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ABSTRACT. We present a regularization strategy that
leads to well-conditioned boundary integral equation formu-
lations of Helmholtz equations with impedance boundary
conditions in two-dimensional Lipschitz domains. We con-
sider both the case of classical impedance boundary con-
ditions, as well as that of transmission impedance condi-
tions wherein the impedances are certain coercive operators.
The latter type of problem is instrumental in the speed
up of the convergence of Domain Decomposition Methods
for Helmholtz problems. Our regularized formulations use
as unknowns the Dirichlet traces of the solution on the
boundary of the domain. Taking advantage of the increased
regularity of the unknowns in our formulations, we show
through a variety of numerical results that a graded-mesh
based Nyström discretization of these regularized formula-
tions leads to efficient and accurate solutions of interior and
exterior Helmholtz problems with impedance boundary con-
ditions.

1. Introduction. The computation of accurate solutions of Helm-
holtz problems with impedance boundary conditions is relevant to a
wide variety of applications, including antennas and stealth technol-
ogy. Another important area where numerical solutions of impedance
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boundary value problems are extremely relevant is that of Domain De-
composition Methods (DDM) for the solution of Helmholtz equations.
Indeed, in the aforementioned context, DDM rely on impedance match-
ing boundary conditions between subdomain solutions [15]. In order to
accelerate the convergence of DDM for Helmholtz equations, impedance
(Robin) transmission conditions can be used to great effect [7, 29]
on the interfaces between subdomains. In these cases, the impedance
(which is typically a piecewise constant function) on the interface be-
tween two subdomains is replaced by certain coercive operators that
are approximations to Dirichlet to Neumann operators corresponding
to those subdomains [7].

Whenever applicable, boundary integral solvers for the solution
of Helmholtz impedance boundary value problems are computation-
ally advantageous [5, 11, 27]. Although both interior and exterior
Helmholtz impedance boundary value problems remain well-posed for
all real values of the frequency, robust boundary integral formulations
of these problems still must rely on the Combined Field approach [13].
The classical Combined Field formulations feature the Helmholtz hy-
persingular boundary integral operator, and as such, are not integral
equations of the second kind.

We present in this paper regularized combined field integral equa-
tions of the second kind for Helmholtz impedance boundary value prob-
lems in two-dimensional Lipschitz domains. These are direct formula-
tions obtained from applications of Dirichlet and Neumann traces to
Green’s identities, and then combining the former and the latter precon-
ditioned on the left by a single layer operator with complex wavenum-
ber. The regularization strategy bears similarities with the Calderón
preconditioning introduced in [12, 23] as well as with the OSRC pre-
conditioning introduced in [3, 4]. This procedure was previously ap-
plied successfully to Neumann boundary conditions [2, 9, 10]. We
show in this paper that the aforementioned approach may also be ap-
plied to the more challenging cases of piecewise constant impedance, as
well as the transmission impedance operators of importance to DDM.
The unknowns in our regularized formulations are Dirichlet traces of
solutions on the boundary, which enjoy optimal regularity proper-
ties amongst solutions of possible boundary integral formulations of
Helmholtz impedance problems in Lipschitz domains.
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We take advantage of the increased regularity of the solutions of
our regularized formulations (the solutions are Hölder continuous) to
construct high-order Nyström discretizations based on graded meshes,
trigonometric interpolation, singular kernel-splitting and analytic eval-
uations of integrals that involve products of certain singular functions
and Fourier harmonics [22, 24]. Our Nyström method incorporates sig-
moid transforms [19] within parametrizations of domains with corners,
and it uses the Jacobians of these transformations as multiplicative
weights to define new unknowns. A weighted Dirichlet trace defined as
the product of the derivatives of the sigmoid parametrizations and the
usual Dirichlet trace of solution of impedance problems is introduced
as a new unknown. Given that the derivatives of the parametrizations
that incorporate sigmoid transforms vanish polynomially at corners,
the weighted traces are more regular for large enough values of the
order of the polynomial in the sigmoid transform. Introducing new
weighted unknowns also requires a definition of new weighted boundary
integral equations that involves weighted versions of the four scatter-
ing boundary integral operators. The weighted formulations turn out
to be particularly useful in the case of piecewise constant (discontinu-
ous) impedances. We use splitting of the kernels of the four Helmholtz
boundary integral operators required in the Calderón calculus into reg-
ular components and explicit singular components that have been pre-
sented in our previous efforts [2, 16]. An appealing aspect of our reg-
ularized formulations is exploitation of Calderón’s identities to bypass
evaluations of hypersingular operators, which facilitate the kernel split-
ting techniques. We give ample numerical evidence that our Nyström
solvers for impedance boundary value problems converge with high-
order and are well-conditioned throughout the frequency spectrum.

This paper is organized as follows. In Section 2, we formulate the
Helmholtz impedance boundary value problems in which we are inter-
ested. In Section 3, we discuss several regularized boundary integral
formulations of the Helmholtz impedance boundary value problems and
we establish the well-posedness of these regularized formulations. In
Section 4, we investigate regularized boundary integral formulations
for transmission impedance boundary value problems in connection
with DDMs. Finally, in Section 5, we present high-order Nyström
discretizations of the various boundary integral equations considered
in this paper.
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2. Integral equations of Helmholtz impedance boundary
value problems. We consider the problem of evaluating time-harmonic
fields that satisfy impedance boundary conditions on the boundary Γ
of a Lipschitz scatterer D2 which occupies a bounded region in R2.
Denoting by D1 = R2 \D2, we are interested in solving

(2.1)
∆uj + k2uj = 0 in Dj , j = 1, 2

γjNu
j + ZjγjDu

j = f j on Γ, j = 1, 2,

where the wavenumber k is assumed to be positive, f j are data defined
on the curve Γ and Zj ∈ C are such that ℑZ1 > 0 and ±ℑZ2 > 0.
In equations (2.1) and what follows γjD, j = 1, 2, denote exterior and,

respectively, interior Dirichlet traces, whereas γjN , j = 1, 2, denote
exterior and, respectively, interior Neumann traces taken with respect
to the exterior unit normal on Γ. We assume in what follows that
the boundary Γ is a closed curve in R2 that is locally the graph of a
Lipschitz function.

For any D ⊂ R2 domain with bounded Lipschitz boundary Γ,
we denote by Hs(D) the classical Sobolev space of order s on D
(see, for example, [1, Chapter 2] or [25, Chapter 3]). We consider
in addition the Sobolev spaces defined on the boundary Γ, Hs(Γ),
which are well defined for any s ∈ [−1, 1]. We recall that, for any
s > t, Hs(Σ) ⊂ Ht(Σ), Σ ∈ {D1, D2,Γ} and the embeddings are
compact. Moreover, (Ht(Γ))′ = H−t(Γ) when the inner product of
H0(Γ) = L2(Γ) is used as duality product. If Γ0 ⊂ Γ such that
meas (Γ0) > 0 (we mean here the one dimensional measure), we can
still define Sobolev spaces of functions/distributions on Γ0. Indeed, for
0 < s ≤ 1/2, we define by Hs(Γ0) be the space of distributions that are

restrictions to Γ0 of functions in Hs(Γ). The space H̃s(Γ0) is defined
as the closed subspace of Hs(Γ0)

H̃s(Γ0) = {u ∈ Hs(Γ0) : ũ ∈ Hs(Γ)}, 0 < s ≤ 1/2

where

ũ :=

{
u on Γ0

0 on Γ \ Γ0.

We then define Ht(Γ0) to be the dual of H̃−t(Γ0) for −1/2 ≤ t < 0,

and H̃t(Γ0) the dual of H−t(Γ0) for −1/2 ≤ t < 0.
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It is well known [25] that γjD : Hs+1/2(Dj) → Hs(Γ) is continuous
for s ∈ (0, 1), and if

Hs
∆(Dj) :=

{
U ∈ Hs(Dj) : ∆U ∈ L2(Dj)

}
,

endowed with its natural norm, then γN : Hs
∆(Dj) → Hs−3/2(Γ) is

continuous for s ∈ (1/2, 3/2). The space H1(Γ), and its dual H−1(Γ),
are then the limit case from several different perspectives.

If we furthermore require that u1 satisfies Sommerfeld radiation
conditions at infinity:

(2.2) lim
|r|→∞

r1/2(∂u1/∂r − iku1) = 0,

then the assumptions ℑZ1 > 0 and ℑZ2 > 0 or ℑZ2 < 0 guarantee
that equations (2.1) have unique solutions u1 ∈ C2(D1) ∩ H1

loc(D1)

and u2 ∈ C2(D2) ∩ H1(D2) for data f j ∈ H−1/2(Γ) [25]. The
unique solvability results remain valid in the cases where Z1 ∈ L∞(Γ),
ℑZ1 > 0 and Z2 ∈ L∞(Γ), ℑ(Z2) > 0 or ℑ(Z2) < 0 [25].

We note that, in many applications of interest, the data f1 is related
to an incident field uinc that satisfies

(2.3) ∆uinc + k2uinc = 0 in D1,

by the relation

(2.4) f1 = −γ1Nuinc − Z1γ1Du
inc,

in which case the solution u1 of equations (2.1) is a scattered field.

3. Regularized boundary integral formulations for the solu-
tion of Helmholtz impedance boundary value problems. Next,
we present regularized direct boundary integral formulations for the so-
lution of impedance boundary value problems that are similar in spirit
to those introduced in [2, 9] in the case of Neumann boundary condi-
tions. To this end, we begin by reviewing the definition and mapping
properties of the four scattering boundary integral operators related to
the Helmholtz operator ∆ + k2.

3.1. Layer potentials and operators. We start with the definition
of the single and double layer potentials. Given a wavenumber k such
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that ℜk > 0 and ℑk ≥ 0, and a density φ defined on Γ, we define the
single layer potential as

[SLk(φ)](z) :=

∫
Γ

Gk(z− y)φ(y) ds(y), z ∈ R2 \ Γ

and the double layer potential as

[DLk(φ)](z) :=

∫
Γ

∂Gk(z− y)

∂n(y)
φ(y) ds(y), z ∈ R2 \ Γ,

where Gk(x) = (i/4)H
(1)
0 (k|x|) represents the two-dimensional outgo-

ing Green’s function of the Helmholtz equation with wavenumber k.
The Dirichlet and Neumann exterior and interior traces on Γ of the
single and double layer potentials corresponding to the wavenumber k
and a density φ are given by

(3.1)

γ1DSLk(φ) = γ2DSLk(φ) = Skφ

γjNSLk(φ) = (−1)j
φ

2
+K⊤

k φ, j = 1, 2

γjDDLk(φ) = (−1)j+1φ

2
+Kkφ, j = 1, 2

γ1NDLk(φ) = γ2NDLk(φ) = Nkφ.

In equations (3.1), the operators Kk and K⊤
k , usually referred to

as double and adjoint double layer operators, are defined for a given
wavenumber k and density φ as

(3.2) (Kkφ)(x) :=

∫
Γ

∂Gk(x− y)

∂n(y)
φ(y) ds(y), x ∈ Γ

and

(3.3) (K⊤
k φ)(x) :=

∫
Γ

∂Gk(x− y)

∂n(x)
φ(y) ds(y), x ∈ Γ.

Furthermore, for a given wavenumber k and density φ ∈ H1/2(Γ), the
operator Nk denotes the Neumann trace of the double layer potential
on Γ given in terms of a Cauchy Principal Value (PV) integral that
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involves the tangential derivative ∂s on the curve Γ

(3.4)

(Nkφ)(x) := k2
∫
Γ

Gk(x− y)(n(x) · n(y))φ(y) ds(y)

+ PV

∫
Γ

∂sGk(x− y)∂sφ(y) ds(y).

Finally, the single layer operator Sk is defined for a wavenumber k as

(3.5) (Skφ)(x) :=

∫
Γ

Gk(x− y)φ(y) ds(y), x ∈ Γ

for a density function φ defined on Γ.

Green identities can now be written in the simple form:

uj = (−1)jSLk(γ
j
Nu

j)− (−1)jDLk(γ
j
Du

j).

Similarly,

(3.6) Cj =
1
2

[
I

I

]
+ (−1)j

[
−Kk Sk

−Nk K⊤
k

]
, j = 1, 2,

are the Calderón exterior/interior projections associated to the exte-
rior/interior Helmholtz equation:

(3.7) C2
j = Cj , Cj

[
γjDu

j

γjNu
j

]
=

[
γjDu

j

γjNu
j

]
.

We recall that, from (3.6)–(3.7), we can easily deduce
(3.8)
SkNk = −1

4I +K2
k , NkSk = − 1

4I + (K⊤
k )2, NkKk = K⊤

k Nk.

Next we recount several important results related to mapping prop-
erties of the four boundary integral operators of the Calderón calcu-
lus [16].

Theorem 3.1. Let D2 be a bounded domain, with Lipschitz bound-
ary Γ. The following mappings

• Sk : Hs(Γ) → Hs+1(Γ),
• Kk : Hs+1(Γ) → Hs+1(Γ),
• K⊤

k : Hs(Γ) → Hs(Γ),
• Nk : Hs+1(Γ) → Hs(Γ),
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are continuous for s ∈ [−1, 0]. Furthermore, if k1 ̸= k2, we have that

• Sk1 − Sk2 : H−1(Γ) → H1(Γ),
• Kk1 −Kk2 : H0(Γ) → H1(Γ),
• K⊤

k1
−K⊤

k2
: H−1(Γ) → H0(Γ),

• Nk1 −Nk2 : H0(Γ) → H0(Γ)

are continuous and compact.

We also recount a result due to Escauriaza, Fabes and Verchota [17].
In this result, K0 and K⊤

0 are the double and adjoint double layer
operators for the Laplace equation (which obviously correspond to
k = 0).

Theorem 3.2. For any Lipschitz curve Γ and λ /∈ [−1/2, 1/2), the
mappings

λI +K0 : Hs(Γ) −→ Hs(Γ)

are invertible for s ∈ [−1, 1]. Furthermore, the mappings

1
2I ±K0 : Hs(Γ) −→ Hs(Γ)

are Fredholm of index 0 for s ∈ [−1, 1].

3.2. Regularized boundary integral equation formulations of
Helmholtz impedance boundary value problems. We begin with
the case of exterior scattering problems with impedance boundary
conditions given by (2.4), and we derive direct regularized boundary
integral equation formulations of these problems. Assuming smooth
incident fields uinc in R2, an application of the second Green identities
for the functions uinc and Gk(x − ·), x ∈ D1 in the domain D2, leads
to

0 = −SLk(γ
1
Nu

inc) +DLk(γ
1
Du

inc) in D1,

and hence,

u1 = −SLk[γ
1
N (u1 + uinc)] +DLk[γ

1
D(u1 + uinc)] in D1.

We define the physical unknown that is the Dirichlet trace of the total
field on Γ

(3.9) γ1Du := γ1D(u1 + uinc)
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and take into account the impedance boundary conditions to get the
representation formula

(3.10) u1 = SLk(Z
1γ1Du) +DLk(γ

1
Du).

Applying the exterior Dirichlet and Neumann traces to equation (3.10)
we obtain

γ1Du

2
−Kk(γ

1
Du)− Sk(Z

1γ1Du) = γ1Du
inc(3.11)

Z1γ1Du

2
+Nk(γ

1
Du) +K⊤

k (Z1γ1Du) = −γ1Nuinc.

Following the strategy introduced in [2], we add the first equation above
to the second equation above composed on the left with the operator
−2Sκ, ℑκ > 0, and we obtain a Regularized Combined Field Integral
Equation (CFIER) of the form

A1
k,κγ

1
Du = γ1Du

inc + 2Sκγ
1
Nu

inc(3.12)

A1
k,κ :=

1

2
I − 2SκNk − SκZ

1 − 2SκK
⊤
k Z

1 −Kk − SkZ
1.

Remark 3.3. For the time being, we view Z1 as the multiplicative
operator by the complex constant Z1. The notation in equation (3.12)
allows us to consider more general operators Z1, e.g., the impedance
Z1 is an L∞(Γ) function.

Similar considerations lead us to regularized boundary integral equa-
tion formulations of interior Helmholtz impedance boundary value
problems. Indeed, the physical unknown γ2Du

2 satisfies

A2
k,κγ

2
Du

2 = (Sk + Sκ − 2SκK
⊤
k )f2(3.13)

A2
k,κ :=

1

2
I − 2SκNk + SκZ

2 − 2SκK
⊤
k Z

2 +Kk + SkZ
2.

We will establish the well-posedness of the CFIER formulations in
appropriate Sobolev spaces. Although, for the time being, we assume
that Zj , j = 1, 2, are complex constants, the derivations we present
next remain valid for the cases when Zj , j = 1, 2, are functions defined
on Γ. We note that, in the case Zj ∈ L∞(Γ), j = 1, 2, we have

that γjDu
j ∈ H1/2(Γ) [25], and hence, ZjγjDu

j ∈ L2(Γ). Assuming

impedance boundary data f j ∈ L2(Γ), it follows that γjNu
j ∈ L2(Γ),
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which in turn imply γjDu
j ∈ H1(Γ). In light of this discussion, we will

establish the well-posedness of the CFIER equations (3.12) and (3.13),
respectively, in a wide range of Sobolev spaces.

3.3. Well-posedness of the CFIER formulations (3.12) and
(3.13). We make use of the classical results recounted in Theorem 3.1
and Theorem 3.2 to establish the next result:

Theorem 3.4. Assume that Z1 ∈ C such that ℑZ1 > 0. The operators
A1

k,κ defined in equations (3.12) are invertible with continuous inverses

in the spaces Hs(Γ) for all s ∈ [−1, 1].

Proof. We first establish that the operators A1
k,κ are Fredholm of

index 0 in H0(Γ). Using Calderón’s identities, we can recast A1
k,κ into

the following form:

A1
k,κ = (I −K0 − 2K2

0 ) +A1
0 = 2

(
1

2
I −K0

)
(I +K0) +A1

0

A1
0 = 2Sκ(Nκ −Nk)− 2(Kκ −K0)Kκ − 2K0(Kκ −K0)

− SκZ
1 − 2SκK

⊤
k Z

1 + (K0 −Kk)− SkZ
1.

It follows from the results in Theorem 3.1 that A1
0 : H0(Γ) → H1(Γ)

continuously, and thus, A1
0 : H0(Γ) → H0(Γ) is compact. Also, the

operator

2

(
1

2
I −K0

)(
I +K0

)
is Fredholm of index 0 in H0(Γ) since

(a) the operator 1
2I −K0 is Fredholm of index 0 in H0(Γ),

(b) the operator I +K0 is invertible in H0(Γ), and

(c) the two operators commute.

We thus conclude that the operator A1
k,κ is a compact perturbation

of a Fredholm operator of index 0 in the space H0(Γ), and hence, the
operator A1

k,κ is itself a Fredholm operator of index 0 in the same space.

Given the Fredholm property of the operator A1
k,κ, its invertibility

is equivalent to its injectivity. We show in turn that the transpose of
this operator with respect to the duality pairing in H0(Γ) is injective.
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The latter can be seen to equal

(A1
k,κ)

⊤ = 1
2I − 2NkSκ − Z1Sκ − 2Z1KkSκ −K⊤

k − Z1Sk.

Let φ ∈ Ker((A1
k,κ)

⊤), and let us define

v := SLkφ+DLk[2Sκ]φ, in R2 \ Γ.

We have that

γ1Dv = Sκφ+ 2KkSκφ+ Skφ

γ1Nv = −1

2
φ+K⊤

k φ+ 2NkSκφ,

and hence,
γ1Nv + Z1γ1Dv = 0,

if we take into account that φ ∈ Ker((A1
k,κ)

⊤). Now, v is a radiative
solution of Helmholtz equation in D1 satisfying the impedance bound-
ary condition γ1Nv+Z1γ1Dv = 0. Under the assumption that ℑZ1 > 0,
it follows that v is identically 0 in D1, and hence,

γ1Dv = 0, γ1Nv = 0.

The last relation immediately implies

γ2Dv = −2Sκφ, γ2Nv = φ.

Using Green’s formulas, we obtain that∫
D2

(|∇v|2 − k|v|2) dx = −2

∫
Γ

(Sκφ) φds.

Using the fact that [8],

ℑ
∫
Γ

(Sκφ) φds > 0, φ ̸= 0,

when ℑκ > 0, we obtain that φ = 0. Consequently, the operator
(A1

k,κ)
⊤ is injective, and thus, the operator A1

k,κ is injective as well,

which completes the proof of Theorem 3.4 in the space H0(Γ). Clearly,
the arguments of the proof can be repeated verbatim in the Sobolev
spaces Hs(Γ) for all s ∈ [−1, 0). The result in the remaining Sobolev
spaces Hs(Γ), s ∈ (0, 1] then follows from duality arguments. �
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Theorem 3.5. Assume that Z2 ∈ C such that ℑZ2 > 0 or ℑZ2 < 0.
The operators A2

k,κ defined in equations (3.13) are invertible with

continuous inverses in the spaces Hs(Γ) for all s ∈ [−1, 1].

Proof. The fact that the operators A2
k,κ are Fredholm of index 0

in H0(Γ) follows from the same arguments as in Theorem 3.4. The
transpose of the operator A2

k,κ is equal to

(A2
k,κ)

⊤ = 1
2I − 2NkSκ + Z2Sκ − 2Z2KkSκ +K⊤

k + Z2Sk.

Let ψ ∈ Ker((A2
k,κ)

⊤), and let us define

w := SLkψ −DLk[2Sκ]ψ, in R2 \ Γ.

We have that

γ2Dw = Sκψ − 2KkSκψ + Skψ

γ2Nw =
1

2
ψ +K⊤

k ψ − 2NkSκψ,

and hence,
γ2Nw + Z2γ2Dw = 0,

if we take into account that ψ ∈ Ker((A2
k,κ)

⊤). Now, w is a solution
of the Helmholtz equation in D2 satisfying the impedance boundary
condition γ2Nw+Z2γ2Dw = 0. Under the assumption that ℑZ2 ̸= 0, we
have that w is identically 0 in D2, and hence,

γ2Dw = 0, γ2Nw = 0.

The last relation immediately implies

γ1Dw = −2Sκψ, γ1Nw = −ψ.

Thus, w is a radiative solution of the Helmholtz equation in D1 that
satisfies

ℑ
∫
Γ

γ1Nw γ
1
Dw ds = 2ℑ

∫
Γ

(Sκψ)ψ ds ≥ 0.

which implies that w = 0 in D1 [14]. Consequently, the operator
(A2

k,κ)
⊤ is injective, and thus, the operator A2

k,κ is injective as well,

which completes the proof in the space H0(Γ). Clearly, the arguments
of the proof can be repeated verbatim in the Sobolev spaces Hs(Γ)
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for all s ∈ [−1, 0). The result in the remaining Sobolev spaces Hs(Γ),
s ∈ (0, 1] then follows from duality arguments. �

Remark 3.6. The results in Theorem 3.4 and Theorem 3.5 remain
valid in the case when Z1 ∈ H1(Γ), ℑZ1 > 0 and Z2 ∈ H1(Γ), ℑZ2 > 0
or ℑZ2 < 0. Also, in the physically important cases when Z1 ∈ L∞(Γ),
ℑZ1 > 0 and Z2 ∈ L∞(Γ), ℑZ2 > 0 or ℑZ2 < 0, e.g., Zj are bounded
but discontinuous, the CFIER equations (3.12) and (3.13), respectively,
are well posed in the spaces H0(Γ) for impedance data f j ∈ H0(Γ).

4. Transmission impedance boundary value problems. Next
we investigate regularized formulations for transmission impedance
boundary value problems that appear in Domain Decomposition Meth-
ods. Domain Decomposition Methods (DDM) are a class of algorithm
for the solution of Helmholtz equations that consist of

(1) decomposing the computational domain into smaller subdo-
mains, and

(2) interconnecting the solutions of subdomain problems by match-
ing impedance conditions on the common interfaces between subdo-
mains [7].

Fixed point considerations allow recasting the DDM algorithm in terms
of the iterative solution of a linear system whose unknown is the global
Robin (impedance) data defined on the union of all the subdomain
interfaces. The choice of impedance conditions considerably impacts
the rate of convergence of the iterative fixed point DDM algorithms.
For instance, the use of piecewise constant impedances [15] hinders
the fast convergence of DDM algorithms [7]. A remedy that leads
to significant improvements in the rate of convergence of the DDM
algorithms consists of the use of transmission impedance boundary
conditions, that is, on each interface, Zj are suitably chosen (trans-
mission) operators [7, 18, 26]. For instance, transmission/impedance
operators Z defined as Dirichlet-to-Neumann maps corresponding to
adjacent subdomains are advocated as nearly optimal choices as the
fixed point DDM iteration would converge in merely two iterations [26].
However, Dirichlet-to-Neumann operators, even when properly defined,
are expensive to compute, and thus, their choice is not computation-
ally advantageous. The common recourse is to use approximations of
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Dirichlet-to-Neumann operators that are inexpensive to compute and
lead to well-posed (transmission) impedance boundary value problems.
Furthermore, given that Dirichlet-to-Neumann operators are non-local
operators, it is easier to construct approximations of those in terms of
non-local operators, e.g., boundary integral operators. For instance, in
the case of unbounded subdomains, such a choice is given by Z1 = 2Nκ,
ℑκ > 0, whereas in the case of bounded subdomains, one could in prin-
ciple choose Z2 = −2Nκ, ℑκ > 0. We note that similar operators,
e.g., Z = iNiε, ε > 0, were used in the context of DDM methods [29].
These choices of impedance operators are suitable for boundary inte-
gral solvers for the ensuing subdomain problems; in any other contexts,
e.g., finite element solvers, localized approximations of Dirichlet-to-
Neumann operators are preferable [7].

We show in what follows that our CFIER methodology is applicable
to both exterior and interior transmission impedance boundary value
problems with the kind of impedance operators discussed above. First,
given that [8]

ℑ
∫
Γ

Nκψ ψ ds ≥ 0,

the arguments in [25] can be extended to show that equations (2.1)
in D1 with Z1 = 2Nκ, ℑκ > 0, or in D2 with Z2 = −2Nκ,
ℑκ > 0, still have unique solutions u1 ∈ C2(D1) ∩ H1

loc(D1) and
u2 ∈ C2(D2) ∩ H1(D2), respectively. We recast the exterior/interior
Helmholtz equations with transmission impedance boundary conditions
in the form of CFIER equations (3.12) and (3.13), respectively. We es-
tablish the following result:

Theorem 4.1. Assume that Z1 = 2Nκ such that ℑκ > 0. The
operators A1

k,κ defined in equations (3.12) are invertible with continuous

inverses in the spaces Hs(Γ) for all s ∈ [−1, 1].

Proof. We first establish that the operators A1
k,κ are Fredholm of

index 0 in H0(Γ). Using Calderón’s identities, we can recast A1
k,κ into

the following form:

A1
k,κ = (2I − 6K2

0 − 4K3
0 ) +A1,1

0 = 4

(
1

2
I −K0

)
(I +K0)

2
+A1,1

0

A1,1
0 = 2Sκ(Nκ −Nk)− 4(Kκ −K0)Kκ − 4K0(Kκ −K0)
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− 4(Sκ − S0)K
⊤
k Nκ − 4S0(K

⊤
k −K⊤

0 )Nκ − 4S0K
⊤
0 (Nκ −N0)

+ (K0 −Kk)− 2Sk(Nκ −Nk)− 2(Kk −K0)Kk − 2K0(Kk −K0).

It follows from the results in Theorem 3.1 that A1,1
0 : H0(Γ) → H1(Γ)

continuously, and thus, A1,1
0 : H0(Γ) → H0(Γ) is compact. Also, the

operator

4

(
1

2
I −K0

)
(I +K0)

2

is Fredholm of index 0 in H0(Γ) since

(a) the operator 1
2I −K0 is Fredholm of index 0 in H0(Γ),

(b) the operator I +K0 is invertible in H0(Γ), and

(c) the two operators commute.

We thus conclude that the operator A1
k,κ is a compact perturbation

of a Fredholm operator of index 0 in the space H0(Γ), and hence, the
operator A1

k,κ is itself a Fredholm operator of index 0 in the same space.

Given the Fredholm property of the operator A1
k,κ, its invertibility is

equivalent to its injectivity. We show in turn that the transpose of this
operator with respect to the real scalar product in H0(Γ) is injective.
The latter can be seen to equal

(A1
k,κ)

⊤ = 1
2I − 2NkSκ − 2NκSκ − 4NκKkSκ −K⊤

k − 2NκSk.

Let φ ∈ Ker((A1
k,κ)

⊤), and let

v := SLkφ+DLk[2Sκ]φ, in R2 \ Γ.

We have that

γ1Dv = Sκφ+ 2KkSκφ+ Skφ

γ1Nv = − 1
2φ+K⊤

k φ+ 2NkSκφ,

and hence
γ1Nv + 2Nκγ

1
Dv = 0,

if we take into account that φ ∈ Ker((A1
k,κ)

⊤). Now v is a radiative
solution of Helmholtz equation in D1 satisfying the impedance bound-
ary condition γ1Nv + 2Nκγ

1
Dv = 0. Under the assumption that ℑκ > 0
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we have v identically zero in D1, and hence,

γ1Dv = 0, γ1Nv = 0.

The last relation immediately implies

γ2Dv = −2Sκφ, γ2Nv = φ,

by the same arguments as in the proof of Theorem 3.4, from which we
obtain that the operator (A1

k,κ)
⊤ is injective. Thus, the operator A1

k,κ

is injective as well, which completes the proof in the space H0(Γ). The
proof for the remaining spaces Hs(Γ) follows from the same arguments
used in that of Theorem 3.4. �

The arguments in the proofs of Theorems 3.5 and 4.1 imply the
following result.

Theorem 4.2. Assume that Z2 = −2Nκ such that ℑκ > 0. The
operators A2

k,κ defined in equations (3.13) are invertible with continuous

inverses in the spaces Hs(Γ) for all s ∈ [−1, 1].

Proof. Since

A2
k,κ = (2I − 6K2

0 + 4K3
0 ) +A2

0 = 4

(
1

2
I +K0

)
(I −K0)

2
+A2

0

A2
0 := 2Sκ(Nκ −Nk)− 4(Kκ −K0)Kκ − 4K0(Kκ −K0)

+ 4(Sκ−S0)K
⊤
k Nκ+4S0(K

⊤
k −K⊤

0 )Nκ+4S0K
⊤
0 (Nκ −N0)

+ (Kk−K0)−2Sk(Nκ−Nk)−2(Kk−K0)Kk−2K0(Kk−K0),

similar arguments to those used in Theorem 4.1 deliver the Fredholm
property of the operators A2

k,κ in the space L2(Γ). The injectivity of

the operators A2
k,κ, in turn, can be established exactly as in the proof

of Theorem 3.5. �

Remark 4.3. Transmission interior impedance boundary value prob-
lems with impedance operators of the form Z2 = 2Nκ with ℑκ > 0 can
also be shown to be well posed. However, the proof of Theorem 4.2 does
not go through in this case. The reason is that the terms which contain
the identity are no longer featured in the operators A2

k,κ and thus, the
Fredholm argument does not follow from the same considerations.
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In the case where the wavenumbers differ in adjacent subdomains,
see Figure 1, the DDM matching procedure of transmission impedance
boundary conditions in principle calls for approximations of subdomain
Dirichlet-to-Neumann operators corresponding to different wavenum-
bers on each interface. For example, this requirement would lead to
a Helmholtz equation in the domain D1 with transmission impedance
boundary conditions whose operators Z2 should approximate on the
interface between D1 and Dj , the restriction to that interface of the
Dirichlet-to-Neumann operators for the domains Dj and wavenumbers
kj for j = 2, . . . , 5. The most natural idea would be to use operators
Z2 that are restrictions of the operators −2Nkj+iεj , j = 2, . . . , 5 to
corresponding subdomain interfaces. This procedure would amount to
using local interface impedance operators of the form

Z2
1j = −2R1jNkj+iεjE1j : H̃

1/2(Γ1j) −→ H−1/2(Γ1j),

j = 2, . . . , 5,

where E1j : H̃1/2(Γ1j) → H1/2(Γ1) is the extension-by-zero operator,

and R1j : H−1/2(Γ1) → H−1/2(Γ1j) is the restriction operator defined
by duality

⟨R1jφ,ψ⟩ = ⟨φ,E1jψ⟩, φ ∈ H−1/2(Γ1), ψ ∈ H̃1/2(Γ1j).

In the formulae above, we denoted Γ1 := ∂D1, and Γ1j := ∂D1 ∩ ∂Dj

for j = 2, . . . , 5. It may clearly be seen from the mapping properties
of the operators Z2

1j , j = 2, . . . , 5 that a simple summation of these
would not lead to a global impedance operator defined on Γ1 that
maps H1/2(Γ1) to H−1/2(Γ1). This shortcoming can be overcome by
resorting to impedance operators which blend local impedance opera-
tors corresponding to interfaces Γ1j , j = 2, . . . , 5, through partitions of
unity:

(4.1) Z2
b = −2

5∑
j=2

χjNkj+iεjχj , εj ≥ 0,

where χj , j = 2, . . . , 5, are cut-off functions such that

5∑
j=2

χ2
j = 1 on ∂D1,
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D4,k4

D7, k7
D2, k2

D3, k3

D8, k8

D6, k6

D9, k9

D5, k5 D1, k

Figure 1. Typical DDM configuration.

χj ∈ C∞
0 (∂D1), j = 2, . . . , 5, and

{x : χj(x) = 1} ⊂ ∂D1 ∩ ∂Dj for j = 2, . . . , 5.

We note that

ℑ
∫
Γ1

Z2
bψ ψ ds = −2

5∑
j=2

ℑ
∫
Γ1

χjNkj+iεjχjψ ψ ds

= −2
5∑

j=2

ℑ
∫
Γ1

Nkj+iεjψj ψj ds < 0, ψ ̸= 0,

where ψj := χj ψ. These types of operators which use partition of unity
blending were originally used [23] to construct coercive approximations
of Dirichlet-to-Neumann operators. It can be shown, using ideas
from [6, 23], that Z2

b + 2Nκ is a compact operator from H1/2(Γ1) to

H−1/2(Γ1) (and by interpolation fromH1(Γ1) to L
2(Γ1)), and thus, the

results in Theorem 4.2 can be extended to this new choice of impedance
operator.

5. High-order Nyström methods for the discretization of the
CFIER formulations. In this section, we present Nyström discretiza-
tions of the formulations CFIER (3.12) and (3.13) assuming various
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choices of the impedance Zj . The key components of these discretiza-
tions are

(a) the use of sigmoidal-graded meshes that accumulate points
polynomially at corners,

(b) the splitting of the kernels of the weighted parametrized opera-
tors into smooth and singular components,

(c) trigonometric interpolation of the densities of the boundary
integral operators, and

(d) analytical expressions for the integrals of products of periodic
singular and weakly singular kernels and Fourier harmonics. In cases
where the impedance Zj are merely bounded and possibly discontin-
uous, we reformulate the aforementioned CFIER integral equations in
terms of more regular solutions and weighted versions of the boundary
integral operators in Calderón’s calculus.

5.1. Parametrized versions of Helmholtz boundary integral
operators and their Nyström discretizations. We assume that
the closed curve Γ has corners at x1,x2, . . . ,xP whose apertures
measured inside D2 are, respectively, γ1, γ2, . . . , γP , and that Γ \
{x1,x2, . . . ,xP } is piecewise analytic. Let (x1(t), x2(t)) be a 2π peri-
odic parametrization of Γ so that each of the (possibly curved) segments
[xj ,xj+1] is mapped by (x1(t), x2(t)) with t ∈ [Tj , Tj+1]. We assume
that x1(t), x2(t) are continuous and that, on each interval [Tj , Tj+1],
are smooth with (x′1(t))

2 + (x′2(t))
2 > 0 (the one-sided derivatives are

taken for t = Tj , Tj+1). Consider the sigmoid transform introduced by
Kress [19]

w(s) =
Tj+1[v(s)]

p + Tj [1− v(s)]p

[v(s)]p + [1− v(s)]p
, Tj ≤ s ≤ Tj+1, 1 ≤ j ≤ P

(5.1)

v(s) =

(
1

p
− 1

2

)(
Tj + Tj+1 − 2s

Tj+1 − Tj

)3

+
1

p

2s− Tj − Tj+1

Tj+1 − Tj
+

1

2
,

where p ≥ 2. The function w is a smooth, increasing, bijection on each
of the intervals [Tj , Tj+1] for 1 ≤ j ≤ P , with w(k)(Tj) = w(k)(Tj+1) =
0 for 1 ≤ k ≤ p− 1. We then define the new parametrization
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x(t) = (x1(w(t)), x2(w(t)))

extended by 2π−periodicity, if needed, to any t ∈ R.
A central issue in Nyström discretizations of CFIER equations is the

regularity of the solutions γ1Du and γ2Du. In the case where Zj ∈ L∞(Γ)
and the impedance data fj ∈ L2(Γ), we have already seen that

γjDu ∈ H1(Γ) for j = 1, 2. Similarly, in the transmission impedance

case, we still have that γjDu ∈ H1(Γ), provided that fj ∈ L2(Γ). In all

of these cases Sobolev embedding results imply that γjDu ∈ C0,β(Γ) for
0 < β < 1. In the case of piecewise constant impedance Zj , it is more
profitable to define weighted Dirichlet traces of solutions of Helmholtz
equations

γj,wD u := |x′|γjDu.

It can be seen that γj,wD u are more regular than γjDu, and their
regularity is controlled by degree p of the sigmoid transform. In
addition, the weighted quantities γj,wD u vanish at the corners.

In what follows, we present parametrized versions of the four bound-
ary integral operators in the Calderón calculus. These operators act
upon two types of 2π periodic densities:

(1) densities φ ∈ Cα[0, 2π] where α is large enough which in addition
behave as |t− Tj |r, r > 0 for all 1 ≤ j ≤ P + 1; and

(2) densities ψ ∈ C0,β [0, 2π], 0 < β < 1, which are Hölder continuous
and periodic. We begin by defining two versions of parametrized single
layer operators in the form:

(Sx,w
k φ)(t) :=

∫ 2π

0

Gk(x(t)− x(τ))φ(τ) dτ(5.2)

and

(Sx
kψ)(t) :=

∫ 2π

0

Gk(x(t)− x(τ))|x′(τ)|ψ(τ) dτ.(5.3)

Next, we define two versions of parametrized double layer operators

(Kx
kψ)(t) :=

∫ 2π

0

∂Gk(x(t)− x(τ))

∂n(x(τ))
|x′(τ)|ψ(τ) dτ(5.4)



THE SOLUTION OF HELMHOLTZ PROBLEMS 461

and

(Kx,w
k φ)(t) :=

∫ 2π

0

∂Gk(x(t)− x(τ))

∂n(x(τ))
|x′(t)|φ(τ) dτ(5.5)

and two versions of parametrized adjoint double layer operators defined
as

(Kx,⊤,w
k φ)(t) :=

∫ 2π

0

|x′(t)|∂Gk(x(t)− x(τ))

∂n(x(t))
φ(τ) dτ(5.6)

and

(Kx,⊤
k ψ)(t) :=

∫ 2π

0

|x′(t)|∂Gk(x(t)− x(τ))

∂n(x(t))
|x′(τ)|ψ(τ) dτ.(5.7)

Finally, we define two versions of parametrized weighted hypersingular
operators as

(Nx
k ψ)(t) := k2

∫ 2π

0

Gk(x(t)−x(τ))|x′(t)||x′(τ)|(n(x(t)) · n(x(τ)))ψ(τ) dτ

(5.8)

+ PV

∫
Γ

|x′(t)|(∂sGk)(x(t)− x(τ))ψ′(τ) dτ(5.9)

and

(Nx,w
k φ)(t) := k2

∫ 2π

0

Gk(x(t)− x(τ))|x′(t)| (n(x(t)) · n(x(τ)))φ(τ) dτ

(5.10)

+ PV

∫
Γ

|x′(t)|(∂sGk)(x(t)− x(τ))
d

dτ

(
φ(τ)

|x′(τ)|

)
dτ.(5.11)

We incorporate the parametrized versions of the four boundary integral
operators of Calderón calculus into parametrized versions of the CFIER
formulations considered herein. First, we use Calderón’s identities
to express the integral operators in the CFIER formulations (3.12)
in the following form that bypasses direct evaluation of hypersingular
operators:

(5.12) A1
k,κ = I − 2Sκ(Nk −Nκ)− 2K2

κ

− SκZ
1 − 2SκK

⊤
k Z

1 −Kk − SkZ
1, Z1 ∈ L∞(Γ)
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and

A1
k,κ = 2I − 2(Sκ − Sk)(Nk −Nκ)− 4K2

κ − 2K2
k

− 4SκK
⊤
k (Nκ −Nk)− 4Sκ(Nk −Nκ)Kk − 4K2

κKk, Z
1 = 2Nκ.

(5.13)

Similar considerations apply in the case of CFIER formulations for
interior impedance problems (3.13). Using parametrized versions of
the boundary integral operators described above, we consider both non-
weighted and weighted parametrized versions of the CFIER equations.
Specifically, we discretize equations (3.12) using the operators

Ax,1
k,κ = I − 2Sx,w

κ [(Nx
k −Nx

0 )− (Nx
κ −Nx

0 )]− 2(Kx
κ )

2 − Sx
κZ

1

(5.14)

− 2Sx,w
κ K⊤,x

k Z1 −Kx
k − Sx

kZ
1,

where Nx
0 are the parametrized hypersingular operators for k = 0, and

we solve the parametrized integral equation

(5.15) Ax,1
k,κγ

1
Du = −γ1Nuinc − Z1γ1Du

inc.

Note that the difference operators Nx
k −Nx

0 may be written in a simpler
form that does not involve differentiation [16]. We use similar, albeit
slightly more complicated, discrete versions in the case Z1 = 2Nκ. In
the case where we use weighted Dirichlet traces as unknowns of the
CFIER formulations, the underlying parametrized operators take on
the form:

Ax,1,1
k,κ = I − 2|x′|Sx,w

κ [(Nx,w
k −Nx,w

0 )− (Nx,w
κ −Nx,w

0 )](5.16)

− 2(Kx,w
κ )2 − |x′|Sx,w

κ Z1

− 2|x′|Sx,w
κ K⊤,x,w

k Z1 −Kx,w
k − |x′|Sx,w

k Z1,

and we solve the parametrized weighted integral equation

(5.17) Ax,1,1
k,κ γ1,wD u = −|x′|γ1Nuinc − |x′|Z1γ1Du

inc.

We denote by Ax,2
k,κ and Ax,2,1

k,κ the counterparts of the operators Ax,1
k,κ

and Ax,1,1
k,κ for interior impedance boundary value problems. The

parametrized integral operators which are featured in equations (5.14)
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and (5.16) can be expressed in the generic form as

(Iφ)(t) =
∫ 2π

0

I(t, τ)φ(τ) dτ,

where

I(t, τ) = I1(t, τ) ln

(
4 sin2

t− τ

2

)
+ I2(t, τ)

with I1(t, τ) and I2(t, τ)φ(τ) regular enough functions that in particular
are bounded for t = τ [16]. The splitting techniques presented above
may be adapted for evaluation of the operators that involve κ, ℑκ > 0,
using additional smooth cutoff functions supported in neighborhoods
of the target points t according to the procedures introduced in [9].

In order to derive fully discrete versions of the CFIER equations
(5.15) and (5.17) we use global trigonometric interpolation of the

quantities γ1Du and γ1,wD u. We choose an equispaced splitting of the
interval [0, 2π] into 2n points so that the meshsize is equal to h = π/n.
Note that, since Tj are chosen such that Tj+1 − Tj are proportional
(with the same constant of proportionality) to the lengths of the arcs
of Γ from xj to xj+1 for all j, the number of discretization points per
subinterval [Tj , Tj+1], 1 ≤ j ≤ P , may differ from each other. We thus
consider the equispaced collocation points

{t(n)0 + h/2, t
(n)
1 + h/2, . . . , t

(n)
2n−1 + h/2}

that exclude corner points and the interpolation problem with respect
to these nodal points in the space Tn of trigonometric polynomials of
the form

v(t) =

n∑
m=0

am cosmt+

n−1∑
m=1

bm sinmt

is uniquely solvable [21]. We denote by Pn : C[0, 2π] → Tn the
corresponding trigonometric polynomial interpolation operator. We
use the quadrature rules [20]∫ 2π

0

ln

(
4 sin2

t− τ

2

)
f(τ) dτ ≈

∫ 2π

0

ln

(
4 sin2

t− τ

2

)
(Pnf)(τ) dτ

=

2n−1∑
i=0

R
(n)
i (t)f(t

(n)
i ),(5.18)
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where the expressions R
(n)
j (t) are given by

R
(n)
i (t) = −2π

n

n−1∑
m=1

1

m
cosm(t− t

(n)
i )− π

n2
cosn(t− t

(n)
i ).

We also use the trapezoidal rule

(5.19)

∫ 2π

0

f(τ) dτ ≈
∫ 2π

0

(Pnf)(τ) dτ =
π

n

2n−1∑
i=0

f(t
(n)
i ).

Applying these quadrature rules, we obtain fully discrete versions of the
parametrized operators in equations (5.14) and (5.16). We note that
the same considerations apply to discretizations of interior impedance
boundary value problems.

5.2. Numerical results. In this section, we present a variety of
numerical results which demonstrate the properties of the CFIER
formulations considered herein. Solutions of linear systems arising
from the Nyström discretizations of the transmission integral equations
described in Section 5 are obtained by means of the fully complex,
unrestarted version of the iterative solver GMRES [28]. The value of
the complex wavenumber κ in the CFIER formulations considered was
taken to be κ = k+ i in all of the numerical experiments; our extensive
numerical experiments suggest that these values of κ lead to nearly In
each table, the values of the GMRES relative residual tolerances used
in the numerical experiments is also presented.

We present a variety of numerical experiments concerning the two
Lipschitz geometries:

(a) a square centered at the origin whose sides equal 4, and

(b) an L-shaped scatterer of sides equal to 4 and indentation equal
to 2.

We illustrate the performance of our solvers based upon the Nyström
discretization of the CFIER formulations in two cases of boundary data:
(1) point source boundary data for interior problems, and (2) plane
wave incidence for exterior problems, that is, scattering experiments.
In case (1), we consider

u0(x) :=
i

4
H

(1)
0 (k|x− x0|), x ∈ D2, x0 ∈ R2 \D2
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and impedance boundary data constructed as

f2 := γ2Nu
0 + Z2γ2Du

0.

Clearly, the solution of the interior impedance boundary value problem
with data f2 defined above must equal u0 in the domain D2. Therefore,
in all of the numerical experiments which involve interior problems, we
report the error between the computed boundary values of the solution
of the interior impedance boundary value problem with data f2 and
the exact boundary values of u0 defined above:

(5.20) εΓ = max|γ2Du2,calc(x)− γ2Du
0(x)|

at the grids points x ∈ Γ where the numerical solution γ2Du
2,calc is

computed. We note that the latter quantity γ2Du
2,calc is actually the

solution of the discretizations of the CFIER formulations considered in
this paper. In the case where we use weighted interior formulations of
the type (5.17), we slightly adjust the definition of the error (5.20) in
the following form

(5.21) εwΓ = max|γ2,wD u2,calc(x)− γ2,wD u0(x)|,

given that γ2,wD u2,calc is actually the solution of the weighted CFIER
formulations which is being numerically computed.

For every scattering experiment, we consider plane-wave incidence
uinc, and we present maximum far-field errors, that is, we choose
sufficiently many directions x̂ = x/|x| (more precisely, 1024 such
directions) and, for each direction, we compute the far-field amplitude
u1∞(x̂) defined as

(5.22) u1(x) =
eik|x|√

|x|

(
u1∞(x̂) +O

(
1

|x|

))
, |x| → ∞.

The maximum far-field errors were evaluated through comparisons of
the numerical solutions u1,calc∞ corresponding to either formulation with
reference solutions u1,ref∞ by means of the relation

(5.23) ε∞ = max|u1,calc∞ (x̂)− u1,ref∞ (x̂)|.

The latter solutions u1,ref∞ were produced using solutions corresponding
with refined discretizations based on the CFIER formulations with
GMRES residuals of 10−12 for all geometries. Besides appropriately
defined errors in each case, we display the number of iterations required
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by the GMRES solver to reach specified relative residuals. In the
numerical experiments, we used discretizations ranging from 6 to 12
discretization points per wavelength, for frequencies k in the medium-
to the high-frequency range corresponding to scattering problems of
sizes ranging from 5 to 80 wavelengths. We used both non-weighted
and weighted versions of the CFIER formulations, which are referred
to in the tables by their underlying integral operators. The columns
“Unknowns” in all tables display the number of unknowns used in
each case, which equals the value 2n defined in Section 5. We have
used sigmoid transforms with a value p = 3 in all of the numerical
experiments. In all of the scattering experiments we considered point
source solutions located at x0 = (4, 4) and plane-wave incident fields of
direction d = (0,−1).

We begin by presenting the high-order convergence of our Nyström
solvers in Table 1 for the case of interior impedance boundary value
problems with Z2 = ik. The loss of accuracy in the solvers based on the
weighted formulations can be attributed to larger condition numbers
of the matrices associated with the discretization of the operators
Ax,2,1

k,κ (5.16). In Table 2, we present the high-order convergence of our

solvers in the case of (exterior) scattering problems with impedance
Z1 = ik. In Tables 1 and 2, W stands for “Wavenumber” and It for
“Iteration.”

Table 1. High-order convergence of our solvers for the interior impedance bound-
ary value problem using CFIER formulations with impedance Z2 = ik. We present
results for the square and the L-shaped scatterers, and we consider both non-

weighted and weighted versions of CFIER. The GMRES tolerance was taken to
be 10−12.

Interior Helmholtz problem with impedance boundary condition Z2 = ik

W Un- Square L-shaped
knowns

k 2n
Ax,2

k,κ (5.14) Ax,2,1
k,κ (5.16) Ax,2

k,κ (5.14) Ax,2,1
k,κ (5.16)

It ϵΓ It ϵwΓ It ϵΓ It ϵwΓ

2

32 17 3.0×10−3 18 4.8×10−2 19 5.4×10−3 19 3.4×10−2

64 24 6.0×10−4 30 1.7×10−2 26 1.6×10−3 28 3.1 × 10−2

128 25 1.0×10−4 32 7.6×10−3 25 2.8×10−4 30 1.9×10−2

256 25 1.7×10−5 30 2.0×10−3 25 4.7×10−5 30 5.9×10−3

512 25 2.6×10−6 30 4.7×10−4 25 7.3×10−6 31 1.5×10−3

1024 25 3.8×10−7 29 6.8×10−5 25 1.0×10−6 31 3.5×10−4

We present in Table 3 the performance of solvers in the high-
frequency regime of scattering problems with impedance Z1 = ik. Re-
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Table 2. High-order convergence for the exterior scattering problems with

impedance Z1 = ik using CFIER formulations. We present Square and L-shaped
scatterers and consider both non-weighted and weighted versions of CFIER. The
GMRES tolerance was taken to be 10−12.

Exterior scattering problem with impedance boundary condition Z1 = ik

W Un- Square L-shaped
knowns

k 2n
Ax,1

k,κ (5.14) Ax,1,1
k,κ (5.16) Ax,1

k,κ (5.14) Ax,1,1
k,κ (5.16)

It ϵ∞ It ϵ∞ It ϵ∞ It ϵ∞

2

32 17 4.0.×10−2 17 5.1×10−2 29 8.0×10−2 32 8.7×10−2

64 21 2.5×10−3 23 2.6×10−3 29 2.0×10−3 34 4.4×10−3

128 22 8.6×10−5 21 3.0×10−4 29 1.0×10−4 32 3.9×10−4

256 22 9.2×10−6 21 4.8×10−5 29 1.1×10−5 32 8.4×10−5

512 21 1.1×10−6 21 7.7×10−6 28 1.3×10−6 29 1.7×10−5

1024 21 3.1×10−7 19 1.2×10−6 28 1.2×10−7 27 3.8×10−6

markably, the numbers of iterations required to reach a GMRES resid-
ual of 10−4 are small and vary extremely mildly with increased frequen-
cies. This is also the case for interior impedance boundary problems
with Z2 = −ik. However, in the case of interior impedance boundary
problems with Z2 = ik, the situation is quite different as the numbers
of iterations grow considerably with the frequency. In the case of in-
terior impedance boundary value problems with impedance Z2 = ik,
the numbers of GMRES iterations needed to reach the same GMRES
tolerance are 30, 50, 98, 194, 451 (square) and 29, 50, 99, 214, 477 (L-
shape) and, respectively, 12, 14, 16, 19, 22 (square) and 13, 15, 17, 20, 24
(L-shape) in the case Z2 = −ik for the same wavenumbers and dis-
cretization size leading to comparable levels of accuracy.

Table 3. Accuracy and numbers of iterations for the solution of exterior scatter-
ing problem with impedance Z1 = ik using CFIER formulations. We present Square
and L-shaped scatterers and consider both non-weighted and weighted versions of

CFIER. The GMRES tolerance was taken to be 10−4.

Exterior scattering problem with impedance boundary condition Z1 = ik

Wavenumber Unknowns Square L-shaped

k 2n
Ax,1

k,κ (5.14) Ax,1
k,κ (5.14)

Iter ϵ∞ Iter ϵ∞
8 192 16 1.1×10−4 19 1.4×10−4

16 384 17 9.3×10−5 19 7.6×10−5

32 768 20 1.4×10−4 21 1.1×10−4

64 1536 19 8.9×10−5 21 7.5×10−5

128 3072 22 1.2×10−4 24 1.1×10−4

In Table 4, we present the high-order accuracy of our solvers in
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the case of interior transmission impedance boundary value problems
with Z2 = −2Nk+i. We continue in Table 5 with the high-frequency
behavior of our solvers for transmission impedance boundary value
problems with Z1 = 2Nk+i. Again, the solvers for exterior problems
require very small numbers of iterations for convergence. In the case of
interior impedance boundary value problems with impedance operators
Z2 = −2Nk+i, the numbers of GMRES iterations needed to reach
the same GMRES tolerance are 7, 7, 7, 7, 7 (square) and respectively
8, 7, 8, 8, 8 (L-shape) for the same wavenumbers and discretization size
leading to comparable levels of accuracy.

Table 4. High-order convergence of our solvers for the interior Transmission
Impedance boundary value problems with Z2 = −2Nk+i using CFIER formulations.

We present Square and L-shaped scatterer and consider a GMRES residual equal
to 10−12.

Interior problem with impedance boundary condition Z2 = −2Nk+i

Wavenumber Unknowns Square L-shaped

k 2n
Ax,2

k,κ (5.14) Ax,2
k,κ (5.14)

Iter ϵΓ Iter ϵΓ

2

32 14 2.6×10−3 15 5.5×10−3

64 14 3.0×10−4 15 1.0×10−3

128 14 5.1×10−5 14 1.6×10−4

256 14 7.8×10−6 14 2.5×10−5

512 14 1.1×10−6 14 3.8×10−6

1024 14 1.6×10−7 14 5.6×10−7

Table 5. Accuracy and numbers of iterations for the solution of exterior scat-
tering problems with transmission impedance operator Z1 = 2Nk+i using CFIER

formulations. We present Square and L-shaped scatterers and consider both non-
weighted and weighted versions of CFIER. The GMRES tolerance was taken to be
10−4.

Exterior scattering problem with impedance boundary condition Z1 = 2Nk+i

Wavenumber Unknowns Square L-shaped

k 2n
Ax,1

k,κ (5.14) Ax,1
k,κ (5.14)

Iter ϵ∞ Iter ϵ∞
8 192 8 6.1×10−4 9 5.8×10−4

16 384 8 2.8×10−4 9 4.0×10−4

32 768 8 2.6×10−4 9 3.8×10−4

64 1536 6 2.9×10−4 9 4.7×10−4

128 3072 6 2.8×10−4 9 4.1×10−4

Table 6 continues with scattering experiments for the physically im-
portant case of piecewise constant impedance. In this case, given that
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the impedance data f1 is discontinuous, we employ the weighted ver-
sion of CFIER formulation to obtain numerical solutions. Finally, we
present, in Table 7, results for the case of interior problems with blended
transmission impedance operators Z2

b defined in equations (4.1). Given
that the main motivation for these problems comes from DDM, we fo-
cus on the case of square subdomains. As can be seen from the results
in Table 7, the efficiency of the CFIER formulations deteriorates with
the growth of the size of the central subdomain D1 in Figure 1. A pos-
sible remedy for this situation is to further subdivide the subdomain
D1 into smaller subdomains.

Table 6. Results for the exterior scattering problem using weighted CFIER

formulations in the case of piecewise constant impedance boundary conditions with
impedance operator Z1 = iαjk. The coefficients αj were chosen so that αj = j − 1
along the jth side of the scatterer. Square and L-shaped scatterers are presented.
The GMRES residual was taken to be equal to 10−4.

Exterior scattering problem with piecewise constant impedance boundary condition

Wavenumber Unknowns Square L-shaped

k 2n
Ax,1,1

k,κ (5.16) Ax,1,1
k,κ (5.16)

Iter ϵ∞ Iter ϵ∞
8 192 22 2.4×10−4 23 3.0×10−4

16 384 26 1.3×10−4 27 1.2×10−4

32 768 30 1.6×10−4 32 1.3×10−4

64 1536 35 2.1×10−4 37 1.6×10−4

128 3072 42 1.5×10−4 42 2.1×10−4

Table 7. Results for the interior problem with blended transmission impedance
boundary conditions Z2

b (4.1). The complexified wavenumbers in the adjacent

domains that enter the definition of the operator Z2
b were taken to be equal to

1 + i, 2 + i, 3 + i, 4 + i. The GMRES residual was taken to be equal to 10−4.

Interior problem with blended transmission impedance boundary conditions Z2
b (4.1)

Wavenumber Unknowns Square

k 2n
Ax,2

k,κ (5.14)

Iter ϵΓ
4 64 15 2.5×10−4

8 128 29 4.3×10−4

16 256 72 6.0×10−4

32 512 107 3.0×10−4
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6. Conclusions. In this work, we have presented high-order Nyström
discretizations based on polynomially graded meshes for regularized
boundary integral formulations for Helmholtz impedance boundary
value problems in domains with corners. We have rigorously proved
the well-posedness of the regularized formulations, and we have shown
that the Nyström discretizations of these formulations lead to efficient
and very accurate solvers of impedance boundary value problems. The
numerical analysis of these schemes will be the subject of future inves-
tigation.
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