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ABSTRACT. Two high order methods are constructed
and analyzed for a class of Fredholm integral equations of
the second kind with kernels that may have weak boundary
and diagonal singularities. The proposed methods are based
on improving the boundary behavior of the exact solution
with the help of a change of variables, and on central
part interpolation by polynomial splines on the uniform
grid. A detailed error analysis for the proposed numerical
schemes is given. This includes, in particular, error bounds
under various types of assumptions on the equation, and
shows that the proposed central part collocation approach
has accuracy and numerical stability advantages compared
with standard piecewise polynomial collocation methods,
including the collocation at Chebyshev knots.

1. Introduction. We consider an integral equation of the form

(1.1) u(x) =

1∫
0

[a(x, y)|x− y|−ν + b(x, y)]u(y) dy+ f(x), 0 ≤ x ≤ 1,

where ν ∈ (0, 1), f ∈ C[0, 1] ∩ Cm(0, 1), a, b ∈ Cm([0, 1] × [0, 1]),
m ∈ N0 := {0} ∪ N, N := {1, 2, . . .}. By Cm(Ω), we denote the set
of m times continuously differentiable functions on Ω. The Banach
space of continuous functions u : [0, 1] → R := (−∞,∞) with the norm
∥u∥∞ = {max |u(x)| : 0 ≤ x ≤ 1} is denoted by C[0, 1]. Equations
of the form (1.1) and related equations arise, for example, in potential
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problems [13], nuclear physics [4], atmospheric physics [12] and in
radiative heat exchange [40].

The exact solution to (1.1) (if it exists) is typically non-smooth at
the endpoints of the interval of integration [0, 1], where its derivatives
become unbounded, see, for example, [11, 27, 29]. In order to
construct high-order numerical methods for these types of integral
or integro-differential equations, the singular behavior of the exact
solution [3, 5, 8, 38, 39] must be taken into account, see also
[1, 6, 15, 18, 20, 24, 40]; in particular, the use of polynomial splines
on special graded grids will work, see e.g., [3, 5, 25, 34, 38]. However,
strongly non-uniform grids may cause serious rounding error problems
and the unstable behavior of numerical results. With the aid of a
suitable change of variables it is possible to convert the solution of
(1.1) into Cm[0, 1]-smooth function, after which the converted problem
may be solved by standard piecewise polynomial collocation methods
on uniform grids, see e.g., [19, 28].

In the present paper, we follow the idea of smoothing transforma-
tion, but we apply so-called central part interpolation/collocation on
uniform grids. This method was introduced in [23] for more specialized
problems. Now, we actually consider a more complicated situation for
(1.1), assuming that the coefficient functions a(x, y) and b(x, y) and
their derivatives are continuous on [0, 1]× (0, 1). They may have some
boundary singularities with respect to y, see Lemmas 2.1 and 2.2 below.

In central part interpolation method, for a given n ∈ N, the uniform
grid {jh : j = 0, . . . , n}, h = 1/n, is used on the interval [0, 1].
For a given m ∈ N, an interpolation operator Ph,m is constructed
for approximating a function g ∈ C[0, 1] by a piecewise polynomial
Ph,mg of degree m− 1 such that, on each subinterval [jh, (j+1)h], j =
0, . . . , n− 1, function Ph,mg coincides with the Lagrange interpolation
polynomial of degree m − 1 that interpolates g at m grid points kh
for integers k satisfying −m/2 < k − j ≤ m/2. An extension of g is
introduced for the evaluation of Ph,mg for nodal points close to the end
points of the interval [0, 1].

The collocation method based upon central part interpolation has
accuracy and numerical stability advantages compared with standard
piecewise polynomial collocation methods, including the collocation at
Chebyshev knots, see the end of Sections 4 and 5 and Remark 6.2. The
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Lagrange polynomial is exploited only for one subinterval of length h
in the center of the full interpolation interval of length (m − 1)h. In
this central part, the polynomial interpolation loses its bad convergence
property near the end points of the interval. A classical error formula
for Lagrange interpolation of g ∈ Cm[0, 1] gives considerably more
precise estimates in the central region than on the whole interval (see
Lemma 4.1 below) and we have for m→ ∞ only logarithmic growth of
norms of Ph,m due to Runck [9, 31, 32] (see formula (4.8) below).

As usual, the collocation method for integral equations is only semi-
discrete since the matrix entries of the resulting linear system require
the evaluation of integrals of products of the kernel function of the
integral operator against the Lagrange polynomials on small intervals.
In order to derive a discrete collocation method [3], we employ product
integration techniques based on central part interpolation in a similar
manner as in [23] with a ∈ Cm([0, 1]× [0, 1]) and b = 0. Our approach
here is close to that in [35], where smooth splines are used as trial
functions, see also [21].

The rest of the paper is organized as follows. In Section 2, some
results concerning the compactness of the integral operator of equa-
tion (1.1) are recalled, and a result regarding the smoothness of the
exact solution to (1.1) is presented, see Theorem 2.3. Later on, these
results will play a key role in the convergence analysis of the proposed
algorithms. In Section 3, a smoothing transformation is introduced,
and its properties are discussed. In Sections 4 and 5, central part in-
terpolation by polynomials and piecewise polynomials is studied. In
Sections 6 and 7, for (1.1), two numerical methods are constructed and
justified. The main results of the paper are given by Theorems 6.1 and
7.2. Finally, in Section 8, the theoretical results are tested by numerical
experimentation.

2. Smoothness of the solution. Denote by T the integral opera-
tor of equation (1.1):

(Tu)(x) =

1∫
0

[a(x, y)|x− y|−ν + b(x, y)]u(y) dy(2.1)

0 ≤ x ≤ 1, 0 < ν < 1.

We refer to [27] for the proofs of the following two lemmas.
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Lemma 2.1. Let T be defined by formula (2.1) with a fixed ν ∈ (0, 1).
Let λ0, λ1 ∈ R, λ0 < 1 − ν, λ1 < 1 − ν. Assume that a, b ∈
C([0, 1]× (0, 1)) and

|a(x, y)|+ |b(x, y)| ≤ cy−λ0(1− y)−λ1 ,(2.2)

(x, y) ∈ [0, 1]× (0, 1),

where c = c(a, b) is a positive constant. Then, T maps C[0, 1] into
itself, and T : C[0, 1] → C[0, 1] is compact.

For m ∈ N, θ0, θ1 ∈ R, θ0 < 1, θ1 < 1, denote by Cm,θ0,θ1(0, 1)
the weighted space of functions u ∈ C[0, 1] ∩ Cm(0, 1) satisfying for
x ∈ (0, 1), k = 1, . . . ,m, the inequalities

∣∣∣u(k)(x)∣∣∣ ≤ c


1 for θ0 < 1− k,

1 + |log x| for θ0 = 1− k,

x1−k−θ0 for θ0 > 1− k,

∣∣∣u(k)(1− x)
∣∣∣ ≤ c


1 for θ1 < 1− k,

1 + |log(1− x)| for θ1 = 1− k,

(1− x)1−k−θ1 for θ1 > 1− k,

where c = c(u) > 0 is a constant, in other words, u ∈ Cm,θ0,θ1(0, 1) if

|u|m,θ0,θ1
:=

m∑
k=1

sup
0<x<1

ωk−1+θ0(x)ωk−1+θ1(1− x)|u(k) (x) | <∞,

where

ωρ(r) =


1 for ρ < 0,

1/1 + |log r| for ρ = 0,

rρ for ρ > 0,

r, ρ ∈ R, r > 0.

Equipped with the norm

∥u∥Cm,θ0,θ1 (0,1) := max
0≤x≤1

|u(x)|+ |u|m,θ0,θ1
,

Cm,θ0,θ1(0, 1) becomes a Banach space. Note that

Cm[0, 1] ⊂ Cm,θ0,θ1(0, 1) for any m ∈ N, θ0 < 1, θ1 < 1.
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We introduce the notation

∂kx∂
l
y =

(
∂

∂x

)k(
∂

∂y

)l

, k, l ∈ N0 = {0} ∪ N.

Lemma 2.2. Let T be defined by (2.1) with ν ∈ (0, 1). Let m ∈ N and
λ0, λ1 ∈ R, λ0 < 1−ν, λ1 < 1−ν. Assume that a, b ∈ Cm([0, 1]×(0, 1))
and

(2.3)
∣∣∂kx∂lya (x, y)∣∣+ ∣∣∂kx∂lyb (x, y)∣∣ ≤ cy−λ0−l(1− y)−λ1−l,

with (x, y) ∈ [0, 1] × (0, 1) and a positive constant c = c(a, b) for all
k, l ∈ N0 such that k + l ≤ m. Then operator T maps Cm,θ0,θ1(0, 1)
with θ0 = ν + λ0 and θ1 = ν + λ1 into itself, and T : Cm,θ0,θ1(0, 1) →
Cm,θ0,θ1(0, 1) is compact.

Denote N (I − T ) = {u ∈ C[0, 1] : u = Tu}. The following theorem
is a consequence of Lemmas 2.1 and 2.2.

Theorem 2.3. Assume the conditions of Lemma 2.2 and N (I − T ) =
{0}. Let f ∈ Cm,θ0,θ1(0, 1), θ0 = ν+λ0 and θ1 = ν+λ1. Then, equation
(1.1) has a solution u ∈ Cm,θ0,θ1(0, 1) which is unique in C[0, 1], and

(2.4) ∥u∥Cm,θ0,θ1 (0,1) ≤ c ∥f∥Cm,θ0,θ1 (0,1) ,

with a constant c which is independent of f .

3. Smoothing transformation. Possible boundary singularities of
the solution u ∈ Cm,ν+λ0,ν+λ1(0, 1) of equation (1.1) are generic; they
occur for most of the free terms f even when f has no boundary
singularities. In order to suppress the singularities of the solution we
perform the following change of variables in equation (1.1):

(3.1) x = φ(t), y = φ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1.

Here, φ : [0, 1] → [0, 1] is defined by the formula

φ(t) =
1

c∗

t∫
0

σp0−1(1− σ)p1−1 dσ, 0 ≤ t ≤ 1, p0, p1 ∈ N,(3.2)
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c∗ =

1∫
0

σp0−1(1− σ)p1−1dσ = B(p0, p1) =
(p0 − 1)!(p1 − 1)!

(p0 + p1 − 1)!
,

where B is the Euler beta function. Representing

(1− σ)p1−1 =

p1−1∑
k=0

(−1)k
(
p1 − 1
k

)
σk

and integrating, we see that φ is a polynomial,

φ(t) =
1

c∗
tp0

p1−1∑
k=0

(−1)k
1

k + p0

(
p1 − 1
k

)
tk.

Observe that

(3.3)

0 ≤ φ(t) ≤ c0t
p0 ,

0 ≤ 1− φ(t) ≤ c′(1− t)p1 , 0 ≤ t ≤ 1,∣∣∣φ(k)(t)
∣∣∣ ≤ ckt

p0−k(1− t)p1−k,

0 < t < 1, k = 1, . . . ,m, m ∈ N.

If p0 = p1 = 1, then φ(t) = t for 0 ≤ t ≤ 1. We are interested
in transformations (3.2) with p0 > 1 or/and p1 > 1 since then the
transformation (3.2) possesses a smoothing property for functions u(x)
with singularities of derivatives of u(x) at x = 0 or/and x = 1, see
Lemma 3.1; the proof may be found in [35].

Lemma 3.1. Let m ∈ N, θ0, θ1 ∈ R, θ0 < 1, θ1 < 1. Let u ∈
Cm,θ0,θ1(0, 1) and v(t) = u(φ(t)), with φ defined by (3.2). Then, for
j = 1, . . . ,m, 0 < t < 1,

∣∣∣v(j) (t)∣∣∣ ≤ c ∥u∥Cm,θ0,θ1 (0,1)


tp0−j θ0 < 0

tp0−j(1 + |log t|) θ0 = 0

t(1−θ0)p0−j θ0 > 0

×


(1− t)p1−j θ1 < 0

(1− t)p1−j(1 + |log(1− t)|) θ1 = 0

(1− t)(1−θ1)p1−j θ1 > 0.



CENTRAL PART INTERPOLATION SCHEMES 407

Theorem 3.2. Let m ∈ N, 0 < ν < 1, λ0, λ1 ∈ R, λ0 < 1 − ν,
λ1 < 1 − ν. Let u ∈ Cm,ν+λ0,ν+λ1(0, 1) and v(t) = u(φ(t)), t ∈ [0, 1],
where φ is defined by (3.2) with the parameters p0, p1 ∈ N satisfying

(3.4) pi >

{
m for ν + λi ≤ 0,

m/(1− ν − λi) for 0 < ν + λi < 1,
i = 0, i = 1.

Then v ∈ Cm[0, 1] and

(3.5) v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m.

Proof. Let u ∈ Cm,ν+λ0,ν+λ1(0, 1) and v(t) = u(φ(t)), t ∈ [0, 1].
Clearly, v ∈ C[0, 1]∩Cm(0, 1). Due to (3.4) and based upon Lemma 3.1,
we obtain

v(j)(0) := lim
t→0

v(j)(t) = 0,

v(j)(1) := lim
t→1

v(j)(t) = 0, j = 1, . . . ,m,

in other words, the derivatives of v up to order m can be extended to
the interval [0, 1] so that v ∈ Cm[0, 1], and (3.5) holds. �

From (3.2), we see that φ(0) = 0, φ(1) = 1 and φ is strictly
increasing. Hence, for s ̸= t, we have

φ(t)− φ(s)

t− s
> 0,

|φ(t)− φ(s)|−ν =

(
φ(t)− φ(s)

t− s

)−ν

|t− s|−ν .

After the change of variables (3.1), equation (1.1) takes the form

v(t) =

1∫
0

Kφ(t, s)v(s) ds+ fφ(t),(3.6)

0 ≤ t ≤ 1, 0 < ν < 1,

where fφ(t) = f(φ(t)),

Kφ(t, s) = A(t, s)|t− s|−ν + B(t, s),(3.7)

A(t, s) = a(φ(t), φ(s))Φ(t, s)−νφ′(s),(3.8)

B(t, s) = b(φ(t), φ(s))φ′(s)(3.9)
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and

(3.10) Φ(t, s) =

{
φ(t)− φ(s)/(t− s) for t ̸= s,

φ′(s) for t = s,
0 ≤ t, s ≤ 1.

The solutions of (1.1) and (3.6) are related by

v(t) = u(φ(t)), u(x) = v(φ−1(x)).

It follows from (3.2) and (3.10) that Φ(t, s) > 0 everywhere in the
square 0 ≤ t, s ≤ 1 except two points (0, 0) and (1, 1) in which Φ
vanishes causing singularities of Φ(t, s)−ν . Note that Φ is a polynomial
in s, t, since φ is a polynomial and p0, p1 ∈ N. According to (3.2), (3.3)
and (3.10),

Φ(t, s) = Φ(s, t), 0 ≤ t, s ≤ 1.

Further, we have

Φ (t, s)≍ (t+ s)
p0−1

((1− t) + (1− s))
p1−1

(3.11)

as t, s→ 0 or as t, s→ 1,

where Φ(t, s)≍Ψ(t, s) as t, s→ 0 or t, s→ 1 means that Φ(t, s)/Ψ(t, s)
and Ψ(t, s)/Φ(t, s) are bounded as t, s→ 0 or t, s→ 1.

Indeed, let 0 ≤ s < t ≤ 1/2. According to (3.2) and (3.10), the
following holds:

Φ(t, s) =
1

t− s

t∫
s

φ′(σ) dσ =
1

c∗

1

t− s

t∫
s

σp0−1(1− σ)p1−1dσ.

Thus,

Φ(t, s) ≤ 1

c∗

1

t− s

t∫
s

σp0−1dσ =
1

c∗

1

p0

tp0 − sp0

t− s
.

By Lagrange’s mean value theorem we obtain

tp0 − sp0

t− s
≤ p0t

p0−1 ≤ p0(t+ s)p0−1,

and therefore, Φ(t, s) ≤ (t + s)p0−1/c∗. Below, we also see that
Φ(t, s) ≥ c′(t+s)p0−1 for a positive constant c′ > 0 and 0 ≤ s < t ≤ 1/2.
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Indeed, for 0 ≤ s < t ≤ δ < 1, the following holds:

Φ(t, s) =
1

t− s

t∫
s

φ′(σ) dσ =
1

c∗(t− s)

t∫
s

σp0−1(1− σ)p1−1dσ

≥ (1− δ)p1−1

c∗p0

(
tp0 − sp0

t− s

)
.

Since tp0 − sp0/(t− s) ≥ tp0−1 for 0 ≤ s < t, p0 ≥ 1, we obtain

Φ(t, s) ≥ cδt
p0−1 ≥ cδ

2p0−1
(t+ s)p0−1 with cδ =

(1− δ)p1−1

c∗p0
.

Therefore,
Φ (t, s)≍ (t+ s)

p0−1
as t, s→ 0.

In a similar manner, we obtain that Φ(t, s)≍[(1 − t) + (1 − s)]p1−1 as
t, s→ 1, and (3.11) follows.

Using (3.3), we obtain for 0 ≤ s, t ≤ 1, k = 1, . . . ,m, m ∈ N, that

(3.12)
∣∣∂ksΦ(t, s)∣∣ ≤ c(t+ s)p0−k−1 [(1− t) + (1− s)]

p1−k−1
.

Let g be an m times continuously differentiable function on an
interval which contains the values of a function ψ ∈ Cm[0, 1]. Then
the composite function g(ψ(s)) is m times continuously differentiable
on [0, 1], and it can be expressed by the Faà di Bruno differentiation
formula, see e.g., [16],

(3.13)

(
d

ds

)j

g(ψ(s)) =
∑ j!

k1! · · · kj !
g(k1+...+kj)(ψ(s))

(
ψ′(s)

1!

)k1

· · ·
(
ψ(j)(s)

j!

)kj

,

where s ∈ [0, 1], j = 1, . . . ,m, and the sum is taken over all non-
negative integers k1, . . . , kj such that k1 + 2k2 + · · ·+ jkj = j.

Due to (3.11), (3.12) and (3.13), the following lemma holds.
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Lemma 3.3. For j = 0, . . . ,m, m ∈ N0, 0 ≤ t ≤ 1, 0 < s < 1, the
following holds:
(3.14)∣∣∂js (Φ(t, s)−ν

)∣∣ ≤ c(t+ s)−ν(p0−1)−j [(1− t) + (1− s)]
−ν(p1−1)−j

.

Since the factor φ′(s) = (1/c∗)s
p0−1(1− s)p1−1 damps the singular-

ities, it holds for j = 0, . . . ,m that∣∣∂js (Φ(t, s)−ν
)
φ′(s)

∣∣ ≤ cs(p0−1)(1−ν)−j(1− s)(p1−1)(1−ν)−j .

Lemma 3.4. Let a and b satisfy the conditions of Lemma 2.2, and let
φ be defined by (3.2). Then, for j = 0, . . . ,m, 0 ≤ t ≤ 1, 0 < s < 1,
the following holds:

(3.15)
∣∣∂jsa(φ(t), φ(s))∣∣+ ∣∣∂jsb(φ(t), φ(s))∣∣ ≤ cs−p0λ0−j(1−s)−p1λ1−j .

Proof. Estimate (3.15) is a consequence of (2.3), (3.2) and the
formula of Faà di Bruno (3.13). �

Lemma 3.5. Let a and b satisfy the conditions of Lemma 2.1. Let A
and B be defined by the formula (3.8). Let φ be defined by (3.2). Then
the following holds true.

(i) If

(3.16) p0 > (1− ν)/(1− ν − λ0), p1 > (1− ν)/(1− ν − λ1),

then with δ0 := (1−ν−λ0)p0−(1−ν) > 0, δ1 := (1−ν−λ1)p1−(1−ν) >
0, the following holds:

(3.17) |A(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1).

(ii) If

(3.18) p0 > 1/(1− λ0), p1 > 1/(1− λ1),

then, with δ0 := (1 − λ0)p0 − 1 > 0, δ1 := (1 − λ1)p1 − 1 > 0, the
following holds:

(3.19) |B(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1).
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Proof. By inequalities (3.3), (3.15) and (3.14), we have

|A(t, s)| ≤ cs−p0λ0+p0−1(t+s)−νp0+ν(1−s)−p1λ1+p1−1(2− t−s)−νp1+ν

that, for p0, p1 satisfying (3.16), which yields (3.17). Similarly, by (3.3)
and (3.15),

|B(t, s)| ≤ cs−p0λ0+p0−1(1− s)−p1λ1+p1−1

for p0, p1 satisfying (3.18), we obtain (3.19). �

From (3.17) and (3.19), we can define A(t, s) = 0 and B(t, s) = 0 for
t ∈ [0, 1], s = 0 and, for t ∈ [0, 1], s = 1. Moreover, we extend A(t, s)
and B(t, s) with respect to s outside [0, 1] by the value of zero. The
corresponding extensions of A and B will again be denoted by A and
B. Thus, under conditions (3.16) and (3.18), we obtain that

(3.20) A,B ∈ C([0, 1]× [−δ, 1 + δ]) for any δ ≥ 0.

Under the conditions of Theorems 2.3 and 3.2, the solution v(t) =
u(φ(t)), t ∈ [0, 1], of (3.6) belongs to Cm[0, 1] and satisfies (3.5).
Continuing v for t < 0 by the constant value v(0) and for t > 1 by
the constant value v(1), the extended function belongs to Cm(R). This
circumstance is helpful for the central part interpolation on the uniform
grid by polynomials and piecewise polynomials treated in the next two
sections.

Remark 3.6. While the change of variables (3.1) eliminates the bound-
ary singularities of Kφ, fφ and exact solution v of equation (3.6), the
diagonal singularity of the kernel Kφ will still be present, see (3.7).

Remark 3.7. Instead of (3.2), other transformations may also be
used. We refer the reader to [26, 28] for a general discussion in this
connection, see also, [7, 10, 14, 19, 22, 33].

4. Central part interpolation by polynomials. Given an inter-
val [a, b], a < b, and m ∈ N, we introduce the uniform grid consisting
of m points

(4.1) xi = a+

(
i− 1

2

)
h, i = 1, . . . ,m, h =

b− a

m
.
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Denote by Pm−1 the set of polynomials of degree not exceedingm−1
and by Πm the Lagrange interpolation projection operator assigning to
any g ∈ C[a, b] the polynomial Πmg ∈ Pm−1 which interpolates g at
points (4.1):

(Πmg)(x) =

m∑
j=1

g(xj)

m∏
k=1
k ̸=j

x− xk
xj − xk

, a ≤ x ≤ b, m ≥ 2,

(Π1g)(x) = g(x1), a ≤ x ≤ b.

Lemma 4.1. In the case of interpolation knots (4.1) with m ∈ N, for
g ∈ Cm[a, b], the following holds:

(4.2) max
a≤x≤b

|g (x)− (Πmg) (x)| ≤ θmh
m max

a≤x≤b
|g(m) (x) |,

with

θm =
(2m)!

22m (m!)2
∼= (πm)

−1/2
,

where θm ∼= ϵm means that θm/ϵm → 1 as m→ ∞.

Further, for m = 2k, k ≥ 1, the non-improvable estimate

(4.3) max
xk≤x≤xk+1

|g (x)− (Πmg) (x)| ≤ ϑmh
m max

a≤x≤b
|g(m) (x) |,

holds with

(4.4) ϑm = 2−2m m!

((m/2)!)2
∼=

√
2/πm−1/22−m,

whereas, for m = 2k + 1, k ≥ 1, the non-improvable estimate

(4.5) max
xk≤x≤xk+2

|g (x)− (Πmg) (x)| ≤ ϑmh
m max

a≤x≤b
|g(m) (x) |,

holds with

(4.6) ϑm =
2
√
3

9

(k!)
2

(2k + 1)!
∼=

2
√
6π

9
m−1/22−m.

Remark 4.2. Without a detailed proof, similar results were formulated
in [23].
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Proof. These estimates are consequences of the following well-known
error formula, see, e.g., [30]:

g(x)− (Πmg)(x) =
g(m)(ξ)

m!
(x− x1) . . . (x− xm),

x ∈ [a, b], ξ ∈ (a, b).

Indeed, for points (4.1), the maximum of |(x − x1) · · · (x − xm)| on
[a, b] is attained at the end points of the interval; thus,

max
a≤t≤b

|(x− x1) . . . (x− xm)| = h

2
· 3
2
h · . . . · 2m− 1

2
h

=
1 · 3 · 5 · . . . · (2m− 1)

2m
hm,

and (4.2) holds with

θm =
1 · 3 · . . . · (2m− 1)

2mm!
=

(2m)!

22m (m!)2
.

The Stirling formula

(4.7) m! ∼=
√
2πmmme−m

yields

θm ∼=
2
√
πm (2m)2me−2m

2m
√
2πmmme−m2m

√
2πmmme−m

=
2
√
πm

2πm
= (πm)−1/2.

We now prove (4.3) and (4.4) for m = 2k, k ∈ N. Note that the
maximum of |(x − x1) · · · (x − x2k)| on [xk, xk+1] is attained at the
center of [xk, xk+1] and equals(

1

2
h

)2(
3

2
h

)2

. . .

(
2k − 1

2
h

)2

=
[1 · 3 · 5 · . . . · (2k − 1)]

2

22k
hm.

Thus, (4.3) holds with

ϑm =
[1 · 3 · . . . · (2k − 1)]

2

2mm!
=

[(2k)!]
2

2mm!(2 · 4 · . . . · 2k)2
=

m!

22m [(m/2)!]
2 .
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This, together with (4.7), yields (4.4):

ϑm ∼=
√
2πmmme−m

22m
[√

2π(m/2) (m/2)
m/2

e−m/2
]2 =

√
2
√
πmmm e−m

22m πmmm 2−m e−m

= 2−mm−1/2

(
2

π

)1/2

.

Finally, we will prove (4.5). Let m = 2k + 1, k ≥ 1. We estimate
separately |(x−xk)(x−xk+1)(x−xk+2)| and |x−x1| · · · |x−xk−1||x−
xk+3| · · · |x − xm| on the interval [xk, xk+2]. Taking x − xk+1 = y, we
have

max
xk≤x≤xk+2

|(x− xk)(x− xk+1)(x− xk+2)| = max
−h≤y≤h

|(y − h)y(y + h)|

= max
−h≤y≤h

|y3 − h2y|.

The cubic function ϕ(y) = y3−h2y vanishes at −h, 0 and h, has a local

maximum at y = −(
√
3/3)h in [−h, h] with

ϕ

(
−

√
3

3
h

)
=

2
√
3

9
h3,

and a local minimum at

y =

√
3

3
h

with

ϕ

(√
3

3
h

)
= −2

√
3

9
h3.

Thus,

max
xk≤x≤xk+1

|(x− xk)(x− xk+1)(x− xk+2)| =
2
√
3

9
h3.

The maximum of |x − x1| · · · |x − xk−1||(x − xk+3)| · · · |(x − xm)| on
[xk, xk+2] is attained at the center xk+1 of [xk, xk+2] and equals

(2h)2(3h)2 · · · (kh)2 = (k!)2h2(k−1) = (k!)2hm−3.
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This results in the estimate

max
xk≤x≤xk+2

|(x− x1) · · · (x− xm)| ≤ 2
√
3

9
(k!)2hm

and (4.5) with

ϑm =
2
√
3

9

(k!)2

(2k + 1)!
.

Due to the Stirling formula (4.7),

ϑm =
2
√
3

9

(k!)2

(2k + 1)!

∼=
2
√
3

9

2π k k2ke−2k√
2π(2k + 1) (2k + 1)2k+1e−(2k+1)

=
2
√
3

9

√
2π√

2k + 1 e−1

(
k

2k + 1

)2k+1

.

Since

k

2k + 1
=

k

2k

(
2k

2k + 1

)
=

1

2

(
1− 1

2k + 1

)
,(

k

2k + 1

)2k+1

=

(
1

2

)2k+1(
1− 1

2k + 1

)2k+1

∼=
(
1

2

)2k+1

e−1,

we obtain (4.6) due to:

2
√
3

9

(k!)2

(2k + 1)!
∼=

2
√
3

9 e−1

√
2π√

2k + 1

(
k

2k + 1

)2k+1

∼=
2
√
6π

9
m−1/22−m. �

In what follows, we will denote by L(X,Y ) the Banach space of linear
bounded operators A from a Banach space X into a Banach space Y
with the norm ∥A∥L(X,Y ) = supx∈X,∥x∥X≤1 ∥Ax∥Y .

Comparing estimates (4.2)–(4.5), we observe that, in the central
parts of [a, b], estimates for the error g − Πmg are approximately
2m times more precise than on the entire interval. In the central
parts of [a, b], the interpolation process on the uniform grid also has
good stability properties as m increases; in contrast to the exponential
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growth, see [9], of ∥Πm∥L(C[a,b],C[a,b]) as m → ∞, the following holds

for rh1/2 ≤ (b− a)/2 by Runck’s theorem (see [9, 31, 32]):

(4.8) ∥Πm∥L(C[a,b],C[(a+b)/2−rh1/2,(a+b)/2+rh1/2]) ≤ cr(1 + logm),

where the constant cr depends only upon r > 0.
As is well known, logarithmic growth is the slowest which holds

for projectors Pm : C[a, b] → Pm−1 and, for example, Chebyshev
interpolation projectors Πm have this slowest growth.

Recall, see e.g, [9, 30], that the Chebyshev interpolant Πmg is a
polynomial of degree m− 1 that interpolates g ∈ C[a, b] at m distinct
knots {xi} ⊂ (a, b):

(4.9) xi =
a+ b

2
+
b− a

2
cos

(
2i− 1

2m
π

)
, i = 1, . . . ,m.

Actually, these knots are zeros of the Chebyshev polynomial of the first
kind Tm((2x− a− b)/(b− a)), where:

(4.10) Tm(t) = cos(m arccos t), t ∈ [−1, 1], m = 0, 1, . . . .

In the case of Chebyshev knots (4.9) the non-improvable estimate

max
a≤x≤b

∣∣g(x)− (Πmg)(x)
∣∣ ≤ 2(b− a)m

m! 4m
max
a≤x≤b

|g(m)(x)|,(4.11)

g ∈ Cm[a, b]

holds, and

∥Πm∥L(C[a,b],C[a,b]) ≤ 8 +
4

π
logm, m = 1, 2, . . . .

On the other hand, it is known that, for any projection operator
Pm : C[a, b] → Pm−1, that is, for any operator Pm : C[a, b] → C[a, b]
such that P 2

m = Pm and the range R(Pm) = Pm−1, the following holds:

∥Pm∥L(C[a,b],C[a,b]) ≥ c0(1 + logm), m = 1, 2, . . . ,

where c0 > 0 is independent of m, see e.g, [9, 30]. Thus, in the case
of Chebyshev knots (4.9), the norm ∥Πm∥L(C[a,b],C[a,b]) is of minimal
possible growth order as m→ ∞.

Further, in the central part [xk, xk+1] or [xk, xk+2], the interpolation
error g−Πmg is even smaller than the error on [a, b] of the Chebyshev
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interpolant Πmg of degree m− 1. Indeed, with respect to b− a = mh
the estimate (4.11) for g ∈ Cm[a, b] reads:

max
a≤x≤b

∣∣g(x)− (Πmg)(x)
∣∣ ≤ θmh

m max
a≤x≤b

∣∣∣g(m)(x)
∣∣∣ ,(4.12)

θm =
2mm

m! 4m
.(4.13)

Therefore, due to (4.4), for even m we have

(4.14)
θm
ϑm

=
22m+1mm ((m/2)!)

2

4m (m!)2
=

2mm ((m/2)!)
2

(m!)2
∼=

(
e

2

)m

.

For instance, θ4/ϑ4 = 32/9 for m = 4, and the Chebyshev interpolant
Πmg is approximately 3.56 times coarser than the central part of the
interpolant Πmg.

Due to (4.6) for odd m, we have

(4.15)
θm
ϑm

=
2mm 9m!

m! 4m2
√
3(((m− 1)/2)!)2

∼=
3
√
3

2π

(
e

2

)m

.

For instance, θ5/ϑ5 = (9375
√
3)/4096 for m = 5, and Chebyshev

interpolant Πmg is approximately 3.96 times coarser than the central
part of the interpolant Πmg.

5. Central part interpolation by piecewise polynomials. We
introduce in R the uniform grid:

(5.1) {jh : j ∈ Z} , h =
1

n
, n ∈ N.

Let m ∈ N, m ≥ 2, be fixed. Given a function g ∈ C[−δ, 1 + δ],
δ > 0, we define a piecewise polynomial interpolant Πh,mg ∈ C[0, 1]
for h = 1/n < (2δ)/m as follows. On every subinterval, [jh, (j + 1)h],
0 ≤ j ≤ n− 1, the function Πh,mg is defined independently from other

subintervals as a polynomial Π
[j]
h,mg ∈ Pm−1 of degree ≤ m− 1 by the

conditions

Π
[j]
h,mg(lh) = g(lh), l = j − m

2
+ 1, . . . , j +

m

2
if m is even,

Π
[j]
h,mg(lh) = g(lh), l = j − m− 1

2
, . . . , j +

m− 1

2
if m is odd.
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A unified writing form of these interpolation conditions is

(5.2) Π
[j]
h,mg(lh) = g(lh) for l ∈ Z such that l − j ∈ Zm,

where

Zm =

{
k ∈ Z : −m

2
< k ≤ m

2

}
,

Z := {. . . ,−1, 0, 1, . . .} .

For an “interior” knot jh, 1 ≤ j ≤ n− 1, interpolation conditions (5.2)

contain the condition (Π
[j−1]
h,m g)(jh) = g(jh) as well as the condition

(Π
[j]
h,mg)(jh) = g(jh); thus, Πh,mg is uniquely defined at interior knots,

and Πh,mg is continuous on [0, 1], namely, for the “interior” knots jh,
1 ≤ j ≤ n− 1, interpolation conditions (5.2) yield

(Πh,mg)(jh) = g(jh)

for Πh,mg as a function on [(j − 1)h, jh] as well as a function on
[jh, (j + 1)h]. The one side derivatives of the interpolant Πh,mg at
the interior knots may be different.

We introduce the Lagrange fundamental polynomials Lk,m ∈ Pm−1,
k ∈ Zm, satisfying Lk,m(l) = δk,l for l ∈ Zm, where δk,l is the Kronecker
symbol, δk,l = 0 for k ̸= l and δk,k = 1. An explicit formula for Lk,m is
given by

(5.3) Lk,m (t) =
∏

l∈Zm\{k}

t− l

k − l
, k ∈ Zm.

For 0 ≤ j ≤ n− 1, we claim that

(Π
[j]
h,mg) (t) =

∑
k∈Zm

g ((j + k)h)Lk,m (nt− j) ,(5.4)

t ∈ [jh, (j + 1)h].

Indeed, Π
[j]
h,mg defined by (5.4) is really a polynomial of degree ≤ m−1,

and it satisfies interpolation conditions (5.2): for l with l− j ∈ Zm, the
following holds:

(Π
[j]
h,mg) (lh) =

∑
k∈Zm

g ((j + k)h)Lk,m (l − j)
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=
∑
k∈Zm

g ((j + k)h) δk,l−j

= g ((j + (l − j))h) = g (lh) .

For m = 2, the interpolant Πh,2g is the usual piecewise linear
function joining the pair of points

(jh, g (jh)) ∈ R2 and ((j + 1)h, g ((j + 1)h)) ∈ R2

for 0 ≤ j ≤ n − 1 by a straight line; Πh,2g does not use the values
of g outside [0, 1], and Πh,2g is a projection operator in C[0, 1], i.e.,
Π2

h,2 = Πh,2.

For m ≥ 3, Πh,mg uses values of g outside of [0, 1]. For g ∈ C[0, 1],
Πh,mg obtains a sense after an extension of g onto [−δ, 1 + δ] with
δ ≥ (m/2)h. In our work, we will consider the functions g ∈ Cm[0, 1]
that satisfy the boundary conditions (recall Theorem 3.2):

g(j) (0) = g(j) (1) = 0, j = 1, . . . ,m.

This fortuitously yields that the simplest extension operator

Eδ : C [0, 1] → C [−δ, 1 + δ] ,(5.5)

(Eδg) (t) =


g (0) for − δ ≤ t ≤ 0,

g (t) for 0 ≤ t ≤ 1,

g (1) for 1 ≤ t ≤ 1 + δ,

(5.6)

maintains the smoothness of g. The operator

(5.7) Ph,m := Πh,mEδ : C [0, 1] → C [0, 1]

is well defined, and P 2
h,m = Ph,m, i.e., Ph,m is a projector in C[0, 1].

For wh ∈ R(Ph,m) (the range of Ph,m), we have wh = Ph,mwh =
Πh,mEδwh and, due to (5.4), we obtain for t ∈ [jh, (j + 1)h], j =
0, . . . , n− 1, that

(5.8) wh(t) =
∑
k∈Zm

(Eδwh)((j + k)h)Lk,m(nt− j),
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where

(Eδwh)(ih) =


wh(ih) for i = 0, . . . , n,

wh(0) for i < 0,

wh(1) for i > n.

Thus, wh ∈ R(Ph,m) is uniquely determined on [0, 1] by its knot values
wh(ih), i = 0, . . . , n. We conclude that dimR(Ph,m) = n+1. It is also
clear that, for wh ∈ R(Ph,m), we have wh = 0 if and only if wh(ih) = 0,
i = 0, . . . , n.

For g ∈ C[−δ, 1 + δ], the interpolant Πh,mg is closely related to the
central part interpolation of g on the uniform grid treated in Section 4.

On [jh, (j + 1)h], the interpolant Πh,mg = Π
[j]
h,mg coincides with the

polynomial interpolant Πmg constructed for g on the interval [aj , bj ],
where

aj =

(
j − m− 1

2

)
h,

bj =

(
j +

m+ 1

2

)
h in the case of even m,

aj =

(
j − m

2

)
h,

bj =

(
j +

m

2

)
h in the case of odd m.

Moreover, [jh, (j + 1)h] is contained in the central part of [aj , bj ] on
which the interpolation error can be estimated by (4.3) and (4.5). In
this way, we obtain the following result.

Lemma 5.1.

(i) For g ∈ Cm[−δ, 1 + δ], m ≥ 2, δ > 0, h = 1/n < (2δ)/m,

(5.9) max
0≤t≤1

|g (t)− (Πh,mg)(t)| ≤ ϑmh
m max

−δ≤t≤1+δ
|g(m) (t) |,

with ϑm defined by (4.4) and (4.6), respectively, for even and odd m.

(ii) Let

V (m) :=
{
v ∈ Cm [0, 1] : v(j) (0) = v(j) (1) = 0, j = 1, . . . ,m

}
.
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Then, for g ∈ V (m), the following holds:

(5.10) max
0≤t≤1

|g (t)− (Ph,mg) (t)| ≤ ϑmh
m max

0≤t≤1
|g(m) (t) |.

Proof. Claim (i) is a direct consequence of Lemma 4.1. Further, to
prove estimate (5.10), we have Eδg ∈ Cm[−δ, 1 + δ] for g ∈ V (m) and

max
−δ≤t≤δ

|(Eδg)
(m)(t)| = max

0≤t≤1
|g(m)(t)|,

(Eδg)(t) = g(t) for 0 ≤ t ≤ 1.

Applying (5.9) to Eδg, yields:

max
0≤t≤1

|(Eδg)(t)− (Πh,mEδg)(t)| ≤ ϑmh
m max

−δ≤t≤1+δ
|(Eδg)

(m)(t)|.

We can rewrite it as

max
0≤t≤1

|g(t)− (Ph,mg)(t)| ≤ ϑmh
m max

0≤t≤1
|g(m)(t)|,

which completes the proof. �

From (4.8), (5.5), (5.6) and (5.7), we obtain that, with respect to n
(with respect to h = 1/n) the norms ∥Ph,m∥L(C[0,1],C[0,1]) are uniformly
bounded:

(5.11) ∥Ph,m∥L(C[0,1],C[0,1]) ≤ c (1 + logm) ,

with a constant c which is independent of h (of n) and of m.

Together with (5.10), noting that V (m) is dense in C[0, 1], the
Banach-Steinhaus theorem yields the next result.

Lemma 5.2. For any g ∈ C[0, 1],

max
0≤t≤1

|g (t)− (Ph,mg) (t)| −→ 0 as n→ ∞.

It is natural to compare the accuracy of Πh,mg, not with the accuracy

of Πh,mg (the Chebyshev interpolation), but with the accuracy of

Πh̄,mg, h = mh, since Πh,mg and Πh̄,mg need, respectively, n+1 and n
values of g. Due to (4.14) and (4.15), we have similar relations between
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the accuracies of g −Πh,mg and of g −Πh̄,mg:

∥g −Πh̄,mg∥∞
∥g −Πh,mg∥∞

∼=
(
e

2

)m

, m = 2k, k ≥ 1;

∥g −Πh̄,mg∥∞
∥g −Πh,mg∥∞

∼=
3
√
3

2π

(
e

2

)m

, m = 2k + 1, k ≥ 1.

6. Collocation method based on central part interpolation.

6.1. Operator form of the method and convergence analysis.
We rewrite equation (3.6) in the operator form

(6.1) v = Tφv + fφ,

where operator Tφ is defined by

(6.2) (Tφv)(t) =

1∫
0

Kφ(t, s)v(s) ds, 0 ≤ t ≤ 1,

with Kφ(t, s), given by (3.7). Using Ph,m, see (5.7), we approxi-
mate (6.1) by equation

(6.3) vh = Ph,mTφvh + Ph,mfφ.

This is the operator form of our first method based on collocation
techniques and central part interpolation on the uniform grid.

It follows from (3.4) that (3.16) and (3.18) hold. From (3.20) with
δ = 0, we obtain that A,B ∈ C([0, 1]× [0, 1]). Therefore, Tφ, given by
(6.2), is compact as an operator from C[0, 1] into C[0, 1]. Assuming that
N (I−T ) = {0}, or equivalently, N (I−Tφ) = {0}, the bounded inverse
(I − Tφ)

−1 : C[0, 1] → C[0, 1] exists due to the Fredholm alternative.
Denote

κ = ∥(I − Tφ)
−1∥L(C[0,1],C[0,1]).

The compactness of Tφ : C[0, 1] → C[0, 1] and the pointwise conver-
gence Ph,m to I (the identity mapping) in C[0, 1], see Lemma 5.2, imply
the norm convergence

ϵh := ∥Tφ − Ph,mTφ∥L(C[0,1],C[0,1]) −→ 0 as n→ ∞
(as h = 1/n→ 0).
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Hence, there is an n0 such that κϵh < 1 for n > n0. We conclude that
I − Ph,mTφ is invertible in C[0, 1] for n ≥ n0 and

κh :=
∥∥(I − Ph,mTφ)

−1
∥∥
L(C[0,1],C[0,1])

−→ κ as n→ ∞(6.4)

(as h = 1/n→ 0).

This proves the unique solvability of the collocation equation (6.3) for
n ≥ n0.

Let v and vh be the solutions of (6.1) and (6.3), respectively. Then,

(I − Ph,mTφ)(v − vh) = v − Ph,mv,

v − vh = (I − Ph,mTφ)
−1(v − Ph,mv)

and

(6.5) ∥v − vh∥∞ ≤ κh ∥v − Ph,mv∥∞ , h = 1/n, n ≥ n0.

Note also that

(6.6) ∥v − vh∥∞ ≥ 1

∥I − Ph,mTφ∥L(C[0,1],C[0,1])

∥v − Ph,mv∥∞ ,

∥I − Ph,mTφ∥L(C[0,1],C[0,1]) −→ ∥I − Tφ∥L(C[0,1],C[0,1])

as n→ ∞;

thus (6.5) essentially cannot be improved.

Further, let the assumptions of Lemma 2.2 be fulfilled, and let
f ∈ Cm,θ0,θ1(0, 1), m ∈ N, m ≥ 2, θ0 = ν + λ0, θ1 = ν + λ1.
Then, it follows from Theorem 2.3 that the solution u of (1.1) belongs
to Cm,θ0,θ1(0, 1). By Theorem 3.2, for v(t) = u(φ(t)), we have
v ∈ Cm[0, 1] and v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m; by Lemma
5.1 (ii), ∥v − Ph,mv∥∞ ≤ ϑmh

m∥v(m)∥∞. Now, (6.5) yields

(6.7) ∥v − vh∥∞ ≤ κhϑmh
m∥v(m)∥∞, h = 1/n, n ≥ n0.

We summarize the above-obtained results as follows.

Theorem 6.1. Let the assumptions of Lemma 2.2 be fulfilled. More-
over, assume that f ∈ Cm,θ0,θ1(0, 1), with m ∈ N, m ≥ 2, θ0 = ν + λ0,
θ1 = ν + λ1. Let N (I − T ) = {0}, or equivalently, N (I − Tφ) = {0}.
Finally, let φ be defined by the formula (3.2) with parameters p0, p1 ∈ N
satisfying (3.4).
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Then, equation (6.1) (equation (3.6)) has a unique solution v ∈
C[0, 1], and there exists an n0 such that, for n ≥ n0, equation (6.3)
has a unique solution vh. The accuracy of vh can be estimated by (6.7)
where κh is defined in (6.4) and ϑm is given by the formulae (4.4) and
(4.6) for even and odd m, respectively.

Remark 6.2. Method (6.3) contains n + 1 unknowns and is more
precise than the standard piecewise polynomial collocation method

(6.8) vh̄ = Πh̄,mTφvh̄ +Πh̄,mfφ, h = mh,

with n = 1/h unknowns and arbitrary choice of m collocation points
in subintervals [jh, (j+1)h], even in the case of Chebyshev collocation
points. For example, as was just shown, the accuracy of method (6.3)
is guided by ∥v−Ph,mv∥∞ where v is the solution of the equation (6.1).

Similarly, the accuracy of method (6.8) is guided by ∥v−Πh̄,mv∥∞.
At the end of Sections 4 and 5 we compared ∥v − Ph,mv∥∞ with

∥v−Πh̄,mv∥∞ in the Chebyshev case: ∥v−Πh̄,mv∥∞ is coarser than ∥v−
Ph,mv∥∞ approximately (e/2)m times for even m and approximately

(3
√
3)/(2π)(e/2)m times for odd m. For other choices of interpolation

points the accuracy of the standard piecewise polynomial collocation
method is, as a rule, more coarse. For instance, in the case of uniform
location of collocation points, the error is 2m times coarser than the
error ∥v − Ph,mv∥∞.

Remark 6.3. With respect to uh(x) := vh(φ
−1(x)), 0 ≤ x ≤ 1,

estimate (6.7) on conditions of Theorem 6.1 reads as

max
0≤x≤1

|u(x)− uh(x)| = max
0≤t≤1

|v(t)− vh(t)| ≤ chm,

h = 1/n, n ≥ n0,

where c is a positive constant which does not depend on n.

6.2. Matrix form of the method. The solution vh of equation (6.3)
belongs to R(Ph,m); therefore, the knot values vh(ih) (i = 0, . . . , n)
uniquely determine vh. Equation (6.3) is equivalent to a system of
linear algebraic equations with respect to vh(ih), i = 0, . . . , n, and our
task is to write this system.
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For wh ∈ R(Ph,m), we have wh = 0 if and only if wh(ih) = 0,
i = 0, . . . , n. Since (Ph,mw)(ih) = w(ih), i = 0, . . . , n, equation (6.3) is
equivalent to the condition:

vh(ih) = (Tφvh)(ih) + fφ(ih), i = 0, . . . , n,

i.e., vh ∈ R(Ph,m) satisfies equation (6.1) (equation (3.6)) at the knots
ih, i = 0, . . . , n. Using representation (5.8) for vh, we obtain

(Tφvh)(ih) =

1∫
0

Kφ(ih, s)vh(s) ds

=

n−1∑
j=0

(j+1)h∫
jh

Kφ(ih, s)vh(s) ds

=
n−1∑
j=0

∑
k∈Zm

(j+1)h∫
jh

Kφ(ih, s)Lk,m(ns− j) ds(Eδvh)((j + k)h)

=
n−1∑
j=0

∑
k∈Zm

αi,j,k


vh(0) for j + k ≤ 0,

vh((j + k)h) for 1 ≤ j + k ≤ n− 1,

vh(1) for j + k ≥ n.

Thus,

(Tφvh)(ih) =

n∑
l=0

bi,lvh(lh), i = 0, . . . , n,

where, for k ∈ Zm, we denote

αi,j,k =

(j+1)h∫
jh

Kφ(ih, s)Lk,m(ns− j) ds,(6.9)

i = 0, . . . , n, j = 0, . . . , n− 1,

(6.10) bi,l =


∑

k∈Zm

∑
{j:0≤j≤n−1,j+k≤0} αi,j,k for l = 0∑

k∈Zm

∑
{j:0≤j≤n−1,j+k=l} αi,j,k for 1 ≤ l ≤ n− 1∑

k∈Zm

∑
{j:0≤j≤n−1,j+k≥n} αi,j,k for l = n
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with i, l = 0, . . . , n. We see that the matrix form of method (6.3) is
given by

(6.11) vh(ih) =

n∑
l=0

bi,lvh(lh) + fφ(ih), i = 0, . . . , n,

with bi,l defined by (6.9)–(6.10). Having determined vh(ih), i =
0, . . . , n, through solving the system (6.11), the collocation solution
vh(t) at any intermediate point t ∈ [jh, (j + 1)h], j = 0, . . . , n − 1, is
given by
(6.12)

vh(t) =
∑
k∈Zm

Lk,m(nt− j)


vh(0) for j + k ≤ 0,

vh((j + k)h) for 1 ≤ j + k ≤ n− 1,

vh(1) for j + k ≥ n,

with Lk,m, k ∈ Zm, defined by (5.3).

7. Product integration based on the central part interpola-
tion.

7.1. Operator form of the method and convergence analysis.
We present in the following lemma some estimates for functions A(t, s)
and B(t, s), see (3.8), as well as ∂ms [A(t, s)v(s)], ∂ms [B(t, s)v(s)] in a
somewhat specific form for the requirements of Theorem 7.2 below.

Lemma 7.1. Let a and b satisfy the conditions of Lemma 2.2. Let
A and B be defined by the formulas (3.8) and (3.9), respectively. Let
φ be defined by (3.2). Finally assume that u ∈ Cm,θ0,θ1(0, 1), m ∈ N,
θ0 = ν + λ0, θ1 = ν + λ1, and let v(t) = u(φ(t)).

Then, the following estimates hold for (t, s) ∈ [0, 1]× (0, 1).

(i) If p0, p1 ∈ N

(7.1) p0 > m/(1− ν − λ0), p1 > m/(1− ν − λ1),

then, with δ0 := (1−ν−λ0)p0−m > 0 and δ1 := (1−ν−λ1)p1−m > 0,

(7.2) |A(t, s)| ≤ csm−(1−ν)+δ0(1− s)m−(1−ν)+δ1

and

(7.3) |∂ms [A(t, s)v(s)]| ≤ cs−(1−ν)+δ0(1− s)−(1−ν)+δ1 ∥u∥Cm,θ0,θ1 .
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(ii) If p0, p1 ∈ N,

(7.4) p0 > m/(1− λ0), p1 > m/(1− λ1),

then with δ0 := (1− λ0)p0 −m > 0 and δ1 := (1− λ1)p1 −m > 0, the
following holds:

(7.5) |B(t, s)| ≤ csm−1+δ0(1− s)m−1+δ1

and

(7.6) |∂ms [B(t, s)v(s)]| ≤ cs−1+δ0(1− s)−1+δ1 ∥u∥Cm,θ0,θ1 .

Proof. These estimates are direct consequences of Lemmas 3.3–
3.4. �

We determine the approximate solution vh for equation (3.6) by
solving the following problem:

(7.7)

vh(t) =

1∫
0

|t− s|−νPh,m(A(t, s)vh(s)) ds

+

1∫
0

Ph,m(B(t, s)vh(s)) ds+ fφ(t),

where 0 ≤ t ≤ 1 and A,B ∈ C([0, 1] × [−δ, 1 + δ]), δ > 0, see (3.20).
Here, Ph,m, see (5.7), is applied to the products A(t, s)vh(s) and
B(t, s)vh(s) as functions of s treating t as a parameter. This is the
operator form of a product integration method corresponding to the
piecewise polynomial central part interpolation on the uniform grid
{jh : j = 0, . . . , n}, h = 1/n, n ∈ N. The convergence behavior of
method (7.7) is characterized by the next theorem.

Theorem 7.2.

(i) Let 0 < ν < 1, λ0, λ1 ∈ R, λ0 < 1−ν, λ1 < 1−ν. Let f ∈ C[0, 1].
Assume that a, b ∈ C([0, 1] × (0, 1)) satisfy (2.2). Let N (I − T ) = 0,
with T given by (2.1). Finally, let φ be defined by the formula (3.2)
with parameters p0, p1 ∈ N such that

p0 > max

{
1

1− λ0
,

1− ν

1− ν − λ0

}
,
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p1 > max

{
1

1− λ1
,

1− ν

1− ν − λ1

}
.

Then, for sufficiently large n, say for n ≥ n0, equation (7.7) has a
unique solution vh ∈ C[0, 1], h = 1/n, and

(7.8) ∥v − vh∥∞ = max
t∈[0,1]

|v(t)− vh(t)| −→ 0 as n→ ∞,

where v ∈ C[0, 1] is the solution of (3.6).

(ii) Let m ∈ N, λ0, λ1 ∈ R, λ0 < 1 − ν, λ1 < 1 − ν, 0 <
ν < 1. Assume that a, b ∈ Cm([0, 1] × (0, 1)) satisfy (2.3). Let
f ∈ Cm,θ0,θ1(0, 1) with θ0 = ν + λ0, θ1 = ν + λ1. Let N (I − T ) = {0},
for T given by (2.1). Finally, let φ be defined by formula (3.2) with
parameters p0 and p1 satisfying (7.1) and (7.4). Then,

(7.9) ∥v − vh∥∞ ≤ chm ∥f∥Cm,θ0,θ1 (0,1) , n ≥ n0,

with a positive constant c which is independent of n and f .

Proof. We consider equations (3.6) and (7.7) as operator equations

v = T v + fφ(7.10)

and

vh = Thvh + fφ,(7.11)

where fφ(t) = f(φ(t)), 0 ≤ t ≤ 1, and T = Tφ and Th are defined by
the formulae

(7.12) (T v)(t) =
1∫

0

[|t− s|−ν A(t, s) + B(t, s)]v(s) ds, 0 ≤ t ≤ 1,

(7.13)

(Thv)(t) =
1∫

0

[|t− s|−ν
Ph,m(A(t, s)v(s)) + Ph,m(B(t, s)v(s))] ds,

where 0 ≤ t ≤ 1. Since f ∈ C[0, 1], fφ(t) = f(φ(t)), 0 ≤ t ≤ 1, it
follows from (3.2) that fφ ∈ C[0, 1]. Since A,B ∈ C([0, 1] × [0, 1]), we
obtain that T and Th are compact as operators from C[0, 1] into C[0, 1].
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Next, we show that Th → T compactly in C[0, 1], i.e.,

∥Thv − T v∥∞ −→ 0(7.14)

for every v ∈ C[0, 1] as h = 1/n→ 0,

(vh) ⊂ C[0, 1], ∥vh∥∞ ≤ 1, h = 1/n,(7.15)

=⇒ (Thvh) is relatively compact in C[0, 1].

We observe that the sets {A(t, ·) : 0 ≤ t ≤ 1} and {B(t, ·) : 0 ≤ t ≤
1} are relatively compact in C[−δ, 1+δ], with a fixed δ > 0. Therefore,
we obtain by Lemma 5.2, for a fixed v ∈ C[0, 1] extended by v(s) = v(0)
for −δ ≤ s ≤ 0 and v(s) = v(1) for 1 ≤ s ≤ 1 + δ, that
(7.16)

sup
0≤t≤1

max
0≤s≤1

|A (t, s) v (s)− Ph,m (A(t, s)v(s))| −→ 0 as n→ ∞,

(7.17)
sup

0≤t≤1
max
0≤s≤1

|B(t, s)v(s)− Ph,m (B(t, s)v(s))| −→ 0 as n→ ∞.

Further, we have

(7.18)

1∫
0

|t− s|−ν
ds ≤ 2

1− ν
, 0 ≤ t ≤ 1, 0 < ν < 1.

Therefore,

∥Thv − T v∥∞ = sup
0≤t≤1

∣∣∣∣ ∫ 1

0

[|t− s|−ν
Ph,m(A(t, s)v(s))

+ Ph,m(B(t, s)v(s))] ds

−
∫ 1

0

[|t− s|−ν A(t, s) + B(t, s)]v(s) ds
∣∣∣∣

≤
(

2

1− ν

)
sup

0≤t≤1
max
0≤s≤1

|A(t, s)v(s)− Ph,m(A(t, s)v(s))|

+ sup
0≤t≤1

max
0≤s≤1

|B(t, s)v(s)− Ph,m(B(t, s)v(s))| .

This, together with (7.16) and (7.17), yields (7.14).

The proof of (7.15) can be built with the help of the Arzelà-Ascoli
theorem.



430 K. ORAV-PUURAND, A. PEDAS AND G. VAINIKKO

Due to the condition N (I − T ) = {0}, N (I − T ) = {0} also. As
is well known, see [2, 3, 17, 36, 37], relations (7.14), (7.15) and
N (I − T ) = {0} imply that equation (7.10) (equation (3.6)) has a
unique solution v ∈ C[0, 1], and there exists an n0 ∈ N such that,
for n ≥ n0, equation (7.11) (equation (7.7)) has a unique solution
vh ∈ C[0, 1] and

(7.19) ∥v − vh∥∞ ≤ c ∥T v − Thv∥∞ , n ≥ n0,

with a constant c > 0 independent of n (on h = 1/n). Convergence (7.8)
is a consequence of (7.14).

Next, we establish estimate (7.9). For solutions u and v of equations
(1.1) and (3.6), we have v(t) = u(φ(t)) and u ∈ Cm,θ0,θ1(0, 1) by
Theorem 2.3. In order to prove (7.9), it remains to show that (see
7.19):

(7.20) ∥T v − Thv∥∞ ≤ chm ∥f∥Cm,θ0,θ1 (0,1) , n ≥ n1.

We have, see (7.12) and (7.13),

(T v)(t)− (Thv)(t) =
1∫

0

|t− s|−ν
(I − Ph,m) (A(t, s)v(s)) ds

+

1∫
0

(I − Ph,m)(B(t, s)v(s)) ds, 0 ≤ t ≤ 1.

Therefore,
(7.21)

|(T v)(t)− (Thv)(t)| ≤
∣∣∣∣ ∫ 1

0

|t− s|−ν
(I − Ph,m) (A(t, s)v(s)) ds

∣∣∣∣
+

∣∣∣∣ ∫ 1

0

(I − Ph,m)(B(t, s)v(s)) ds
∣∣∣∣, 0 ≤ t ≤ 1.

We estimate the first integral on the right hand side of the inequal-
ity (7.21) by dividing the integration into four subintervals: [0,mh],
[mh, 1/2], [1/2, 1 −mh] and [1 −mh, 1], where mh ≤ 1/2, or equiva-
lently, n ≥ 2m. Thus, first, we estimate
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(7.22)

∣∣∣∣ ∫ mh

0

|t− s|−ν
(I − Ph,m)(A(t, s)v(s)) ds

∣∣∣∣
≤

(
1 + ∥Ph,m∥L(C[0,1],C[0,1])

)
max

0≤s≤mh
|A(t, s)| ∥v∥∞

mh∫
0

|t− s|−ν
ds,

with 0 ≤ t ≤ 1. It follows from (7.2) by δ0 := (1 − ν − λ0)p0 −m > 0
that

max
0≤s≤mh

|A(t, s)| ≤ c max
0≤s≤mh

sm−(1−ν)+δ0 ≤ c(mh)m−(1−ν)+δ0 ,

where 0 ≤ t ≤ 1. Since

mh∫
0

|t− s|−ν
ds ≤ 2m1−ν

1− ν
h1−ν , 0 ≤ t ≤ 1,

we now obtain

max
0≤s≤mh

|A(t, s)|
mh∫
0

|t− s|−ν
ds ≤ c1h

m, 0 ≤ t ≤ 1,

with a constant c1 = c1(m, ν, δ0) > 0 which is independent of h = 1/n.
This, together with (5.11), (7.22) and ∥v∥∞ = ∥u∥∞ ≤ ∥u∥Cm,θ0,θ1 (0,1)

yields
(7.23)∣∣∣∣ ∫ mh

0

|t− s|−ν
(I − Ph,m)(A(t, s)v(s)) ds

∣∣∣∣ ≤ c2h
m ∥u∥Cm,θ0,θ1 (0,1) ,

where 0 ≤ t ≤ 1, and c2 is a positive constant which does not depend
on h = 1/n.

On the subinterval [mh, 1/2], we use (5.10) to estimate

|(I − Ph,m)A(t, s)v(s)| ≤ ϑmh
m |∂ms [A(t, s)v(s)]|

for 0 ≤ t ≤ 1, mh ≤ s ≤ 1/2. Using (7.3), we get for 0 ≤ t ≤ 1 that∣∣∣∣ ∫ 1/2

mh

|t− s|−ν
(I − Ph,m)(A(t, s)v(s)) ds

∣∣∣∣
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≤ c3h
m

1/2∫
0

|t− s|−ν
s−(1−ν)+δ0ds ∥u∥Cm,θ0,θ1 (0,1)(7.24)

≤ c4h
m ∥u∥Cm,θ0,θ1 (0,1) ,

with some positive constants c3 and c4 which are independent of
h = 1/n.

In a similar manner, we obtain, for 0 ≤ t ≤ 1,

(7.25)

∣∣∣∣ ∫ 1−mh

1/2

|t− s|−ν
(I − Ph,m)(A(t, s)v(s)) ds

∣∣∣∣
≤ c5h

m ∥u∥Cm,θ0,θ1 (0,1) ,

(7.26)

∣∣∣∣ ∫ 1

1−mh

|t− s|−ν
(I − Ph,m)(A(t, s)v(s)) ds

∣∣∣∣
≤ c6h

m ∥u∥Cm,θ0,θ1 (0,1) ,

where c5 and c6 are constants which do not depend upon h = 1/n.

Due to estimates (7.23)–(7.26) and (2.4), we finally obtain that

(7.27)

∣∣∣∣ ∫ 1

0

|t− s|−ν
(I − Ph,m) (A(t, s)v(s)) ds

∣∣∣∣
≤ chm ∥u∥Cm,θ0,θ1 (0,1)

≤ c′hm ∥f∥Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1,

with some constants c and c′ independent of h = 1/n.

In order to estimate the second integral on the right hand side of
inequality (7.21), we use (5.10), (2.4) and (7.6) and obtain∣∣∣∣ ∫ 1

0

(I − Ph,m)(B(t, s)v(s)) ds
∣∣∣∣ ≤ chm ∥f∥Cm,θ0,θ1 (0,1) , 0 ≤ t ≤ 1,

with a constant c independent of h = 1/n. This, together with (7.21)
and (7.27), proves (7.20) and completes the proof of Theorem 7.9. �
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Remark 7.3. With respect to uh(x) := vh(φ
−1(x)), estimate (7.9)

reads, for sufficiently large n, as

max
0≤x≤1

|u(x)− uh(x)| = max
0≤t≤1

|v(t)− vh(t)| ≤ chm ∥f∥Cm,θ0,θ1 (0,1) .

Remark 7.4. An advantage of the product integration method (7.7),
compared to the collocation method (6.3), is that the number of
integrals which must be numerically computed are, respectively, of
order 2mn and mn2, see subsection 7.2.

7.2. Matrix form of the method. Let us derive the matrix form of
the product interpolation method (7.7). This method is of Nyström
type; the solution vh of equation (7.7) is uniquely determined by
its knot values vh(ih), i = 0, . . . , n, through the Nyström extension,
derived from (7.7) with the aid of (5.4) and (5.7),
(7.28)

vh(t) =
n−1∑
j=0

∫ (j+1)h

jh

∑
k∈Zm

B (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j) ds

+
n−1∑
j=0

∫ (j+1)h

jh

|t− s|−ν

+
∑
k∈Zm

A (t, (j + k)h) vh ((j + k)h)Lk,m(ns− j) ds+ fφ(t),

0 ≤ t ≤ 1.

An algebraic system of linear equations is obtained with respect to
the grid values vh(ih), i = 0, . . . , n, by collocating (7.28) at the points
t = ih:
(7.29)

vh(ih) =

n−1∑
j=0

∑
k∈Zm

{
A (ih, (j + k)h)

∫ (j+1)h

jh

|ih− s|−νLk,m(ns− j) ds

+ B(ih, (j + k)h)

∫ (j+1)h

jh

Lk,m(ns− j) ds

}
· vh((j + k)h) + fφ(ih), i = 0, . . . , n.
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We extend A(t, s) and B(t, s) with respect to s outside [0, 1] by the zero
value; thus,

A(ih, (j + k)h = 0,

B(ih, (j + k)h = 0 for j + k ≤ 0 and j + k ≥ n;

therefore, on the right hand side of (7.29), the values vh(lh) with l ≤ 0
and l ≥ n are actually not exploited. Occurring here (in 7.29), the
integrals depend on the difference i − j; with the change of variables
ns− j = σ, we see that∫ (j+1)h

jh

|ih− s|−ν
Lk,m(ns− j) ds = h1−ν

∫ 1

0

|i− j − σ|−ν
Lk,m(σ) dσ.

System (7.29) then takes the form

vh(ih) = h1−ν
n−1∑
j=0

∑
k∈Zm

{A(ih, (j + k)h)αi−j,k

+B(ih, (j + k)h)βk} vh((j + k)h) + fφ(ih),

i = 0, . . . , n,

or, collecting on the right hand side the coefficients by vh((j + k)h)
with fixed j + k = l,

(7.30) vh(ih) =
n−1∑
l=1

ci,lvh(lh) + fφ(ih), i = 0, . . . , n,

where

ci,l = h1−ν

[
A(ih, lh)

∑
{k∈Zm:0≤l−k≤n−1}

αi−l+k,k + B(ih, lh)
∑
k∈Zm

βk

]
,

(7.31)

i = 0, . . . , n, l = 1, . . . , n− 1,

αi′,k :=

∫ 1

0

|i′ − σ|−νLk,m(σ) dσ,(7.32)

i′ = −n+ 1, . . . , n, k ∈ Zm,
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and

(7.33) βk := hν
∫ 1

0

Lk,m(σ) dσ, k ∈ Zm.

Note that A(ih, lh) = 0 for l ≤ 0 and l ≥ n.

Having found the solution {vh(ih)}, i = 0, . . . , n, of system (7.30),
we can use (7.28) to find the solution at any point t ∈ [0, 1].

Remark 7.5. We can also find an approximate solution ṽh(t) by (6.12):

ṽh(t) =
∑
k∈Zm

Lk,m(nt− j)


vh(0) for j + k ≤ 0,

vh((j + k)h) for 1 ≤ j + k ≤ n− 1,

vh(1) for j + k ≥ n,

where Lk,m, k ∈ Zm, are the Lagrange fundamental polynomials
defined in (5.3) and 0 ≤ t ≤ 1. With the conditions of Theorem 7.2 (ii),
the error estimate of order O(hm) also remains for ṽh:

∥v − ṽh∥∞ ≤ chm ∥f∥Cm,θ0,θ1 (0,1) , n ≥ n1.

8. Numerical example. Here we numerically test the convergence
behavior of the proposed algorithms. We will solve equation (1.1) with
a = 1, b = 0 and ν = 1/2:

(8.1) u(x) =

1∫
0

|x− y|−1/2
u(y) dy + f(x), 0 ≤ x ≤ 1.

We put
u(x) = 1 + x1/2 + (1− x)1/2

as the solution of (8.1); it corresponds to the free term
(8.2)

f(x) = 1− π

2
− 2x1/2 − 2(1− x)1/2 − x log

(
1 + (1− x)1/2

)
− (1− x) log

(
1 + x1/2

)
+

1

2
x log x+

1

2
(1− x) log(1− x).

First, we perform in (8.1) the change of variables x = φ(t), y = φ(s),
where φ is given by (3.2), with p0 = p1 = p ∈ N. As a result, we get
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the equation

v(t) =

∫ 1

0

|t− s|−1/2
Φ(t, s)−1/2φ′(s)v(s) ds+ fφ(t),(8.3)

0 ≤ t ≤ 1,

where fφ(t) = f(φ(t)), with f defined by (8.2), Φ(t, s) given by (3.10)
and v(t) = u(φ(t)) the function for which we look.

In order to solve equation (8.3) by the collocation method (6.3), we
need to assemble the system (6.11). The parameters p0 and p1 in the
definition of φ must be greater than m/(1− 1/2) = 2m to achieve the
expected convergence order O(n−m) of our method. Thus, we have to
take p ≥ 2m+ 1 (see Theorem 3.2 with λ0 = λ1 = 0).

In Tables 1–4, the errors

(8.4) ϵm,n,p := max
0≤i≤n

|v(ih)− vh(ih)|

are presented. Here, v is the exact solution of equation (8.3), and vh
is the approximate solution to v obtained by method (6.3). Moreover,
in Tables 1–4, the quotients ϵm,n/2,p/ϵm,n,p for different values of m, n
and p = 2m+1 are presented. Due to Theorem 6.1, the expected limit
value of ϵm,n/2,p/ϵm,n,p is 2m.

TABLE 1. m = 2, p = 5.

n ϵ2,n,5 (ϵ2,n/2,5)/(ϵ2,n,5)

4 4.25E-02

8 2.05E-02 2.07

16 8.02E-03 2.55

32 2.63E-03 3.05

64 7.58E-04 3.47

128 2.03E-04 3.73

256 5.29E-05 3.84

512 1.36E-05 3.89

TABLE 2. m = 3, p = 7.

n ϵ3,n,7 (ϵ3,n/2,7)/(ϵ3,n,7)

4 2.06E-01

8 2.95E-02 6.98

16 3.95E-03 7.48

32 5.47E-04 7.23

64 7.16E-05 7.63

128 9.17E-06 7.81

256 1.17E-06 7.86

512 1.48E-07 7.89
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TABLE 3. m = 4, p = 9.

n ϵ4,n,9 (ϵ4,n/2,9)/(ϵ4,n,9)

4 1.94E-02

8 1.01E-02 2.07

16 1.31E-03 7.74

32 1.09E-04 12.01

64 7.62E-06 14.27

128 5.07E-07 15.04

256 3.27E-07 1.55

512 3.55E-07 0.92

TABLE 4. m = 5, p = 11.

n ϵ5,n,11 (ϵ5,n/2,11)/(ϵ5,n,11)

4 8.33E-02

8 1.99E-02 10.4

16 8.38E-04 23.7

32 2.89E-05 28.9

64 9.31E-07 31.1

128 3.69E-07 2.52

256 3.60E-07 1.02

512 1.48E-07 7.89

In order to solve equation (8.3) by the product integration method
(7.7), we need to assemble the system (7.30). In Tables 5–8, the errors
(8.4) and the quotients ϵm,n/2,p/ϵm,n,p for different values of m, n and
p = 2m + 1 are presented. Due to Theorem 7.2, the expected limit
value of ϵm,n/2,p/ϵm,n,p is 2m.

TABLE 5. m = 2, p = 5.

n ϵ2,n,5 (ϵ2,n/2,5)/(ϵ2,n,5)

4 1.07E-01

8 3.23E-01 3.31

16 1.15E-01 2.81

32 3.66E-02 3.14

64 1.03E-02 3.54

128 2.74E-03 3.77

256 7.07E-04 3.87

512 1.80E-04 3.92

TABLE 6. m = 3, p = 7.

n ϵ3,n,7 (ϵ3,n/2,7)/(ϵ3,n,7)

4 2.94E-00

8 3.41E-01 8.65

16 5.10E-02 6.68

32 7.34E-03 6.95

64 9.53E-04 7.70

128 1.22E-04 7.82

256 1.55E-05 7.86

512 1.97E-06 7.88

TABLE 7. m = 4, p = 9.

n ϵ4,n,9 (ϵ4,n/2,9)/(ϵ4,n,9)

4 1.00E-00

8 2.49E-01 4.02

16 3.02E-02 8.28

32 2.57E-03 11.74

64 1.79E-04 14.34

128 1.19E-05 15.06

256 7.71E-07 15.42

512 3.31E-07 2.33

TABLE 8. m = 5, p = 11.

n ϵ5,n,11 (ϵ5,n/2,11)/(ϵ5,n,11)

4 2.33E-00

8 8.91E-01 8.65

16 1.99E-02 44.8

32 7.25E-04 27.4

64 2.19E-05 33.0

128 7.06E-07 31.1

256 3.71E-07 1.90

512 1.97E-06 7.88
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In all cases, the Fortran in-built package was used for the numerical
results. We see from Tables 1–2 and 5–6 that the obtained numeri-
cal results are in quite good accordance with the theoretical results.
However, it follows from Tables 3–4 and 7–8 that, for greater n, the
actual convergence order sometimes is not achieved. Therefore, a fur-
ther study connected with the realization of the proposed algorithms
in practice is needed. Also, other test examples and a comparison with
other existing methods are of great interest. We plan to study these
questions in a separate paper in the future.

Acknowledgments. The authors thank the reviewer for his/her
constructive suggestions and comments.
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