 

(6.45) and (6.46) combine to show that u - U ' = Tko{u - I / ' ) , which 
shows that u - U ' G L2(R3) and u - U ' G Null space (kg - H). Thus 

(6.47) u= U'(x)+ i r ^ - W -
J = I 

Since u is a resonant state 

o = (/ - r t > = (/ - r£)i/' - (J - T\;) XrA, 

and so by (6.43) and (6.44), 

(6.48) 0 = J e*<*«[s0h(0) + -^Y(<Xi(h)-yjW-e)]dO. 

Apply (d/dx)" to (6.48) and set x = 0 to conclude that 
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for any triple a = (a l5 a2, a3) of nonnegative integers. We conclude 
that 

Soh(0) = ^"Z(yj-cs(h))sj(-6), 

which shows S0h G Range S_l5 and so by Lemma 6.4, k0 is a pole of 
S(k). 
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