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ABSTRACT. We investigate memory dependent asymp-
totic growth in scalar Volterra equations with sublinear non-
linearity. In order to obtain precise results we extensively
utilize the powerful theory of regular variation. By comput-
ing the growth rate in terms of a related ordinary differential
equation we show that, when the memory effect is so strong
that the kernel tends to infinity, the growth rate of solutions
depends explicitly upon the memory of the system. Finally,
we employ a fixed point argument for determining analogous
results for a perturbed Volterra equation and show that,
for a sufficiently large perturbation, the solution tracks the
perturbation asymptotically, even when the forcing term is
potentially highly non-monotone.

1. Introduction. We investigate explicit memory dependence in
the asymptotic growth rates of positive solutions of the following scalar
Volterra integro-differential equation

(1.1) x′(t) =

∫
[0,t]

µ(ds)f(x(t− s)), t > 0; x(0) = ξ > 0,

where f is a positive sublinear function, i.e., limx→∞ f(x)/x = 0,
and µ is a non-negative Borel measure. The relevant existence and
uniqueness theory regarding equations of the form (1.1) is well known
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and guarantees a unique solution

x ∈ C(R+; (0,∞))

in the framework of this article [11, Corollary 12.3.2], with the con-
vention that R+ := [0,∞). By defining the function

(1.2) M(t) =

∫
[0,t]

µ(ds), t ≥ 0,

it follows that (1.1) is equivalent to

(1.3) x(t) = x(0) +

∫ t

0

M(t− s)f(x(s)) ds, t ≥ 0, x(0) = ξ > 0.

We also study the asymptotic behavior of the perturbed Volterra
equation

(1.4) x′(t) =

∫
[0,t]

µ(ds)f(x(t− s)) + h(t), t > 0; x(0) = ξ > 0.

As with the unperturbed equation, it is useful to consider an integral
form of (1.4) and, by defining

(1.5) H(t) :=

∫ t

0

h(s) ds, t ≥ 0,

it follows that (1.4) can be written in integral form as

x(t) = x(0) +

∫ t

0

M(t− s)f(x(s)) ds+H(t), t ≥ 0;(1.6)

x(0) = ξ > 0.

In [7], with µ a finite measure, we demonstrate that, when f is
sublinear and asymptotically increasing, the solution of (1.1) obeys

lim
t→∞

F (x(t))/t =

∫
[0,∞)

µ(ds) <∞,

where

(1.7) F (x) :=

∫ x

1

1

f(u)
du, x > 0,

in other words, the structure of the memory does not affect the
asymptotic growth rate of the solution of (1.1) when the total measure
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is finite; indeed, the entire mass of µ could be concentrated at 0 since
the ordinary differential equation

y′(t) =

∫
R+

µ(ds) · f(y(t))

for t ≥ 0 also obeys

F (y(t))/t −→
∫
R+

µ(ds)

as t→ ∞. This is in contrast to the linear case where the growth rate
crucially depends upon the structure of the memory, cf., [11, Theorem
7.2.3]. In [7], we also show that, if limt→∞M(t) = ∞, then

lim
t→∞

F (x(t))/t = ∞.

This result suggests that allowing the total measure to be infinite
makes the long run dynamics more sensitive to the memory but that
comparison with a non-autonomous ordinary differential equation may
be necessary in this case.

In order to achieve precise asymptotic results for the solutions of
(1.1) and (1.4), we extensively employ the theory of regular variation.
We now record for the reader’s convenience the definition of a regularly
varying function (in the sense of Karamata) and allied notation.

Definition 1.1. Suppose that a measurable function h : R → (0,∞)
obeys

lim
x→∞

h(λx)

h(x)
= λρ, for all λ > 0, some ρ ∈ R.

Then, h is regularly varying at infinity with index ρ, or h ∈ RV∞(ρ).

Regular variation provides a natural generalization of the class of
power functions, and the application of the theory of regular variation
to the study of qualitative properties of differential equations is an
active area of investigation. Recent research themes in this direction
are recorded in reviews such as [13, 15], and all properties of regularly
varying functions employed may be found in the classic text [9]. Herein,
the authors give a highly abridged list of the properties found useful in
the introduction to our work [5], which concerns ordinary differential
equations.
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Many applications of regular variation in the asymptotic theory
of linear Volterra equations deal with the situation in which it is
desired to capture slow decay in the memory, as captured by a measure
or kernel, or a singularity. Of course, slowly fading memory may
be described in other ways, using, for instance, the theory of L1

weighted spaces (see, e.g.,[17] and, for stochastic equations, [8]). When
the kernel is integrable, it is often possible to obtain precise rates
of decay in L∞ by means of a larger class of kernels (such as the
subexponential class studied in [3], of which regularly varying kernels
are a subclass). However, for singular equations, or equations with non-
integrable kernels, the full power of the theory of regular variation is
often needed; in particular, for linear equations, transform methods and
the Abelian and Tauberian theorems for regular variation are exploited
(see, e.g.,[4, 18]). It should be stressed, however, that such methods
are of greatest utility for linear equations; indeed, there does not seem
to be especial benefit gained in this work in applying such a transform
approach. Moreover, in this paper, the equation is intrinsically non-
linear: f(x) is not of linear order as x → ∞, and regular variation
arises both in the slow decay of µ and in the sublinear growth of f .
Also, it is a general theme of the works cited above that the slow decay
in the memory, combined with an appropriate type of stability, gives
rise to convergence at a certain rate to equilibrium. By contrast, in
this paper, solutions grow rather than decay.

With a view to applications, we believe the most interesting subclass
of equations will retain the property that the asymptotic contribution
to the growth rate from a moving interval of any fixed duration (τ > 0,
say) is negligible, in the sense that

(1.8) lim
t→∞

∫
[t,t+τ)

µ(ds) = 0 for each τ > 0.

It should be noted that our proofs do not require this stipulation; how-
ever, we mention it in order to motivate shortly a stronger hypothesis
on M .

With (1.8) still in force, if µ is absolutely continuous and admits a
non-negative and continuous density k such that µ(ds) = k(s) ds, we
see that k /∈ L1(0,∞) since

M(t) −→ ∞ as t→ ∞.
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In particular, the property (1.8) is implied by k(t) → 0 as t → ∞.
Therefore, it is perfectly possible for k to lie in another Lp space, for
some p > 1. As an example, suppose that

k(t) ∼ t−θ as t→ ∞ for θ ∈ (0, 1).

Then, for p > 1/θ > 1, k ∈ Lp(0,∞), while k /∈ L1(0,∞). In this
sense, our work shares concerns with existing results in the literature
in which the Volterra equation does not possess an integrable kernel,
see e.g., [12, 17].

The type of fading memory property (1.8) we suggested was of
interest motivates a stronger assumption on M . First, we see that
(1.8) implies

1

nτ
M(nτ) =

1

τ

1

n

n−1∑
j=0

∫
[jτ,jτ+τ)

µ(ds) −→ 0 as n→ ∞,

and thus, the non-negativity of µ implies that

M(t)/t −→ 0 as t→ ∞.

Since M(t) → ∞ as t → ∞, M is non-decreasing, and M(t)/t → 0 as
t → ∞, it is reasonable to suppose that M ∈ RV∞(θ) for θ ∈ [0, 1].
We note that the inclusion of θ = 1 in the parameter range does not
lead to any problems in the analysis, and indeed, it transpires that our
arguments are valid for all θ ≥ 0.

Analogously, the nonlinearity f is a positive and asymptotically
increasing function such that

f(x) −→ ∞

and

f(x)/x −→ 0

as x → ∞; hence, it is natural to assume that f ∈ RV∞(β) for
β ∈ [0, 1). We can rule out some choices of the parameter β rapidly: if
β > 1,

f(x)/x→ ∞ as x→ ∞,

and, if β < 0, f is asymptotic to a decreasing function. When β = 0,
we append the hypotheses of asymptotic monotonicity and increase
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to infinity on f , as these are not necessarily satisfied by functions
in RV∞(0); however, otherwise, the analysis is essentially the same
as when β ∈ (0, 1). The exclusion of the case β = 1 is largely on
technical grounds: informally, when β = 1, the inverse of the increasing
function F defined by (1.7) is no longer regularly varying ; F−1 now
belongs to the class of rapidly varying functions (which are defined
below). It may also be seen from the nature of our results that the
asymptotic behavior of solutions must be of a different form from those
that hold when β < 1. For β < 1, no such technical problem arises,
and indeed, F−1 is regularly varying with index 1/(1− β).

In some situations, we will consider very rapidly growing forcing
terms H in the perturbed equation (1.6) which are not regularly
varying. We sometimes consider forcing terms from the class of rapidly
varying functions, and a definition of this class follows.

Definition 1.2. Suppose that a measurable function h : R → (0,∞)
obeys for λ > 0:

lim
x→∞

h(λx)

h(x)
=


0 λ < 1,

1 λ = 1,

+∞ λ > 1.

Then, h is rapidly varying at infinity, or h ∈ RV∞(∞). If, on the other
hand,

h : R −→ (0,∞)

obeys for λ > 0:

lim
x→∞

h(λx)

h(x)
=


+∞ λ < 1,

1 λ = 1,

0 λ > 1.

Then, we write h ∈ RV∞(−∞).

The proof of our main result for (1.1), Theorem 2.2, principally re-
lies upon comparison methods, properties of regularly varying functions
and a time change argument for delay differential equations. We first
use constructive comparison methods, similar in spirit to those em-
ployed by Appleby and Buckwar [2] for linear equations, to establish
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“crude” upper and lower bounds on the solution of (1.1). The more
challenging construction is that of the lower bound and is completed
by comparing solutions of (1.1) with those of a related nonlinear panto-
graph equation using time change arguments inspired by Brunner and
Maset [10]. Finally, we prove a convolution lemma for regularly varying
functions, cf., [1, Theorem 3.4], which is then used, in conjunction with
straightforward comparison methods, to sharpen the aforementioned
“crude” upper and lower bounds and show that they coincide. An-
other paper which uses similar iterative methods to sharpen estimates
of the growth of solutions to nonlinear convolution Volterra equations
is that of Schneider [16].

With

M(t) :=

∫ t

0

M(s) ds,

we obtain
lim
t→∞

F (x(t))/M(t) = Λ(β, θ),

or that the growth rate of solutions of (1.1) depend explicitly upon
both indices of regular variation, and therefore, upon the memory of
the system (Theorem 2.2). The value of the parameter-dependent limit
Λ can be explicitly determined in terms of the Γ function. This result
is only valid for β ∈ [0, 1), and hence, may not hold if f is only assumed
to be sublinear, i.e.,

lim
x→∞

f(x)/x = 0.

In this sense, it appears that the imposition of the hypothesis of regular
variation on f andM is intrinsic to the form of the asymptotic behavior
deduced, rather than being a purely technical contrivance, and the
restriction to β ̸= 1 also seems justified by grounds other than the
complexity of the analysis needed to prove a sharp result.

The results and methods outlined above for (1.1) can also be used
to yield sharp asymptotics for the perturbed equation (1.4). If H
is positive, solutions to (1.4) will be positive and exhibit unbounded
growth; therefore, there is no need to assume pointwise positivity of h.
However, solutions of (1.4) are no longer necessarily non-decreasing,
and more delicate comparison techniques are required to treat this
additional difficulty.
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When H is of the same order of magnitude as the solution of (2.11),
we establish non-trivial upper and lower bounds on the solution and
then employ a simple fixed point iteration argument to calculate the
exact asymptotic growth rate of the solution in terms of a characteristic
equation (Theorem 3.1). Moreover, the converse also holds; growth in
the solution of (1.4) at a rate proportional to that of the solution of
(2.11) is possible only when H is of the same order as that solution.
In these results, the parameter θ characterizes the dependence of the
growth rate upon the degree of memory in the system. When the
perturbation term grows sufficiently quickly, the solution tracks H
asymptotically, in the sense that

lim
t→∞

x(t)/H(t) = 1,

even when H is allowed to be highly non-monotone. Indeed, under
certain restrictions, we can show that our characterization of rapid
growth in the perturbation is necessary in order for limt→∞ x(t)/H(t) =
1 to prevail.

2. Main results and discussion. The following equivalence rela-
tion on the space of nonnegative continuous functions and shorthand
are used throughout.

Definition 2.1. Suppose that a, b ∈ C(R+;R+). Terms a and b are
asymptotically equivalent if

lim
t→∞

a(t)/b(t) = 1;

we often write a(t) ∼ b(t) as t→ ∞ for short.

µ is a non-negative Borel measure on R+ with infinite total variation;
more precisely,

µ(E) ≥ 0 for all E ∈ B(R+),(2.1) ∫
[0,∞)

µ(ds) = lim
t→∞

M(t) = ∞,

whereM is defined as in (1.2). Our first result gives precise information
on the asymptotic growth rate of the solution to (1.1). We state our
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result before carefully analyzing the conclusion. The proof is deferred
to Section 5.

Theorem 2.2. Suppose that the measure µ obeys (2.1) with M ∈
RV∞(θ), θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). When β = 0,
let f be asymptotically increasing and obey limx→∞ f(x) = ∞. Then
the solution x of (1.1) satisfies x ∈ RV∞((1 + θ)/(1− β)) and

(2.2) lim
t→∞

F (x(t))

M(t)
=

Γ(θ + 1)Γ(1 + βθ/1− β)

Γ(1 + θ/1− β)
=: Λ(β, θ),

where

Γ(x) :=

∫ ∞

0

tx−1e−t dt(2.3)

and

M(t) :=

∫ t

0

M(s) ds.(2.4)

By Karamata’s theorem, see Theorem 5.1 or [9, Theorem 1.5.11],

lim
t→∞

M(t)/tM(t) = 1/(1 + θ).

Hence, the conclusion of Theorem 2.2 is equivalent to

lim
t→∞

F (x(t))

tM(t)
= (1 + θ)

Γ(θ + 1)Γ((1 + βθ)/(1− β))

Γ((1 + θ)/(1− β))

=
1

1− β
B

(
θ + 1,

1 + θβ

1− β

)
,

where B denotes the Beta function, defined by

B(x, y) :=

∫ 1

0

λx−1(1− λ)y−1dλ,

cf., [14, page 142]. Furthermore, since F−1 ∈ RV∞(1/(1 − β)), (2.2)
is also equivalent to

(2.5) lim
t→∞

x(t)

F−1(tM(t))
=

{
1

1− β
B

(
θ + 1,

1 + θβ

1− β

)}1/(1−β)

.
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The next proposition records some properties of the function Λ(β, θ)
which are useful when interpreting Theorem 2.2.

Proposition 2.3. Suppose Λ(β, θ) is defined by (2.2) with β ∈ [0, 1)
and θ ∈ [0,∞). Then

(i) Λ(0, θ) = 1 for fixed θ ∈ (0,∞) and Λ(β, 0) = 1 for fixed
β ∈ (0, 1),

(ii) limβ↑1 Λ(β, θ) = 0 for fixed θ ∈ (0,∞) and limθ→∞ Λ(β, θ) = 0
for fixed β ∈ (0, 1),

(iii) β 7→ Λ(β, θ) is decreasing, β ∈ (0, 1), θ (fixed) ∈ (0,∞),
(iv) θ 7→ Λ(β, θ) is decreasing, θ ∈ (0,∞), β (fixed) ∈ (0, 1),
(v) Λ(β, θ) ∈ (0, 1) for β ∈ (0, 1) and θ ∈ (0,∞).

Figure 1. Plot of the surface Λ(β, θ) with β ∈ [0, 1) and θ ∈ [0, 5].

In [7], the authors proved the following result which is closely related
to Theorem 2.2 and whose statement is included to aid the ensuing
discussion.
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Theorem 2.4 ([7, Theorem 4]). Suppose that µ is a nonnegative, finite
Borel measure on R+, i.e.,∫

R+

µ(ds) =M ∈ (0,∞),

and that there exists ϕ ∈ S such that f ∈ C((0,∞); (0,∞)) obeys
f(x) ∼ ϕ(x) as x→ ∞, where

(2.6) S =
{
ϕ ∈ C1((0,∞); (0,∞)) : lim

x→∞
ϕ′(x) = 0

and ϕ′(x) > 0 for each x ∈ (0,∞)
}
.

Then the solution x of (1.1) obeys

(2.7) lim
t→∞

F (x(t))

Mt
= 1.

Note that the hypotheses of Theorem 2.4 imply that f is sublinear
in the sense that

f(x)/x −→ 0 as x→ ∞.

If f ∈ RV∞(β) for β ∈ (0, 1), the hypotheses of Theorem 2.4 regarding
f are satisfied and, furthermore, (2.7) is equivalent to

(2.8) lim
t→∞

x(t)

F−1(Mt)
= 1.

If θ = 0, Theorem 2.2 yields

lim
t→∞

F (x(t))/M(t) = 1,

or equivalently,
lim
t→∞

F (x(t))/tM(t) = 1

(Proposition 2.3 (i)). Therefore, we may reasonably think of Theo-
rem 2.2 as a continuous extension of Theorem 2.4 to the case when µ
is allowed to have infinite total variation.

If we only require that f be asymptotic to a function in S, (2.8)
implies (2.7), but the converse does not hold in general [7, Proposition
1]. We thus caution that “direct asymptotic information” regarding
solutions (relations of the form (2.5) and (2.8)) is not always available
and that “implicit asymptotic information” (relations of the form
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(2.2) and (2.7)) is in many cases the best that may be achieved
(cf., [7, Theorem 5] and [6]); this consideration motivates our initial
formulation of Theorem 2.2.

In order to precisely highlight the technical difficulties introduced by
allowingM(t) → ∞ as t→ ∞, we now compare the proofs of Theorems
2.2 and 2.4. First, consider Theorem 2.4; since f is (asymptotically)
monotone and M <∞, it is straightforward to show that

lim sup
t→∞

F (x(t))

Mt
≤ 1

using a comparison argument closely related to the classic Bihari in-
equality for nonlinear ordinary differential equations. The correspond-
ing inferior limit is more challenging to establish and requires careful
use of the hypothesis (2.6). First, using the finiteness of µ, the lower
bound analysis of the Volterra problem may be reduced to studying a
finite delay (lower) comparison equation of the form

x̃′(t) = (1− ϵ)M ϕ(x̃(t− T (ϵ))),(2.9)

t > T (ϵ) > 0; ϵ ∈ (0, 1), f ∼ ϕ ∈ S,

with suitable initial data. This comparison will obviously be unavail-
able when we allow M(t) → ∞ as t → ∞. Now, with sublinearity
naturally playing a crucial role, we establish that

lim
t→∞

ϕ(x̃(t− α))/ϕ(x̃(t)) = 1 for each α > 0.

The auxiliary finite delay equation (2.9), and hence the Volterra equa-
tion, are thus proven to have the desired asymptotics.

For the upper bound on the growth rate, the proof of Theorem 2.2
begins in a similar manner to that of Theorem 2.4 and may be thought
of as imitating the Bihari approach (with some refinement via proper-
ties of regularly varying functions). However, in contrast to the proof
of Theorem 2.4, these comparison methods now only yield the correct
upper order of magnitude of the solution; in other words, we obtain

lim sup
t→∞

F (x(t))

M(t)
< C,

for some positive constant C. In order to obtain more precise asymp-
totics, we then apply a convolution lemma for regularly varying func-
tions (Lemma 5.2) to the initial upper estimate above; this yields the
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improved estimate

lim sup
t→∞

F (x(t))/M(t) ≤ Λ(β, θ),

cf., equation (2.2).

In proving Theorem 2.2, we cannot reduce the proof of the corre-
sponding limit inferior to the study of a bounded delay equation such as
(2.9). Instead, after employing a time change argument to simplify the
nonautonomous structure of (1.3), we use a proportional delay equation
of the form

x̃′(t) = Cϕ(x̃(qt)), t > T > 0;(2.10)

q = 2−(2+θ), C > 0, f ∼ ϕ ∈ RV∞(β),

as our lower comparison equation. By contrast, when M < ∞, no
such time change is necessary since the equation is asymptotically
autonomous. The lower comparison equation (2.10) allows us to prove
that

lim inf
t→∞

x(t)/F−1(tM(t)) > 0,

and once more we recycle our estimates (via Lemma 5.2) to show that
our upper and lower bounds coincide, completing the argument.

It is also possible to glean additional insight from Theorem 2.2 by
studying the second order effects of the parameters β and θ on the
solution. For a fixed β ∈ (0, 1), a decrease in the value of θ represents
an increase in the rate of decay of the measure µ. This can be made
precise by supposing that the measure µ is absolutely continuous, and
specifically that µ(ds) = m(s) ds for continuous m ∈ RV∞(θ − 1),
θ ∈ (0, 1). Therefore, increasing the value of θ gives more weight to
values of the solution in the past (stronger memory), and we expect the
growth rate of solutions of (1.1) to be slower than that of the related
ordinary differential equation

y′(t) =M(t)f(y(t)), t > 0; y(0) = ξ > 0.(2.11)

The equation (2.11), in contrast, places the entire weight M(t) at the
present time, when the solution is largest. Hence, increasing the value
of θ (putting more weight further into the past) slows the growth rate,
and it is intuitive that Λ(β, θ) is decreasing in θ. Using this comparison
with (2.11) once more, it is clear that Proposition 2.3 (v) must hold
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since solutions of (1.1) can never grow faster than those of (2.11) (if f
is strictly increasing, this can be seen by inspection).

For a fixed θ ∈ (0,∞), one might expect an increase in β to lead
to a faster rate of growth of the solution of (1.1). Therefore, it may
initially be surprising that Λ(β, θ) is decreasing in β. This counter-
intuitive result is best understood by explaining the error introduced
in the approximation of the right-hand side of (1.1). From (1.1),

x′(t) =

∫
[0,t]

µ(ds)f(x(t− s))

=

∫
[0,t]

µ(ds)
f(x(t− s))

f(x(t))
f(x(t)), t > 0.

The error of our upper bound on the solution is proportional to the
ratio f(x(t−s))/f(x(t)) for s ∈ (0, t), or f(x(λt))/f(x(t)) for λ ∈ (0, 1).
Since f ◦ x ∈ RV∞(β(1 + θ)/(1− β)),

lim
t→∞

f(x(λt))

f(x(t))
= λ[β(1+θ)]/(1−β) =: γ(β).

When γ(β) is close to one, the solution of (1.1) is close to that of (2.11),
and hence, our estimate is sharp. However, γ(β) is decreasing and

lim
β↑1

γ(β) = 0.

Thus, the zero limit as β ↑ 1 in Proposition 2.3 (ii) represents the fact
that the solution of (2.11) increases much faster in β than the solution
to (1.1), for a fixed value of θ.

3. Results for perturbed Volterra equations. A result is pre-
sented here which illustrates how our precise understanding of the
asymptotics of solutions of (1.1) can be applied to perturbed versions
of the equation, such as (1.4). This result applies to perturbations of
(1.1) which are of the same, or smaller, order of magnitude as solutions
of the ordinary differential equation (2.11). Our assumptions on H
guarantee that

lim
t→∞

x(t) = ∞,

but this limit is no longer necessarily achieved monotonically, and this
is reflected in the added complexity of certain technical aspects of the
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proofs. The proofs of the results in this section are largely deferred to
Section 5.

Theorem 3.1. Suppose that the measure µ obeys (2.1) with M ∈
RV∞(θ), θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). When β = 0,
let f be asymptotically increasing and obey

lim
x→∞

f(x) = ∞.

Let x denote the solution of (1.4), and suppose that H ∈ C((0,∞); (0,∞)).
Then, the following are equivalent :

(i) limt→∞ x(t)/(F−1(tM(t))) = ζ ∈ [L,∞),
(ii) limt→∞H(t)/(F−1(tM(t))) = λ ∈ [0,∞),

where

L =

{
B

(
1 + θ,

1 + θβ

1− β

)
/(1− β)

}1/(1−β)

,

and moreover,

(3.1) ζ =
ζβ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ.

We notice that, when there is a sufficiently slowly growing forcing
termH, λ = 0, we exactly recover from (3.1) the asymptotic behavior of
the unperturbed equation, given by (2.5). Also, in the limit as λ→ 0+,
the rate of the unperturbed equation is recovered.

Condition (ii) on H in Theorem 3.1 does not cover the case when H
is of larger magnitude than the solution of the unperturbed equation
(1.1), or that of (2.11). To deal with this case, we would like to know
the growth rate of the solution when limt→∞H(t)/F−1(tM(t)) =
∞. Insight into what occurs can be gained by sending λ → ∞ in
Theorem 3.1. For λ > 0, from Theorem 3.1, we have

lim
t→∞

x(t)

H(t)
=
ζ(λ)

λ
=: η(λ),

where ζ depends on λ through (3.1). Since ζ = ζ(λ) is the unique
positive solution of (3.1), η = η(λ) is the unique positive solution of
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η = 1+Kηβλβ−1, where K > 0 is the λ-independent positive quantity

K =
1

1− β
B

(
1 + θ,

1 + θβ

1− β

)
.

Clearly η(λ) > 1, and
λ 7−→ η(λ)

is in C1, by the implicit function theorem. Moreover, by implicit
differentiation, η′(λ) obeys

η′(λ)

{
1− β

η(λ)− 1

η(λ)

}
= K(β − 1)η(λ)βλβ−2.

Therefore, as the bracket on the left-hand side is positive,

λ 7−→ η(λ)

is decreasing. Hence, for λ > 1, we have

η(λ) < 1 +Kη(1)βλβ−1;

thus,
lim sup
λ→∞

η(λ) ≤ 1,

and furthermore,
η(λ) −→ 1 as λ→ ∞.

In view of this discussion, we might expect that

lim
t→∞

H(t)/F−1(tM(t)) = ∞

implies x(t) ∼ H(t) as t → ∞, or less precisely, that sufficiently rapid
growth in H forces x(t) to grow at the rate H(t). Therefore, it is
natural to ask under what conditions we would have x(t) ∼ H(t) as
t→ ∞. It is straightforward to show that a necessary condition for

lim
t→∞

x(t)/H(t) = 1

is that

lim
t→∞

∫ t

0

M(t− s)f(H(s)) ds

H(t)
= 0.
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This motivates the hypothesis

(3.2) lim
t→∞

M(t)
∫ t

0
f(H(s)) ds

H(t)
= 0,

and the following result. This result requires no monotonicity in H
and, as such, allows for H to undergo considerable fluctuation, a point
we illustrate further in Section 4.

Theorem 3.2. Suppose the measure µ obeys (2.1) with M ∈ RV∞(θ),
θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). When β = 0, let f be
asymptotically increasing and obey limx→∞ f(x) = ∞. Let H be a
function in C((0,∞); (0,∞)) satisfying (3.2). Then, the solution, x, of
(1.1) obeys limt→∞ x(t)/H(t) = 1.

When H regularly varies at infinity the hypotheses of Theorems
3.1 and 3.2 align to give a complete classification of the asymptotics
(Corollary 3.3). However, assuming regular variation of H imposes
considerable regularity constraints. In particular, H is then asymptotic
to an increasing function, and this restricts potential applications of
Theorem 3.2 to stochastic functional differential equations.

Corollary 3.3. Let M ∈ RV∞(θ), θ ≥ 0, with limt→∞M(t) =
∞. Suppose that f ∈ RV∞(β), β ∈ [0, 1). When β = 0, let f
be asymptotically increasing and obey limx→∞ f(x) = ∞. If H ∈
RV∞(α), α > 0, then the following are equivalent :

(i) limt→∞M(t)
∫ t

0
f(H(s)) ds/H(t) = 0,

(ii) limt→∞H(t)/F−1(tM(t)) = ∞,

(iii) limt→∞
∫ t

0
M(t− s)f(H(s)) ds/H(t) = 0.

Case α = 0 is excluded from Corollary 3.3 since it is covered by
Theorem 3.1 with λ = 0.

We now state without proof a partial converse to Theorem 3.2 with
H ∈ RV∞(α), α > 0. The proof follows from Corollary 3.3 and
estimation arguments similar to those used throughout this paper.

Theorem 3.4. Suppose that the measure µ obeys (2.1) with M ∈
RV∞(θ), θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). When β = 0,
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let f be asymptotically increasing and obey limx→∞ f(x) = ∞. Let x
denote the solution of (1.4),

H ∈ C((0,∞); (0,∞)) ∩ RV∞(α)

with α > 0. Then, the following are equivalent :

(i)

lim
t→∞

M(t)
∫ t

0
f(H(s)) ds

H(t)
= 0,

(ii)

lim
t→∞

x(t)

H(t)
= 1.

While discussing the hypothesis that

lim
t→∞

H(t)

F−1(tM(t))
= ∞

in the context of regular variation, it is worth remarking that this
hypothesis is also satisfied for H ∈ RV∞(∞), the so-called rapidly
varying functions, see [9, page 83]. If H ∈ RV∞(∞), then (3.2)
holds and Theorem 3.2 can be applied; this fact is recorded in the
next corollary.

Corollary 3.5. Suppose that the measure µ obeys (2.1) with M ∈
RV∞(θ), θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). When β = 0, let f
be asymptotically increasing and obey

lim
x→∞

f(x) = ∞.

Let x(t) denote the solution of (1.4), and suppose

H ∈ C((0,∞); (0,∞)) ∩ RV∞(∞)

is asymptotically increasing. Then, limt→∞ x(t)/H(t) = 1.

Corollary 3.5 also holds if H ∈ MR∞(∞), a sub-class of RV∞(∞),
see [9, page 68] for the definition of MR∞(∞) since this guarantees
that H is asymptotic to an increasing function (see [9, page 83]).
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4. Examples.

4.1. Application of Theorem 2.2. The main attraction of Theo-
rem 2.2 is that it largely reduces the asymptotic analysis of solutions
of (1.1) to the computation, or asymptotic analysis, of the function
F−1. Under the appropriate hypotheses, Theorem 2.2 yields

x(t) ∼ F−1(tM(t))

{
1

1− β
B

(
θ + 1,

θβ + 1

1− β

)}1/(1−β)

, as t→ ∞.

In general, exact computation of F−1 in closed form is impossible. The
following result provides the asymptotics of F−1 for a large class of
f ∈ RV∞(β) for β ∈ [0, 1) using some classical results from the theory
of regular variation. Its principal appeal is that it may be applied by
calculating the limit of a readily-computed function which can be found
directly in terms of f , without the need for integration.

Proposition 4.1. Suppose that f ∈ RV∞(β), β ∈ [0, 1), is continuous
and that

ℓ(x) :=
(
f(x)/xβ

)1/(1−β)

obeys

(4.1) lim
x→∞

ℓ(x ℓ(x))

ℓ(x)
= 1.

Then,

F (x) ∼ 1

1− β

x

f(x)
,(4.2)

F−1(x) ∼ (1− β)1/(1−β)ℓ(x1/(1−β))x1/(1−β), as x→ ∞.(4.3)

The proof of Proposition 4.1 is a simple application of standard
results using de Bruijn conjugates and is thus omitted, see [9, Theorem
1.5.15, Corollary 2.3.4].

The following examples illustrate the convenience of Proposition 4.1
in practice.
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Example 4.2. Suppose that f(x) ∼ a xβ log log(xα) as x → ∞ with
β ∈ [0, 1), a > 0 and α > 0. In this case,

ℓ(x) ∼ (a log log(xα))1/(1−β), as x→ ∞.

It is straightforward to show that (4.1) holds; therefore, applying Prop-
osition 4.1 yields

F−1(x) ∼ (1−β)1/(1−β){a log log(xα/(1−β))}1/(1−β)x1/(1−β), as x→ ∞.

This example is also valid with log log(x) replaced by

n∏
i=1

logi−1(x),

where logi(x) = log logi−1(x).

Example 4.3. Suppose that f(x) ∼ xβ(2+sin(log log(x))) as x→ ∞,
with β ∈ (0, 1). In this case,

ℓ(x) ∼ (2 + sin(log log(x)))1/(1−β), as x→ ∞.

Once more, the verification of (4.1) is left to the reader. In this case,
Proposition 4.1 yields

F−1(x) ∼ (1− β)1/(1−β){2 + sin(log log(x1/(1−β)))}1/(1−β)x1/(1−β),

as x→ ∞.

4.2. Discrete measures. It may appear that our inclusion of a
general measure µ in (1.1) and the hypothesis that the integral of
µ is regularly varying are only compatible when µ is an absolutely
continuous measure. The following proposition allows us to easily
construct examples to show that our results also cover a variety of
equations involving discrete measures.

Proposition 4.4. Let x ≥ 0 and δx be the Dirac measure at x on
(R+,B(R+)). Suppose that θ ∈ (0, 1) and that µ0 ∈ RV∞(θ − 1). Let
τ > 0 and

(4.4) µ(ds) =

⌊t/τ⌋∑
j=0

µ0(jτ)δjτ (ds).
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Hence,

(4.5) M(t) =

∫
[0,t]

µ(ds) =

⌊t/τ⌋∑
j=0

µ0(jτ),

and M ∈ RV∞(θ). Furthermore,

M(t) ∼ M̃(t) :=

∫ t

0

µ̃(s) ds as t→ ∞,

where µ̃ ∈ RV∞(θ − 1) is any C1, a decreasing function such that
µ0(s) ∼ µ̃(s) as s→ ∞.

In the next example, we illustrate the application of our results to
equations involving discrete measures.

Example 4.5. Using the notation of Proposition 4.4, suppose that

(4.6) x′(t) =

⌊t/τ⌋∑
j=0

µ0(jτ)f(x(t−jτ))+
∫ t

0

µ1(s)f(x(t−s)) ds, t > 0,

where m is given by

m(E) =

∫
E

µ1(s) ds

for any Borel set E ⊂ [0,∞) an absolutely continuous measure. There-
fore,

(4.7) µ(ds) =
∞∑
j=0

µ0(jτ)δjτ (ds) + µ1(s) ds.

If µ0 ∈ RV∞(θ− 1) and µ1 ∈ RV∞(α), then M ∈ RV∞(max(θ, α+1)).
Suppose that θ > α + 1 for the purposes of this example. Thus, by
Proposition 4.4,

M(t) ∼
⌊t/τ⌋∑
j=0

µ0(jτ)

as t→ ∞, and choose

µ0(x) ∼ log
x+ 1

1 + x

1−θ

=: µ̃(x), θ ∈ (0, 1),
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where the asymptotic relation holds as x→ ∞. Hence, µ̃ ∈ RV∞(θ−1),
and it follows that

M̃(t) =
1

θ
(t+ 1)θ log(t+ 1)− 1

θ2
((t+ 1)θ − 1) ∼ tθ

θ
log(t), as t→ ∞.

It is now straightforward to deduce the asymptotic behavior of the
solution to (4.6) for f ∈ RV∞(β) with β ∈ [0, 1), from Theorem 2.2.

4.3. Perturbed equations and application of Theorems 3.1 and
3.2. Using a parametrized example, we illustrate how the asymptotic
behavior of solutions of (1.4) can be classified using the results of
Section 3.

Example 4.6. For ease of exposition, suppose that β ∈ (0, 1), and let

f(x) = xβ , x ≥ 0;

M(t) = (1 + t)θ − 1, t ≥ 0;

H(t) = (1 + t)α eγt − 1, t ≥ 0,

with θ > 0, α ∈ R, and γ ≥ 0.

Case (i). γ = 0. In this case, H ∈ RV∞(α) and

H(t)

F−1(tM(t))
∼ (1− β)1/(β−1)tα−(θ+1)/(1−β), as t→ ∞.

If α < (θ + 1)/(1− β), then

lim
t→∞

H(t)

F−1(tM(t))
= 0,

and Theorem 3.1 yields the limit

lim
t→∞

x(t)

F−1(tM(t))
= L,

where

L =

{
B

(
1 + θ,

1 + θβ

1− β

)
/(1− β)

}1/(1−β)

.
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If α = (θ + 1)/(1− β), then

lim
t→∞

H(t)

F−1(tM(t))
= (1− β)1/(β−1) =: λ,

and Theorem 3.1 gives

lim
t→∞

x(t)

F−1(tM(t))
= ζ,

where ζ satisfies (3.1).

Finally, if α > (θ + 1)/(1− β), then

lim
t→∞

H(t)/F−1(tM(t)) = ∞.

Then, by Corollary 3.3, (3.2) holds and Theorem 3.2 yields limt→∞ x(t)/
H(t) = 1.

Case (ii). γ > 0. In this case, H ∈ RV∞(∞), and Corollary 3.5
immediately gives limt→∞ x(t)/H(t) = 1 for all α ∈ R, β ∈ (0, 1) and
θ > 0.

Specifically with a view to applications to stochastic functional
differential equations, it is pertinent to highlight when H is required
to have some form of monotonicity in the results of Section 3. When
λ = 0 in Theorem 3.1, there is no monotonicity requirement on H,
but λ > 0 implies that H asymptotic to the monotone increasing
function F−1, modulo a constant. By contrast, Theorem 3.2 allows for
large “fluctuations,” or irregular behavior, inH; the following examples
illustrate this point.

Example 4.7. Suppose that f ∈ RV∞(β), β ∈ (0, 1), M ∈ RV∞(θ),
θ ≥ 0 and

H(t) = (1 + t)α (2 + sin(t))− 2, α > 0.

From Karamata’s theorem,

lim sup
t→∞

M(t)
∫ t

0
f(H(s)) ds

H(t)

= lim sup
t→∞

M(t)
∫ t

0
f((1 + s)α (2 + sin(s)− 2)) ds

(1 + t)α (2 + sin(t))− 2



554 JOHN A.D. APPLEBY AND DENIS D. PATTERSON

≤ lim sup
t→∞

(1 + ϵ)M(t)
∫ t

0
ϕ(3 sα) ds

tα
.

Since
M(t)

∫ t

0
ϕ(3 sα) ds

tα
∼ M(t) t f(3 tα)

(1 + αβ)tα
, as t→ ∞,

a sufficient condition for (3.2) to hold, and hence for Theorem 3.2 to
apply, is α > (1 + θ)/(1 − β). Even more rapid variation in H is
permitted; for example, let H(t) = et(2 + sin(t)) − 2. In this case,
asymptotic monotonicity of f and the rapid variation of et yield

lim sup
t→∞

M(t)
∫ t

0
f(H(s)) ds

H(t)
≤ lim sup

t→∞

M(t) t f(3et)

et
= 0,

and, once more, Theorem 3.2 applies to yield x(t) ∼ H(t) as t → ∞,
where x is the solution to (1.6). By fixing f(x) = xβ , we can
immediately see that it is possible to capture more general types of
exponentially fast oscillation using Theorem 3.2. Choose H(t) = eσ(t) t,
where σ(t) obeys

0 < σ− ≤ σ(t) ≤ σ+ <∞

for all t ≥ 0, for some constants σ− and σ+. Checking condition (3.2),
we have

lim sup
t→∞

M(t)
∫ t

0
f(H(s)) ds

H(t)
≤ lim sup

t→∞

M(t) t eβσ+t

eσ−t
.

Thus, Theorem 3.2 applies and x(t) ∼ H(t) as t→ ∞ if σ− > βσ+.

5. Proofs of results. In the following proofs, we often choose
to work with a monotone function approximating f ; this monotone
approximation will be denoted by ϕ. If f is regularly varying with a
positive index, then

there exists a ϕ ∈ C1((0,∞); (0,∞)) ∩ C(R+, (0,∞)) such that

f(x) ∼ ϕ(x) and ϕ′(x) > 0 for all x > 0,

by [9, Theorems 1.3.1, Theorem 1.5.13]. It is immediate that, if f
is regularly varying and asymptotic to ϕ, then ϕ is also regularly
varying with the same index. If f ∈ RV∞(0), we assume that a
ϕ satisfying (5.1) exists since only a smooth, but not necessarily
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monotone, approximation is guaranteed in this case. The function F (x)
is approximated by

Φ(x) :=

∫ x

1

du/ϕ(u)

and Φ−1 is the inverse function of Φ. If f(x) ∼ ϕ(x) as x → ∞, it
follows trivially that F (x) ∼ Φ(x) and F−1(x) ∼ Φ−1(x), as x → ∞.
Since it is used frequently in our arguments, we now state a useful
version of Karamata’s theorem.

Theorem 5.1 (Karamata’s theorem). If ϕ ∈ RV∞(β) is locally
bounded on [X,∞) for some X ∈ R+, then

lim
x→∞

xσ+1ϕ(x)∫ x

X
tσϕ(t) dt

= σ + β + 1, for each σ ≥ −(1 + β).

The proof of Theorem 2.2 is decomposed into the following lemmata,
the first of which provides a precise estimate on the asymptotics of the
convolution of two regularly varying functions.

Lemma 5.2. Suppose that a ∈ RV∞(ρ) and b ∈ RV∞(σ), where ρ ≥ 0
and σ ≥ 0, and limt→∞ a(t) = ∞. If σ = 0, let b be asymptotically
increasing and obey limt→∞ b(t) = ∞. Then,

lim
t→∞

∫ t

0
a(s)b(t− s) ds

t a(t) b(t)
=

∫ 1

0

λρ(1− λ)σdλ =: B(ρ+ 1, σ + 1),

where B denotes the Beta function.

Proof. Let ϵ, η ∈ (0, 1/2) be arbitrary. Define

I(t) :=

∫ t

0

a(s)b(t− s) ds(5.1)

=

∫ ϵt

0

a(s) b(t− s) ds

+

∫ (1−η)t

ϵt

a(s)b(t− s) ds+

∫ t

(1−η)t

a(s)b(t− s) ds

=: I1(t) + I2(t) + I3(t).
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By making the substitution s = λt,

I2(t)

t a(t) b(t)
=

∫ (1−η)t

ϵt
a(s)b(t− s) ds

t a(t) b(t)
=

∫ 1−η

ϵ

a(λt)

a(t)

b(t(1− λ))

b(t)
dλ.

By the uniform convergence theorem for regularly varying functions,
see [9, Theorem 1.5.2], it follows that

(5.2) lim
t→∞

I2(t)

t a(t) b(t)
=

∫ 1−η

ϵ

λρ(1− λ)σdλ.

Since both a and b are positive functions, it is clear that I(t) ≥ I2(t),
and hence,

lim inf
t→∞

I(t)

t a(t) b(t)
≥

∫ 1−η

ϵ

λρ(1− λ)σdλ.

Letting η and ϵ→ 0+ then yields

(5.3) lim inf
t→∞

I(t)

t a(t) b(t)
≥

∫ 1

0

λρ(1− λ)σdλ.

By hypothesis, an increasing C1 function β exists such that b(t)/β(t) →
1 as t → ∞. It follows that T1 > 0 exists such that t ≥ T1 implies
b(t)/β(t) ≤ 2. Therefore, with ϵ ∈ (0, (1/2)), t ≥ 2T1, we have that
(1− ϵ)t ≥ T1. Suppose that t ≥ 2T1, and estimate as:

I1(t)=

∫ ϵt

0

a(s) b(t−s) ds ≤ 2β(t)

∫ ϵt

0

a(s) ds = 2β(t) ϵ t a(ϵt)

∫ ϵt

0
a(s) ds

ϵ t a(ϵt)
.

Hence, for t ≥ 2T1,

I1(t)

t a(t) b(t)
≤ 2ϵ

β(t)

b(t)

a(ϵt)

a(t)

∫ ϵt

0
a(s) ds

ϵ t a(ϵt)
.

a ∈ RV∞(ρ) implies that limt→∞ a(ϵt)/a(t) = ϵρ, and similarly, by
Karamata’s theorem,

lim
t→∞

∫ ϵt

0

a(s) ds/ϵ t a(ϵt) = 1/(1 + ρ).

Thus,

(5.4) lim sup
t→∞

I1(t)

t a(t) b(t)
≤ 2ϵρ+1

1 + ρ
.
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Finally, consider I3(t). By construction, t ≥ T1 implies b(t)/β(t) ≤ 2,
and since b, β are continuous and positive, with β bounded away from
zero,

sup
0≤t≤T1

b(t)

β(t)
= max

0≤t≤T1

b(t)

β(t)
:= B1 <∞.

Thus, there exists a B2 > 0 such that b(t) ≤ B2 β(t) for all t ≥ 0.
Therefore,

I3(t) =

∫ t

(1−η)t

a(s) b(t− s) d ≤ B2

∫ t

(1−η)t

a(s)β(t− s) ds

≤ B2β(ηt)

∫ t

(1−η)t

a(s) ds.

Hence,

lim sup
t→∞

I3(t)

t a(t) b(t)
≤ B2 lim sup

t→∞

β(ηt)

b(t)
lim sup
t→∞

∫ t

(1−η)t
a(s) ds

t a(t)
(5.5)

= B2 η
σ lim sup

t→∞

∫ t

(1−η)t
a(s) ds

t a(t)
.

The final limit on the right-hand side of (5.5) is calculated once more
by calling upon the uniform convergence theorem for regularly varying
functions

lim
t→∞

∫ t

(1−η)t
a(s) ds

t a(t)
= lim

t→∞

∫ 1

1−η

a(λt)

a(t)
dλ =

∫ 1

1−η

λρdλ.

Returning to (5.5),

lim sup
t→∞

I3(t)

t a(t) b(t)
≤ B2 η

σ

∫ 1

1−η

λρdλ = B2 η
σ

(
1

ρ+ 1
− (1− η)ρ+1

ρ+ 1

)
.

(5.6)

Therefore, combining (5.2), (5.4) and (5.6), we obtain

lim sup
t→∞

I(t)

t a(t) b(t)
≤ 2ϵρ+1 1

1 + ρ
+

∫ 1−η

ϵ

λρ(1− λ)σdλ+B2 η
σ

∫ 1

1−η

λρdλ.
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Letting η and ϵ→ 0+ in the above then yields

lim sup
t→∞

I(t)

t a(t) b(t)
≤

∫ 1

0

λρ(1− λ)σdλ.(5.7)

Combining (5.7) with (5.3) gives the desired conclusion. �

The proof of Theorem 2.2 now begins in earnest by proving a “rough”
lower bound on the solution which we will later refine. Lemmas 5.3,
5.4 and 5.5 are all proven under the same set of hypotheses and are
presented separately purely for readability and clarity.

Lemma 5.3. Suppose the measure µ obeys (2.1) with M ∈ RV∞(θ),
θ ≥ 0, and that f ∈ RV∞(β), β ∈ [0, 1). If β = 0, let f be asymp-
totically increasing and obey limx→∞ f(x) = ∞. Then the unique
continuous solution x of (1.1) obeys

lim inf
t→∞

x(t)

F−1(tM(t))
> 0.

Proof. Let ϵ ∈ (0, 1) be arbitrary. By hypothesis, a ϕ exists such that
(5.1) holds, and hence, an x1(ϵ) > 0 exists such that f(x) > (1−ϵ)ϕ(x)
for all x > x1(ϵ). Furthermore, T0(ϵ) > 0 exists such that t ≥ T0 implies
x(t) > x1(ϵ). Similarly, there exists a T1(ϵ) > 0 such that M(t) > 0
for all t ≥ T1. Since M ∈ RV∞(θ), a C1 function M1 exists such that,
for all ϵ ∈ (0, 1), there exists a T2(ϵ) > 0 such that, for all t ≥ T2,
M(t) > (1 − ϵ)M1(t). Let T3 := T0 + T1 + T2. Hence, for t ≥ 4T3,
estimate as follows:

x′(t) =

∫
[0,t−T3]

µ(ds)f(x(t− s)) +

∫
(t−T3,t]

µ(ds)f(x(t− s))

≥ (1− ϵ)

∫
[0,t−T3]

µ(ds)ϕ(x(t− s))

= (1− ϵ)

∫
[0,(t−T3)/2]

µ(ds)ϕ(x(t− s))

+ (1− ϵ)

∫
((t−T3)/2,t−T3]

µ(ds)ϕ(x(t− s))

≥ (1− ϵ)

∫
[0,(t−T3)/2]

µ(ds)ϕ(x(t− s))
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≥ (1− ϵ)M

(
1

2
(t− T3)

)
ϕ

(
x

(
1

2
(t+ T3)

))
.

Since M ∈ RV∞(θ), limt→∞M((t− T3)/2)/M(t− T3) = 2−θ. Thus, a

positive constant C and a time T̃3 ≥ 4T3 exist such that

(5.8) x′(t) ≥ CM(t− T3)ϕ

(
x

(
1

2
(t+ T3)

))
for all t ≥ T̃3.

Furthermore, since t ≥ T̃3 implies t − T3 > T2, there exists a C0 > 0
such that

(5.9) x′(t) ≥ C0M1(t− T3)ϕ (x((t+ T3)/2)) , for all t ≥ T̃3.

Now define the C2, positive, increasing function

M1(t) :=

∫ t

0

M1(s) ds for t ≥ 0.

Let

(5.10) α(t) := M̃−1
1 (t) + T3, t ≥ M̃1(T̃3).

For t ≥ M̃1(T̃3),

α(t) ≥ α(M̃1(T̃3)) = T̃3 + T3 > T̃3

since α is increasing. Define x̃(t) := x(α(t)) for t ≥ M̃1(T̃3). Note

that x̃ ∈ C1([M̃1(T̃3),∞); (0,∞)) and α′(t) = 1/M1(M̃
−1
1 (t)). For

t ≥ M̃1(T̃3), use (5.9) to compute

x̃′(t)=α′(t)x′(α(t))

(5.11)

≥ C0M1(α(t)−T3)
M1(M̃

−1
1 (t))

ϕ

(
x

(
1

2
(α(t)+T3)

))
= C0 ϕ

(
x

(
1

2
(α(t) + T3)

))
.

Define τ(t) = t − M̃1(M̃
−1
1 (t)/2) > 0, for t ≥ M̃1(T̃3). It follows that

(α(t) + T3)/2 = α(t− τ(t)). Hence, for t ≥ M̃1(T̃3),
(5.12)

x̃′(t)≥C0 ϕ

(
x

(
1

2
(α(t)+T3)

))
= C0 ϕ(x(α(t−τ(t))) = C0 ϕ(x̃(t−τ(t))).
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For t ≥ M̃1(T̃3), it is straightforward to show, using the monotonicity

of M̃1, that τ(t) > 0. Using that M̃1 ∈ RV∞(θ + 1), we have

lim
t→∞

t− τ(t)

t
= lim

t→∞

M̃1((1/2)M̃
−1
1 (t))

M̃1(M̃
−1
1 (t))

= lim
t→∞

M̃1((1/2)M̃
−1
1 (t))

M̃1(M̃
−1
1 (t))

=

(
1

2

)θ+1

.

It follows that a T4 > 0 exists such that, for all t ≥ T4,

−τ(t) > 2−(θ+2) t

for all ϵ > 0 sufficiently small. Letting T5 := max(T4, M̃1(T̃3)) we have,
for t ≥ T5

(5.13) x̃′(t) ≥ C0 ϕ(x̃(qt)), q = 2−(θ+2) ∈ (0, 1).

The following estimates will be needed to define a lower comparison
solution. Since ϕ ◦ Φ−1 is in RV∞(β/(1− β)) we have

lim
x→∞

(ϕ ◦ Φ−1)(x/q)

(ϕ ◦ Φ−1)(x)
=

(
1

q

)β/(1−β)

.

Thus, there exists x2 > 0 such that for all x ≥ x2

(ϕ ◦ Φ−1)(x/q)

(ϕ ◦ Φ−1)(x)
< 2

(
1

q

)β/(1−β)

.

Next, let T ′
5 > 0 be so large that Φ(x̃(qT ′

5)) − x2 > 0, and set
T6 := max(T5, T

′
5) + 1. Then,

Φ(x̃(qT6)) > Φ(x̃(qT ′
5)) > x2.

Define

(5.14) c := min

(
C0

qβ/(1−β)

4
,
Φ(x̃(qT6))− x2

2T6(1− q)
,
Φ(x̃(qT6))

2T6

)
and

(5.15) d := cT6 − Φ(x̃(qT6)).

Then, define x0 := cqT6 − d = Φ(x̃(qT6)) − cT6(1 − q) > x2. Note
that d < 0 due to (5.14). Therefore, 1/q − 1 > 0 and, for any x ≥ x0,
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x/q + (1/q − 1)d < x/q. Hence, for x ≥ x0,
(5.16)

(ϕ ◦ Φ−1)((x/q) + (1/q − 1) d)

(ϕ ◦ Φ−1)(x)
≤ (ϕ ◦ Φ−1)(x/q)

(ϕ ◦ Φ−1)(x)
< 2

(
1

q

)β/(1−β)

.

Letting t = (x + d)/cq in (5.16) and noting that (5.14) implies
C0/c ≥ 4(1/q)β/(1−β), we have

(5.17)
(ϕ ◦ Φ−1)(ct− d)

(ϕ ◦ Φ−1)(cqt− d)
< 2

(
1

q

)β/(1−β)

<
C0

c
, for all t ≥ T6.

Define the lower comparison solution x− by

(5.18) x−(t) = Φ−1(ct− d), t ≥ qT6.

Then, for t ∈ [qT6, T6], by the monotonicity of Φ−1 and (5.15),

x−(t) ≤ x−(T6) = Φ−1(cT6 − d) = x̃(qT6) ≤ x̃(t).

Also, x−(T6) = x̃(qT6) < x̃(T6) since x̃ is increasing. Hence,

(5.19) x−(t) < x̃(t), t ∈ [qT6, T6].

Next, since Φ(x−(t)) = ct− d, for t ≥ T6,

x′−(t) = c (ϕ ◦ Φ−1)(ct− d) = c ϕ(x−(t))

=
c

C0

ϕ(x−(t))

ϕ(x−(qt))
C0 ϕ(x−(qt)).

Now, for t ≥ T6, by (5.17),

c

C0

ϕ(x−(t))

ϕ(x−(qt))
=

c

C0

(ϕ ◦ Φ−1)(ct− d)

(ϕ ◦ Φ−1)(cqt− d)
<

c

C0

C0

c
= 1.

Thus,

(5.20) x′−(t) < C0 ϕ(x−(qt)), t ≥ T6.

Recalling (5.13), x̃′(t) ≥ C0 ϕ(x̃(qt)) for all t ≥ T6 > T5. Then, by
(5.19) and (5.20), since ϕ is increasing, x̃(t) > x−(t) for all t ≥ qT6.
In order to see this, suppose that there is a minimal t0 > T6 such
that x−(t0) = x̃(t0). Thus, x′−(t0) ≥ x̃′(t0) and x−(t0) < x̃(t) for all
t ∈ [qT6, t0). Then, since t0 > T6 and qt0 > qT6, ϕ increasing yields

x̃′(t0) ≥ C0 ϕ(x̃(qt0)) > C0 ϕ(x−(qt0)) > x′−(t0) ≥ x̃′(t0),
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a contradiction. Now, for t ≥ qT6, x̃(t) > x−(t) = Φ−1(ct− d). Hence,
for t ≥ qT6

x(α(t)) = x̃(t) > Φ−1(ct− d).

From the definition of α, in (5.10), α−1(t) =M1(t−T3), and therefore,

x(t) = x̃(α−1(t)) > Φ−1(c α−1(t)− d)

= Φ−1(cM1(t− T3)− d), M1(t− T3) > qT6.

Hence, recalling that d < 0,

(5.21) Φ(x(t)) > cM1(t−T3)−d > cM1(t−T3), M1(t−T3) > qT6.

Note that, for t > 2T3, t/2 < t−T3. SinceM1 is increasing, this implies
that M1(t/2) ≤M1(t− T3). Thus, (5.21) implies

lim inf
t→∞

Φ(x(t))

M1(t)
≥ lim inf

t→∞

cM1(t/2)

M1(t)
= c 2−(θ+1) > 0.

By Karamata’s theorem, limt→∞M1(t)/tM1(t) = 1/(1+θ), and there-
fore,

lim inf
t→∞

Φ(x(t))

tM1(t)
≥ c (1 + θ) 2−(θ+1) > 0.

Finally, since Φ−1 ∈ RV∞(1/(1 − β)) and M is asymptotic to M1, we
conclude that

lim inf
t→∞

x(t)

Φ−1(tM(t))
> 0,

as required. �

Lemma 5.4. Suppose that the hypotheses of Lemma 5.3 hold. Then,
the unique continuous solution x of (1.1) obeys

lim sup
t→∞

F (x(t))

tM(t)
≤ 1

1− β
B

(
θ + 1,

θβ + 1

1− β

)
.

Proof. Once again, let ϕ which satisfies (5.1) obey f(x)/ϕ(x) <
(1 + ϵ) for all x > x1(ϵ), for any ϵ > 0 and for some x1(ϵ) > 0. Due
to the fact that limt→∞ x(t) = ∞, a T1(ϵ) exists such that t ≥ T1(ϵ)
implies x(t) > x1(ϵ). Since limt→∞M(t) = ∞, there exists a T2(ϵ)
such that M(t) > 0 for all t ≥ T2. Hence, for all t ≥ 2 max(T1, T2),
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(1.3) becomes

x(t)

ϕ(x(t))
≤ x(0)

ϕ(x(t))
+

∫ T1

0
M(t− s)f(x(s)) ds

ϕ(x(t))
+ (1 + ϵ) tM(t),(5.22)

where the upper bound on the term∫ t

T1

M(t− s)ϕ(x(s)) ds

was obtained by exploiting the fact that t 7→ x(t) and t 7→ M(t) are
non-decreasing. By Karamata’s theorem and the regular variation of
ϕ,

lim
x→∞

(1− β)ϕ(x)Φ(x)/x = 1

holds. Thus, for all ϵ > 0, an x2(ϵ) exists such that

Φ(x) <
(1 + ϵ)x

(1− β)ϕ(x)
, for all x > x2(ϵ).

Once more, the divergence of x(t) yields the existence of a T3(ϵ) such
that x(t) > x2(ϵ) for all t ≥ T3(ϵ). Letting T4 = 2 max(T1, T2, T3), we
obtain

Φ(x(t))

tM(t)
<

(1 + ϵ)x(t)

(1− β)ϕ(x(t)) tM(t)
for all t ≥ T4.

Combining the above estimate with (5.22) yields

Φ(x(t))

tM(t)
<

(1+ϵ)x(0)

(1−β)ϕ(x(t))tM(t)
+
(1+ϵ)

∫ T1

0
M(t−s)f(x(s)) ds

(1−β)ϕ(x(t))tM(t)
+
(1+ϵ)2

1−β
,

t ≥ T4(ϵ).

Hence, letting t→ ∞ and then sending ϵ→ 0+, we obtain

lim sup
t→∞

Φ(x(t))

tM(t)
≤ 1

1− β
.

Since Φ−1 ∈ RV∞(1/(1− β)), the above estimate can be restated as

lim sup
t→∞

x(t)

Φ−1(tM(t))
≤ (1− β)1/(β−1) <∞.

We now seek to refine the “crude” upper bound on the growth of the
solution obtained above. From the above construction and Lemma 5.3,
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we may suppose that

(5.23) lim sup
t→∞

x(t)

Φ−1(tM(t))
=: η ∈ (0,∞).

From (5.23), it follows that, for all ϵ > 0, a T5(ϵ) > 0 exists such that,
for all t ≥ T5(ϵ), x(t) < (η + ϵ)Φ−1(tM(t)). From the monotonicity of
ϕ, it follows that

ϕ(x(t))

ϕ(Φ−1(tM(t)))
<
ϕ((η + ϵ)Φ−1(tM(t)))

ϕ(Φ−1(tM(t)))
, t ≥ T5(ϵ).

Since ϕ ∈ RV∞(β),

lim sup
t→∞

ϕ(x(t))

ϕ(Φ−1(tM(t)))
≤ (η + ϵ)β .

Thus, for all ϵ > 0, a T6(ϵ) > 0 exists such that, for all t ≥ T6,

ϕ(x(t)) < (1 + ϵ)(η + ϵ)βϕ(Φ−1(tM(t))).

Integrating this estimate yields

∫ t

T6

M(t− s)ϕ(x(s)) ds

(5.24)

≤ (1 + ϵ)(η + ϵ)β
∫ t

T6

M(t− s)ϕ(Φ−1(sM(s))) ds, t ≥ T6(ϵ).

Since (ϕ ◦ Φ−1)(tM(t)) ∈ RV∞(β(1 + θ)/(1 − β)) and M ∈ RV∞(θ),
Lemma 5.2 can be applied to obtain

(5.25) lim
t→∞

∫ t

0
M(t− s)ϕ(Φ−1(sM(s))) ds

tM(t)ϕ(Φ−1(tM(t)))
= B

(
θ + 1,

θβ + 1

1− β

)
.

Hence, combining (5.24) and (5.25) yields

lim sup
t→∞

∫ t

T6
M(t− s)ϕ(x(s)) ds

tM(t)ϕ(Φ−1(tM(t)))
≤ (1 + ϵ)(η + ϵ)βB

(
θ + 1,

θβ + 1

1− β

)
.

Apply the above estimate to (1.3) as:

η = lim sup
t→∞

x(t)

Φ−1(tM(t))
≤ lim sup

t→∞

∫ T6

0
M(t− s)f(x(s)) ds

Φ−1(tM(t))
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+ lim sup
t→∞

(1 + ϵ)
∫ t

T6
M(t− s)ϕ(x(s)) ds

Φ−1(tM(t))

≤ (1 + ϵ)2(η + ϵ)βB

(
θ + 1,

θβ + 1

1− β

)
lim sup
t→∞

tM(t)ϕ(Φ−1(tM(t)))

Φ−1(tM(t))

= (1 + ϵ)2(η + ϵ)βB

(
θ + 1,

θβ + 1

1− β

)
lim sup
x→∞

xϕ(Φ−1(x))

Φ−1(x)
.

Letting ϵ → 0+ and using Karamata’s theorem to the remaining limit
on the right-hand side,

η1−β = lim sup
y→∞

Φ(y)ϕ(y)

y
B

(
θ+1,

θβ + 1

1− β

)
=

1

1− β
B

(
θ+1,

θβ + 1

1− β

)
,

with y = Φ−1(x) so that y → ∞ as x→ ∞. Thus,

η = lim sup
t→∞

x(t)

Φ−1(tM(t))
≤

{
1

1− β
B

(
θ + 1,

θβ + 1

1− β

)}1/(1−β)

.

Using Φ ∈ RV∞(1 − β) and Φ(x) ∼ F (x) as x → ∞, the above upper
bound can be reformulated as

lim sup
t→∞

F (x(t))

tM(t)
≤ 1

1− β
B

(
θ + 1,

θβ + 1

1− β

)
,

which is the required estimate. �

Lemma 5.5. Suppose that the hypotheses of Lemma 5.3 hold. Then,
the unique continuous solution x of (1.1) obeys

lim inf
t→∞

F (x(t))

tM(t)
≥ 1

1− β
B

(
θ + 1,

θβ + 1

1− β

)
.

Proof. By Lemmas 5.3 and 5.4,

lim inf
t→∞

x(t)

Φ−1(tM(t))
=: η ∈ (0,∞).

Then, for all ϵ ∈ (0, η) ∩ (0, 1), a T1(ϵ) > 0 exists such that, for all
t ≥ T1,

η − ϵ <
x(t)

Φ−1(tM(t))
.
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Since limt→∞M(t) = ∞, there exists a T2 such that M(t) > 0 for all
t ≥ T2. Hence,

(5.26) x(t) > (η − ϵ)Φ−1(tM(t)), t ≥ T3 := max(T1, T2).

Using monotonicity and regular variation of ϕ, it follows from (5.26)
that

lim inf
t→∞

ϕ(x(t))

(ϕ ◦ Φ−1)(tM(t))
≥ (η − ϵ)β .

Now, since ϕ(x) ∼ f(x) as x→ ∞, for all ϵ ∈ (0, η)∩ (0, 1), a T4(ϵ) > 0
exists such that

f(x(t)) > (1−ϵ)ϕ(x(t)) > (1−ϵ)2(η−ϵ)β (ϕ◦Φ−1)(tM(t)), t ≥ T4(ϵ).

Integration then yields∫ t

0

M(t− s)f(x(s)) ds

> (1− ϵ)2(η − ϵ)β
∫ t

T4

M(t− s)(ϕ ◦ Φ−1)(sM(s)) ds.

Hence, as in the proof of Lemma 5.4, applying Lemma 5.2 gives

lim inf
t→∞

∫ t

0
M(t− s)f(x(s)) ds

tM(t) (ϕ ◦ Φ−1)(tM(t))
≥ (1− ϵ)2(η − ϵ)β B

(
θ + 1,

θβ + 1

1− β

)
.

(5.27)

Now, apply the estimate from (5.27) to (1.3) as:

η = lim inf
t→∞

x(t)

Φ−1(tM(t))
≥ lim inf

t→∞

∫ t

0
M(t− s)f(x(s)) ds

Φ−1(tM(t))

= (1− ϵ)2(η − ϵ)β B

(
θ + 1,

θβ + 1

1− β

)
lim inf
t→∞

tM(t) (ϕ ◦ Φ−1)(tM(t))

Φ−1(tM(t))

= (1− ϵ)2(η − ϵ)β B

(
θ + 1,

θβ + 1

1− β

)
lim inf
x→∞

xϕ(Φ−1(x))

Φ−1(x)
.

The limit of the final term on the right-hand side is 1/(1 − β) by
Karamata’s theorem, and sending ϵ→ 0+ yields

η =
ηβ

1− β
B

(
θ + 1,

θβ + 1

1− β

)
.
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Hence,

lim inf
t→∞

x(t)

F−1(tM(t))
≥

{
1

1− β
B

(
θ + 1,

θβ + 1

1− β

)}1/(1−β)

.

Since F ∈ RV∞(1− β), this can be rewritten in the form

lim inf
t→∞

F (x(t))

tM(t)
≥ 1

1− β
B

(
θ + 1,

θβ + 1

1− β

)
,

which is the desired bound. �

As with Theorem 2.2, the proof of Theorem 3.1 is split into a series
of lemmata. A final consolidating argument then establishes the result,
as stated in Section 2.

Lemma 5.6. Suppose the measure µ obeys (2.1) with M ∈ RV∞(θ),
θ ≥ 0 and f ∈ RV∞(β), β ∈ [0, 1). If β = 0, let f be asymptotically
increasing and obey limx→∞ f(x) = ∞. Let x(t) denote the unique
continuous solution of (1.4), and suppose H ∈ C((0,∞); (0,∞)). Then,

lim inf
t→∞

x(t)

F−1(tM(t))
≥ L :=

{
1

1− β
B

(
1 + θ,

1 + θβ

1− β

)}1/(1−β)

> 0.

(5.28)

Proof. With ϵ ∈ (0, 1) arbitrary and T0(ϵ) and T1(ϵ) defined as in
Lemma 5.3, (1.4) admits the initial lower estimate

x(t) > x(0) +H(t) + (1− ϵ)

∫ t

T

M(t− s)ϕ(x(s)) ds,

t ≥ T (ϵ) := T0(ϵ) + T1(ϵ).

Letting y(t) = x(t+ T ) and noting that H(t) > 0 for t > 0, we obtain

y(t) > x(0) + (1− ϵ)

∫ t+T

T

M(t+ T − s)ϕ(x(s)) ds

= x(0) + (1− ϵ)

∫ t

0

M(t− u)ϕ(x(u+ T )) du

= x(0) + (1− ϵ)

∫ t

0

M(t− u)ϕ(y(u)) du, t ≥ T (ϵ).
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Now, consider the comparison equation defined by

x′ϵ(t) = (1− ϵ)

∫
[0,t]

µ(ds)ϕ(xϵ(t− s)), t > 0, xϵ(0) = x(0)/2.

(5.29)

In contrast to (1.4), the solution to (5.29) will be non-decreasing.
Integrating (5.29) using Fubini’s theorem yields

xϵ(t) = x(0)/2 + (1− ϵ)

∫ t

0

M(t− u)ϕ(xϵ(u)) du, t ≥ 0.

By construction

xϵ(t) < y(t) = x(t+ T ) for all t ≥ 0,

or

x(t) > xϵ(t− T ) for all t ≥ T .

Applying Theorem 2.2 to xϵ then yields

lim
t→∞

F (xϵ(t))

tMϵ(t)
=

1

1− β
B

(
1 + θ,

1 + θβ

1− β

)
,

where Mϵ(t) = (1− ϵ)M(t). Hence,

lim
t→∞

F (xϵ(t))

tM(t)
=

1− ϵ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
.

Therefore,

lim inf
t→∞

F (x(t))

tM(t)
≥ lim inf

t→∞

F (xϵ(t− T ))

tM(t)

= lim inf
t→∞

F (xϵ(t− T ))

(t− T )M(t− T )

(t− T )M(t− T )

tM(t)

=
1− ϵ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
,

where the final equality follows from the trivial fact that t − T ∼ t
as t → ∞ and noting that M preserves asymptotic equivalence since
M ∈ RV∞(θ).
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Finally, letting ϵ→ 0+ and using the regular variation of F−1 yields

lim inf
t→∞

x(t)

F−1(tM(t))
≥

{
1

1− β
B

(
1 + θ,

1 + θβ

1− β

)}1/(1−β)

= L,

which finishes the proof. �

Lemma 5.7. Suppose that the hypotheses of Lemma 5.6 hold and

lim
t→∞

H(t)/F−1(tM(t)) = λ ∈ [0,∞).

Then, with x denoting the unique continuous solution of (1.4),

lim sup
t→∞

x(t)

F−1(tM(t))
≤ U :=

(
λ

Lβ
+

1

1− β

)1/(1−β)

,(5.30)

where L is defined by (5.28).

Proof. We begin by constructing a monotone comparison solution
which will majorize the solution of (1.4) and to which Lemma 5.6 can
be applied. Let ϵ ∈ (0, 1) be arbitrary, and define T1(ϵ) and T2(ϵ) as in
the proof of Lemma 5.4.

By hypothesis,

lim
t→∞

H(t)/F−1(tM(t)) = λ ∈ [0,∞),

and thus, a T (ϵ) > 0 exists such that t ≥ T (ϵ) implies

H(t) < (λ+ ϵ)Φ−1(tM(t));

furthermore, M ∈ RV∞(θ) implies that there exists an M1 ∈ C1

asymptotic to M and T0(ϵ) > T such that

M(t) < (1 + ϵ)M1(t) for all t ≥ T0.

For t ≥ T0, since Φ−1 is increasing,

Φ−1(tM(t)) < Φ−1(t (1 + ϵ)M1(t)),

and, since Φ−1 ∈ RV∞(1/(1− β)), a T ∗ > T0 exists such that

Φ−1(tM(t)) < (1 + ϵ)(2−β)/(1−β)Φ−1(tM1(t))

for all t ≥ T ∗.
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For notational convenience, define the quantity ϵ∗ by letting

(1 + ϵ∗) := (1 + ϵ)(2−β)/(1−β);

note that (1 + ϵ∗) → 1 as ϵ → 0+. Defining T ′
2 := T ∗ + T1 + T2, we

have the estimate:

x(t) < x(0) +H(t) +

∫ T ′
2

0

M(t− s)f(x(s)) ds

+ (1 + ϵ)

∫ t

T ′
2

M(t− s)ϕ(x(s)) ds

≤ x(0) +H(t) +M(t)T ′
2 F

∗(5.31)

+ (1 + ϵ)

∫ t

T ′
2

M(t− s)ϕ(x(s)) ds

< x(0) + (λ+ ϵ)(1 + ϵ∗)Φ−1(tM1(t))

+ (1 + ϵ)M1(t)T
′
2 F

∗ + (1 + ϵ)

∫ t

T ′
2

M(t− s)ϕ(x(s)) ds,

for all t ≥ T ′
2 and where F ∗ := max0≤s≤T ′

2
f(x(s)). Now define the

constant
x∗ := max

0≤s≤T ′
2

x(s)

and the function

H(t) := (λ+ ϵ)(1 + ϵ∗)Φ−1(tM1(t))

+ (1 + ϵ)M1(t)T
′
2 F

∗ − (λ+ ϵ)(1 + ϵ∗), t ≥ 0.

Since Φ−1(0) = 1 and M1(0) = 0, H(0) = 0 and, by construction,
H ∈ C1((0,∞); (0,∞)). The initial upper estimate (5.31) motivates
the definition of the next upper comparison equation:

y′ϵ(t) := H
′
(t) + (1 + ϵ)

∫
[0,t]

µ(ds)ϕ(yϵ(t− s)) ds, t ≥ 0,

yϵ(0) = x(0) + x∗ + (λ+ ϵ)(1 + ϵ∗).

Integration using Fubini’s theorem quickly shows that

yϵ(t) = x(0) + x∗ + (λ+ ϵ)(1 + ϵ∗)

+H(t) + (1 + ϵ)

∫ t

0

M(t− s)ϕ(yϵ(s)) ds, t ≥ 0.
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Since yϵ(t) is non-decreasing, it is immediately clear that x(t) ≤ yϵ(t)
for all t ∈ [0, T ′

2]. A simple time of the first breakdown argument using
the estimate (5.31) then yields that x(t) ≤ yϵ(t) for all t ≥ 0.

We now compute an explicit upper bound on lim supt→∞ yϵ(t)/F
−1

(tM(t)). Monotonicity readily yields

yϵ(t) ≤ x(0) + x∗ + (λ+ ϵ)(1 + ϵ∗)Φ−1(tM1(t))

+ (1 + ϵ)M1(t)T
′
2 F

∗ + (1 + ϵ)M(t) t ϕ(yϵ(t)), t ≥ 0.

Hence, with C(t) suitably defined,

yϵ(t)

tM(t)ϕ(yϵ(t))
≤ C(t)+

(λ+ ϵ)(1 + ϵ∗)Φ−1(tM1(t))

tM(t)ϕ(yϵ(t))
+(1+ ϵ), t ≥ 0.

A short calculation reveals that limt→∞ C(t) = 0. By Karamata’s
theorem, a T3(ϵ) exists such that

Φ(yϵ(t))

tM(t)
<

(1 + ϵ)C(t)

1− β
+

(1 + ϵ)(λ+ ϵ)(1 + ϵ∗)Φ−1(tM1(t))

(1− β) tM(t)ϕ(yϵ(t))
(5.32)

+
(1 + ϵ)2

1− β
, t ≥ T4 := T3 + T ′

2.

By applying Lemma 5.6 to yϵ, we conclude that

lim inf
t→∞

yϵ(t)

Φ−1(tM(t))
=: L ∈ (0,∞].

If L ∈ (0,∞), then there exists a T5(ϵ) such that, for all t ≥ T6 :=
T5 + T4,

Φ(yϵ(t))

tM(t)
<

(1 + ϵ)C(t)

1− β
+

(1 + ϵ)(λ+ ϵ)(1 + ϵ∗)Φ−1(tM(t))

(1− β) tM(t)ϕ((1− ϵ)LΦ−1(tM(t)))

(5.33)

+
(1 + ϵ)2

1− β

<
(1 + ϵ)C(t)

1− β
+

(1 + ϵ)(λ+ ϵ)(1 + ϵ∗)Φ−1(tM(t))

(1− β) tM(t) (1− ϵ)β Lβ ϕ(Φ−1(tM(t)))

+
(1 + ϵ)2

1− β
.
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By Karamata’s theorem, the following asymptotic equivalence holds

(1− β) tM(t)ϕ
(
Φ−1(tM(t))

)
∼ Φ−1(tM(t)) as t→ ∞.

Therefore taking the limit superior across (5.33) yields

lim sup
t→∞

Φ(yϵ(t))

tM(t)
≤ (1 + ϵ)(λ+ ϵ)(1 + ϵ∗)

(1− ϵ)β Lβ
+

(1 + ϵ)2

1− β
.

By letting ϵ→ 0+ and using the regular variation of Φ−1,

lim sup
t→∞

x(t)

Φ1(tM(t))
≤

(
λ

Lβ
+

1

1− β

)1/(1−β)

=: U.

If L := lim inft→∞ yϵ(t)/Φ
−1(tM(t)) = ∞, the above construction will

yield
lim sup
t→∞

yϵ(t)/Φ
−1(tM(t)) <∞,

a contradiction. Hence, L ∈ (0,∞), and the claim is proven. �

Lemma 5.8. Suppose that β ∈ [0, 1), λ ∈ [0,∞), and consider the
iterative scheme defined by

xn+1 = g(xn) :=
xβn

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ, n ≥ 1; x0 ∈ [L,C∗],

(5.34)

with L defined by (5.28), U defined by (5.30) and

C∗ := max

(
U, L+

λ

1− β

)
.(5.35)

Then, there exists a unique x∞ ∈ [L,C∗] such that limn→∞ xn = x∞.

Proof. By inspection, g ∈ C([L,∞); (0,∞)). We calculate

g′(x) =
β

1− β
xβ−1B

(
1 + θ,

1 + θβ

1− β

)
> 0, x > 0,

and similarly,

g′′(x) = −βxβ−2B

(
1 + θ,

1 + θβ

1− β

)
< 0, x > 0.
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Therefore, g′(L) = β > g′(x) > 0 for all x > L and |g′(x)| ≤ β < 1
for all x ∈ [L,∞). Since g is monotone increasing, it is sufficient check
that g maps [L, C∗] to [L, C∗] as follows. Firstly,

g(L) =
Lβ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ = L+ λ ∈ [L, C∗].(5.36)

By the mean value theorem, a ξ ∈ [L,C∗] exists such that

g(C∗)− g(L)

C∗ − L
= g′(ξ) ≤ β.

Therefore, g(C∗) ≤ β(C∗ − L) + g(L), and thus, a sufficient condition
for g(C∗) ≤ C∗ is β(C∗−L)+g(L) ≤ C∗ or C∗ ≥ (g(L)−Lβ)/(1−β) =
L + λ/(1 − β), using (5.36). Thus, with C∗ as defined in (5.35),
g : [L,C∗] → [L,C∗]. Hence, (5.34) has a unique fixed point in [L, C∗]
and the claim follows. �

With the preceding auxiliary results proven, we are now in a position
to supply the proof of Theorem refthm.pert, as stated.

Proof of Theorem 3.1. Suppose that (ii) holds, or that

lim
t→∞

H(t)

F−1(tM(t))
= λ ∈ [0,∞).

The idea here is to combine the crude bounds on the solution from
Lemmas 5.6 and 5.7 with a fixed point argument based on Lemma 5.8 to
complete the proof that (ii) implies (i). We compute lim supt→∞ x(t)/
F−1(tM(t)) in detail only as the calculation of the corresponding
inferior limit proceeds in an analogous manner. In order to begin,
make the following induction hypothesis:

(Hn)

lim sup
t→∞

x(t)

Φ−1(Mt)
≤ ζn,

ζn+1 :=
ζβn

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ, n ≥ 0,

and choose ζ0 := U . (H0) is true by Lemma 5.7. Suppose that (Hn)
holds. Thus, a T (ϵ) > 0 exists such that x(t) < (ζn + ϵ)Φ−1(tM(t))
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for all t ≥ T . Hence,

ϕ(x(t))

ϕ(Φ−1(tM(t)))
<
ϕ((ζn + ϵ)Φ−1(Mt))

ϕ(Φ−1(tM(t)))
, t ≥ T.

The regular variation of ϕ thus yields

lim sup
t→∞

ϕ(x(t))/ϕ(Φ−1(tM(t))) ≤ (ζn + ϵ)β .

Therefore, a T2(ϵ) > 0 exists such that t ≥ T2 implies

f(x(t)) < (1 + ϵ)[(ζn + ϵ)β + ϵ]ϕ(Φ−1(tM(t))).

From (1.6),

lim sup
t→∞

x(t)

Φ−1(t,M(t))
=lim sup

t→∞

∫ t

0
M(t−s)f(x(s))ds
Φ−1(tM(t))

+ lim
t→∞

H(t)

Φ−1(tM(t))
.

Using the upper bound derived from our induction hypothesis yields

lim sup
t→∞

x(t)

F−1(tM(t))

≤ (1 + ϵ)[(ζn + ϵ)β + ϵ] lim sup
t→∞

∫ t

T2
M(t− s)ϕ(Φ−1(sM(s)))

Φ−1(tM(t))
+ λ.

Applying Karamata’s theorem and Lemma 5.2,

lim sup
t→∞

x(t)

F−1(tM(t))
≤ (1 + ϵ)[(ζn + ϵ)β + ϵ]

× lim sup
t→∞

∫ t

T2
M(t− s)ϕ(Φ−1(sM(s)))

(1− β)tM(t)ϕ(Φ−1(tM(t)))
+ λ

=
(1 + ϵ)[(ζn + ϵ)β + ϵ]

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ.

Letting ϵ→ 0+ yields

lim sup
t→∞

x(t)

F−1(tM(t))
≤ ζβ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ λ = ζn+1,

proving the induction hypothesis (Hn+1). Hence, (Hn) holds for all n,
or

lim sup
t→∞

x(t)

F−1(tM(t))
≤ ζn for all n ≥ 0.
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By Lemma 5.8, limn→∞ ζn = ζ, where ζ is the unique solution in [L,U ]
of the “characteristic” equation (3.1). Thus,

lim sup
t→∞

x(t)

F−1(Mt)
≤ ζ.

In the case of the corresponding inferior limit, the only modification
is to the induction hypothesis: take ζ0 := L, and the argument then
proceeds as above to yield lim inft→∞ x(t)/F−1(Mt) ≥ ζ, completing
the proof.

Now suppose that (i) holds, or that

lim
t→∞

x(t)/F−1(tM(t)) = ζ ∈ [L,∞).

It follows that there exists a T3(ϵ) > 0 such that, for all t ≥ T3,

ϕ((ζ − ϵ)Φ−1(tM(t))) < ϕ(x(t)) < ϕ((ζ + ϵ)Φ−1(tM(t))).

Hence, for t ≥ T3,∫ t

T3

M(t− s)ϕ((ζ − ϵ)Φ−1(sM(s))) ds

≤
∫ t

T3

M(t− s)ϕ(x(s)) ds

≤
∫ t

T3

M(t− s)ϕ((ζ + ϵ)Φ−1(sM(s))) ds.

Using the regular variation of ϕ the above estimate can be reformulated
as:

(ζ − ϵ)β
∫ t

T3
M(t− s)ϕ(Φ−1(sM(s))) ds

Φ−1(tM(t))

≤
∫ t

T3
M(t− s)ϕ(x(s)) ds

Φ−1(tM(t))

≤ (ζ + ϵ)β
∫ t

T3
M(t− s)ϕ((ζ + ϵ)Φ−1(sM(s))) ds

Φ−1(tM(t))
, t ≥ T3.

Using Lemma 5.2 and letting ϵ→ 0+ thus yields

lim
t→∞

∫ t

0
M(t− s)ϕ(x(s))ds

Φ−1(tM(t))
=

ζβ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
.
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Therefore, assuming (i) and taking the limit across (1.6), we obtain

ζ =
ζβ

1− β
B

(
1 + θ,

1 + θβ

1− β

)
+ lim

t→∞

H(t)

Φ−1(tM(t))
,

as claimed. �

We now give the proof of Theorem 3.2 in which the perturbation
is large. The reader will note that this proof makes much less use
of properties of regular varying functions; in fact, we establish the
asymptotic result by observing that a key functional of the solution is
well approximated by a linear non-autonomous differential inequality.

Proof of Theorem 3.2. As always, ϵ ∈ (0, 1) is arbitrary. From (5.1),
a ϕ exists such that

lim
x→∞

f(x)/ϕ(x) = 1, lim
x→∞

xϕ′(x)/ϕ(x) = β,

see e.g., [9, Theorem 1.3.3]. Therefore, there exists an x1(ϵ) > 0 such
that f(x) < (1 + ϵ)ϕ(x) for all x ≥ x1(ϵ) and x0(ϵ) such that ϕ′(x) <
(β+ϵ)ϕ(x)/x for all x ≥ x0(ϵ). Similarly, since limt→∞ x(t) = ∞, there
exists a T1(ϵ) > 0 such that x(t) > max(x0(ϵ), x1(ϵ)) for all t ≥ T1(ϵ).
The regular variation ofM means that a non-decreasing functionM1 ∈
C1 and T2(ϵ) > 0 exist such that (1− ϵ)M1(t) < M(t) < (1 + ϵ)M1(t)
for all t ≥ T2(ϵ). Hence,

(1− ϵ)M1(t) < max
T2≤s≤t

M(s) < (1 + ϵ)M1(t), t ≥ T2.

Thus, for t ≥ T2

(1− ϵ)M1(t) < max
0≤s≤t

M(s) < max
(

max
0≤s≤T2

M(s), max
T2≤s≤t

M(s)
)

≤ max
(

max
0≤s≤T2

M(s), (1 + ϵ)M1(t)
)
.

Therefore,

1− ϵ ≤ max0≤s≤tM(s)

M1(t)
≤ max

(
max0≤s≤T2 M(s)

M1(t)
, 1 + ϵ

)
,

and since limt→∞M1(t) = ∞ we conclude that limt→∞max0≤s≤tM(s)/
M1(t) = 1. It follows that there exists a T3(ϵ) > 0 such that
max0≤s≤tM(s) < (1 + ϵ)M1(t) for all t ≥ T3(ϵ).
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Now, let T = 1 +max(T1, T2, T3). From (1.6), with t ≥ 2T ,

x(t) = x(0) +H(t) +

∫ T

0

M(t− s)f(x(s)) ds

+

∫ t

T

M(t− s)f(x(s)) ds

< x(0) +H(t) +

∫ T

0

M(t− s)f(x(s)) ds

+ (1 + ϵ)

∫ t

T

M(t− s)ϕ(x(s)) ds

= x(0) +H(t) +

∫ T

0

M(t− s)f(x(s)) ds

+ (1 + ϵ)

∫ t−T

T

M(t− s)ϕ(x(s)) ds

+ (1 + ϵ)

∫ t

t−T

M(t− s)ϕ(x(s)) ds.

If s ∈ [T, t− T ], then t− s ≥ T > T1, and, for t ≥ 2T ,

x(t) < x(0) +H(t) +

∫ T

0

M(t− s)f(x(s)) ds

+ (1 + ϵ)2M1(t)

∫ t−T

T

ϕ(x(s)) ds

+ (1 + ϵ) max
0≤s≤T

M(s)

∫ t

t−T

ϕ(x(s)) ds

Now, as T > T3(ϵ), max0≤s≤T M(s) < (1 + ϵ)M1(T ) < (1 + ϵ)M1(t).
Hence,

x(t) < x(0) +H(t) +

∫ T

0

M(t− s)f(x(s)) ds

+ (1 + ϵ)2M1(t)

∫ t

T

ϕ(x(s)) ds, t ≥ 2T.

For t ≥ 2T > T ,

max
0≤s≤T

M(t− s) = max
t−T≤u≤t

M(u) ≤ max
0≤u≤t

M(u) < (1 + ϵ)M1(t).
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Thus, for t ≥ 2T ,

x(t) < x(0) +H(t) + (1 + ϵ)M1(t)

∫ T

0

f(x(s)) ds(5.37)

+ (1 + ϵ)2M1(t)

∫ t

T

ϕ(x(s)) ds.

For t ∈ [T, 2T ], x(t) ≤ maxs∈[0,2T ] x(s) := x∗1(ϵ). Combining this with
(5.37),

x(t) < x∗1(ϵ) +H(t) + (1 + ϵ)M1(t)x
∗
2(ϵ) + (1 + ϵ)2M1(t)

∫ t

T

ϕ(x(s)) ds,

(5.38)

t ≥ 2T,

where x∗2(ϵ) :=
∫ T

0
f(x(s)) ds. Define, for t ≥ 2T ,

Hϵ(t) := x∗1(ϵ) +H(t) + (1 + ϵ)M1(t)x
∗
2(ϵ).(5.39)

Note that, by construction, limt→∞Hϵ(t)/H(t) = 1. Consolidating
(5.38) and (5.39), we have

(5.40) x(t) < Hϵ(t) + (1 + ϵ)2M1(t)

∫ t

T

ϕ(x(s)) ds, t ≥ 2T.

By defining

Iϵ(t) :=

∫ t

T

ϕ(x(s)) ds, t ≥ 2T,

we can formulate an advantageous auxiliary differential inequality as
follows. Since x is continuous and ϕ ∈ C1(0,∞), I ′ϵ(t) = ϕ(x(t)),
t ≥ 2T . Moreover, limt→∞ Iϵ(t) = ∞. By (5.40),

(5.41) I ′ϵ(t) = ϕ(x(t)) < ϕ(Hϵ(t) + (1 + ϵ)2M1(t)Iϵ(t)), t ≥ 2T.

By the mean value theorem, for each t ≥ 2T , there exists a ξϵ(t) ∈ [0, 1]
such that

ϕ(Hϵ(t) + (1 + ϵ)2M1(t)Iϵ(t))

= ϕ(Hϵ) + ϕ′(Hϵ(t) + ξϵ(t)(1 + ϵ)2M1(t)Iϵ(t))(1 + ϵ)2M1(t)Iϵ(t).
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Let aϵ(t) := Hϵ(t) + ξϵ(t)(1 + ϵ)2M1(t)Iϵ(t), t ≥ 2T . For t ≥ 2T ,

aϵ(t) ≥ Hϵ(t) > x∗1(ϵ) := max
s∈[0,2T ]

x(s) > x0(ϵ).

Therefore, with ψ ∈ RV∞(β − 1), a decreasing function asymptotic to
ϕ(x)/x,

ϕ′(aϵ(t)) < (β + ϵ)
ϕ(aϵ(t))

aϵ(t
< (β + ϵ)(1 + ϵ)ψ(aϵ(t))

< (β + ϵ)(1 + ϵ)ψ(Hϵ(t)), t ≥ 2T.

However, since ψ(x) ∼ ϕ(x)/x, we also have ψ(Hϵ(t))/(1 + ϵ) <
ϕ(Hϵ(t))/Hϵ(t), and hence,

ϕ′(aϵ(t)) < (β + ϵ)(1 + ϵ)2
ϕ(Hϵ(t))

Hϵ(t)
, t ≥ 2T.

Combining this estimate with (5.41) yields

I ′ϵ(t) < ϕ(Hϵ(t)) + (β + ϵ)(1 + ϵ)4
ϕ(Hϵ(t))

Hϵ(t)
M1(t)Iϵ(t), t ≥ 2T.

Letting αϵ(t) = (β + ϵ)(1 + ϵ)4M1(t)ϕ(Hϵ(t))/Hϵ(t), this becomes

I ′ϵ(t) < ϕ(Hϵ(t)) + αϵ(t) Iϵ(t) for t ≥ 2T.

Thus, the variation of constants formula yields

Iϵ(t) ≤ e
∫ t
T
αϵ(s)ds

∫ t

T

e−
∫ s
T
αϵ(u)duϕ(Hϵ(s)) ds, t ≥ 2T.

We reformulate this as
(5.42)

Iϵ(t)∫ t

T
ϕ(Hϵ(s)) ds

≤
∫ t

T
e−

∫ s
T
αϵ(u)duϕ(Hϵ(s)) ds

e−
∫ t
T
αϵ(s)ds

∫ t

T
ϕ(Hϵ(s)) ds

=:
Cϵ(t)

Bϵ(t)
, t ≥ 2T.

Since C ′
ϵ(t) = ϕ(Hϵ(t))e

−
∫ t
T
αϵ(u)du > 0, we have

lim
t→∞

Cϵ(t) = C∗(ϵ) ∈ (0,∞) or lim
t→∞

Cϵ(t) = ∞.

Also, for t ≥ 2T ,
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B′
ϵ(t) = ϕ(Hϵ(t))e

−
∫ t
T
αϵ(u)du

− αϵ(t)e
−

∫ t
T
αϵ(u)du

∫ t

T

ϕ(Hϵ(s)) ds

= C ′
ϵ(t)−

αϵ(t)C
′
ϵ(t)

∫ t

T
ϕ(Hϵ(s)) ds

ϕ(Hϵ(t))

= C ′
ϵ(t)

{
1−

αϵ(t)
∫ t

T
ϕ(Hϵ(s))ds

ϕ(Hϵ(t))

}
.

Therefore, recalling the definition of αϵ(t), and rearranging,

B′
ϵ(t)

C ′
ϵ(t)

= 1− (β + ϵ)(1 + ϵ)4
(
M1(t)

∫ t

T
ϕ(Hϵ(s))ds

Hϵ(t)

)
, t ≥ 2T.

Letting t → ∞ and using the hypothesis (3.2) and that Hϵ(t) ∼ H(t)
and M1(t) ∼M(t) as t→ ∞, yields

lim
t→∞

B′
ϵ(t)/C

′
ϵ(t) = 1 or lim

t→∞
C ′

ϵ(t)/B
′
ϵ(t) = 1.

Hence, a T4 exists such that B′
ϵ(t) > 0, t ≥ T4, and either

lim
t→∞

Bϵ(t) = B∗(ϵ) ∈ (0,∞) or lim
t→∞

Bϵ(t) = ∞.

Furthermore, asymptotic integration shows that limt→∞ Cϵ(t) = ∞
implies

lim
t→∞

Bϵ(t) = ∞

and limt→∞ Cϵ(t) = C∗(ϵ) implies

lim
t→∞

Bϵ(t) = B∗(ϵ).

Hence,

Λ(ϵ) := lim
t→∞

Cϵ(t)

Bϵ(t)
=

{
1 limt→∞ Cϵ(t) = ∞,

C ∗ (ϵ)/B∗(ϵ) limt→∞ Cϵ(t) = C∗,

where the first limit is calculated using L’Hôpital’s rule. Taking the
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limit superior across equation (5.42) then yields

lim sup
t→∞

∫ t

T
ϕ(x(s))ds∫ t

T
ϕ(Hϵ(s))ds

= lim sup
t→∞

Iϵ(t)∫ t

T
ϕ(Hϵ(s))ds

≤ Λ(ϵ) ∈ (0,∞).

(5.43)

Since Hϵ(t) ∼ H(t) as t → ∞ and ϕ is increasing, we can apply
L’Hôpital’s rule once more to compute

lim
t→∞

∫ t

T
ϕ(Hϵ(s)) ds∫ t

0
ϕ(Hϵ(s)) ds

= lim
t→∞

ϕ(Hϵ(t))

ϕ(H(t))
= 1β = 1,

using that ϕ ∈ RV∞(β). A similar argument relying on the divergence
of ϕ(x(t)) and L’Hôpital’s rule yields∫ t

T

ϕ(x(s)) ds ∼
∫ t

0

ϕ(x(s)) ds as t→ ∞.

Therefore, (5.43) is equivalent to

lim sup
t→∞

∫ t

0
ϕ(x(s))ds∫ t

0
ϕ(H(s))ds

≤ Λ(ϵ) ∈ (0,∞).(5.44)

Hence, there exists a Λ∗ ∈ (0,∞) such that

lim sup
t→∞

∫ t

0

ϕ(x(s)) ds/

∫ t

0

ϕ(H(s)) ds ≤ Λ∗,

with Λ∗ independent of ϵ. Thus, a T6(ϵ) exists such that∫ t

0

ϕ(x(s)) ds < (Λ∗ + ϵ)

∫ t

0

ϕ(H(s)) ds

for all t ≥ T6(ϵ). Letting T = 1 + max(2T, T6) we apply this estimate
to (5.40) as:

x(t)

H(t)
<
Hϵ(t)

H(t)
+

(1 + ϵ)2M1(t)
∫ t

T
ϕ(x(s)) ds

H(t)

<
Hϵ(t)

H(t)
+

(1 + ϵ)2M1(t)(Λ
∗ + ϵ)

∫ t

0
ϕ(H(s)) ds

H(t)
, t ≥ T̃ .

Now, since Hϵ(t) ∼ H(t) as t → ∞ and M1 ∼ M , applying (3.2) to
the above estimate yields lim supt→∞ x(t)/H(t) ≤ 1. By positivity,
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(1.6) admits the trivial bound x(t) > H(t) for all t ≥ 0, and hence,
lim inft→∞ x(t)/H(t) ≥ 1, completing the proof. �

Proof of Corollary 3.3. By hypothesis, f ◦H ∈ RV∞(αβ) and M ∈
RV∞(θ). Hence,

∫ t

0
f(H(s)) ds ∈ RV∞(1 + αβ) and Karamata’s theo-

rem yields∫ t

0

f(H(s)) ds ∼ t f(H(t))/(1 + αβ), as t→ ∞.

Thus,

(5.45)
M(t)

∫ t

0
f(H(s)) ds

H(t)
∼ M(t) t f(H(t))

(1 + αβ)H(t)
, as t→ ∞.

Lemma 5.2 yields
(5.46)∫ t

0

M(t− s)f(H(s)) ds ∼ B(1+αβ, 1+ θ) tM(t) f(H(t)), as t→ ∞.

Therefore, (5.45) and (5.46) together yield∫ t

0
M(t−s)f(H(s)) ds

H(t)
∼ (1+αβ)B(1+αβ, 1+θ)

M(t)
∫ t

0
f(H(s)) ds

H(t)
,

as t→ ∞.

Hence, (i) and (iii) are equivalent. By Karamata’s theorem,

F (H(t)) ∼ H(t)

(1− β)f(H(t))

or

f(H(t))/H(t) ∼ 1

(1− β)F (H(t))
,

as t→ ∞. Hence, (5.45) may be restated as

M(t)
∫ t

0
f(H(s)) ds

H(t)
∼ M(t) t

(1 + αβ)(1− β)F (H(t))
, as t→ ∞.

Thus, if (i) holds, then

lim
t→∞

M(t)t/F (H(t)) = 0.
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This implies that

lim
t→∞

F (H(t))

M(t)t
= ∞,

and hence that (iii) holds, by the regular variation of F−1. The reverse
implications are all also true, and (i) and (ii) are equivalent. �
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