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ABSTRACT. Sufficient conditions for the existence of at
least one solution of a nonlinear integral equation with
a general kernel are established. The existence result is
proved in C([0, T ], E), where E denotes an arbitrary Banach
space. We use the Darbo-Sadovskii fixed point theorem and
techniques of measure of noncompactness. We extend and
generalize results obtained by other authors in the context of
fractional differential equations. One example illustrates the
theoretical results.

1. Introduction. During the past few years the theory of func-
tional Volterra integral equations has undergone rapid development.
The growth has been strongly promoted by the large number of appli-
cations that this theory has found in rheology, risk theory, renewal the-
ory, branching processes, queuing theory and inventory analysis [12].
Recent developments include studies on state dependent delay [16],
perturbations [13] and attractive behavior of solutions [6, 7].

In this paper, we study existence of solutions for the following
nonlinear Volterra integral equation of convolution type:

(1.1) u(t) =

∫ t

0

a(t− s)f(s, u(s)) ds t ∈ [0, T ],

where a ∈ L1
loc(R+) is a scalar kernel, E is a Banach space with the

norm ∥ · ∥ and f : [0, T ]× E → E satisfies some suitable conditions.
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Equation (1.1) was studied by Aghajani, Pourhadi and Trujillo [3]
for the case

a(t) =
tα−1

Γ(α)
and 0 < α < 1.

See [3, Lemma 3.1] and [21] where the precise notion of solution is
defined. They investigated the existence of solutions for the associated
Cauchy problem using a nice generalization of Darbo’s fixed point theo-
rem via the Hausdorff measure of noncompactness and gave interesting
concrete examples.

The technique of measure of noncompactness for solving evolution
equations has been used increasingly in the past years due to its effi-
ciency when compared with other methods. For instance, Banaś and
Nalepa showed [10] that, with the help of that measure of noncompact-
ness, one can obtain an existence result for a nonlinear quadratic inte-
gral equation of Hammerstein type in Hölder spaces. Existence results
for impulsive differential equations with nonlocal conditions via mea-
sures of noncompactness has been proved by Mallika Arjunan, Kavitha
and Selvi [18]. Also, Allahyari, Arab and Shole Haghighi studied [5]
the existence of solutions for some classes of integro-differential equa-
tions. However, this study does not include the convolution type equa-
tion (1.1). Nonlinear functional equations of convolution type on the
line and with external force term has been studied recently in Lebesgue
spaces by Khosravi, Allahyari and Shole Haghighi [15]. On the other
hand, application of the measure of noncompactness to ℓ1-solvability of
infinite systems of second order differential equations has been consid-
ered by Aghajani and Pourhadi [2] and by Mursaleen and Rizvi [20].
Also, the authors [19] studied an application of measure of noncom-
pactness to ℓp-solvability of infinite systems of differential equations.
For an up-to-date account of this method and its applications, also see
the recent monograph by Banaś and Mursaleen [9].

Since fractional differential equations are particular cases of func-
tional integral equations of the type (1.1), it is natural to ask, for the
following problem:

(Q) For which class of kernels a(t) does there exist a solution for
(1.1)?

We remark that this is an inverse problem in terms of the kernel
a(t), and therefore, it is not included in the recent reference [14] where
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existence of solutions for a very general class of integral equations was
studied.

We have success in solving problem (Q) for the class of kernels a(t)
that satisfy the following condition: there exists 0 < σ < 1 such that
a ∈ L1/σ([0, T ];R) and

(1.2) lim
h→0

∫ T

0

|a(s+ h)− a(s)|1/(1−σ) ds = 0

holds.

It is interesting to note that the class of kernels defined by a(t) =
e−δt satisfy our assumptions under some mild restrictions on the
parameter δ > 0. This class of kernel naturally appears in the theory
of integral equations of convolution type. It corresponds to Maxwell
type materials in viscoelasticity theory (relaxation modulus). See [17,
Chapter 2, subsection 2.4]. A concrete example is provided in the last
section of this paper.

In order to obtain our results, we use the properties of the measure
of noncompactness and a consequence of the Darbo-Sadovskii fixed
point theorem (see [1, 2]) to prove the existence of solutions of equa-
tion (1.1) under the hypothesis that the nonlinearity f(t, u) satisfies the
Carathéodory type condition, and it is dominated by a control function
which is radial with respect to u.

The outline of this paper is as follows. Section 2 is devoted to
preliminaries, recalling the definition and fundamental properties of
measure of noncompactness, mentioning a generalization of Darbo fixed
point theorem due to Aghajani, Banaś and Sabzali [1, Theorem 2.2],
and recalling Bothe’s lemma (see [11]) which is the essential ingredient
in the proof of our main result.

Section 3 shows the existence of at least one solution of (1.1) on
an arbitrary Banach space E by using arguments of the measure of
noncompactness, a consequence of Darbo-Sadovskii fixed point theorem
and, again, certain hypotheses on the kernel and the function f .

In Section 4, an application is provided which indicates how our
theorems can be applied to more concrete problems.
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In Section 5, we give a concrete example of our main result consid-
ering as external nonlinear force:

f(t, x) =
1

t2 + (1/2)

(
ln(|xk|+ 1) +

t

k2

)∞

k=1

,

for every x = (xk) ∈ c0, where c0 is the Banach space of null sequences
which consists of all sequences whose limit is zero, as well as the
Maxwell type materials present in the kernel a(t) = e−δt.

Finally, it is interesting to observe that, for this function f , the
existence of at least one solution on c0 is ensured under the hypothesis
0 < δ < 2 and 0 < T < 1/2.

2. Preliminaries. Suppose that (E, ∥ · ∥) is a Banach space and
denote by C([0, T ], E) the space of all continuous functions equipped
with the norm

∥u∥∞ = sup
s∈[0,T ]

∥u(s)∥.

Let L1([0, T ];E) be the space of all Bochner integrable functions
h : [0, T ] → E endowed with the norm

∥h∥L1([0,T ];E) =

∫ T

0

∥h(s)∥E ds.

Now, we mention some results and facts about measure of noncom-
pactness.

We denote by X and ConvX the closure and the convex closure of
X as a subset of E, respectively. Further, we denote by ME the family
of all nonempty bounded subsets of E and RE its subfamily consisting
of all relatively compact sets.

We recall that the Hausdorff of measure of noncompactness γ defined
on a bounded set M of a Banach space E is given by:

γ(B) = inf{ϵ > 0 : B has a finite cover by balls of radius ϵ}.

Definition 2.1 ([8]). A mapping γ : ME → R+ is said to be a measure
of noncompactness in E if satisfies the following conditions:

(a) the family ker γ = {X ∈ ME : γ(X) = 0} is nonempty and
ker γ ⊂ RE ,



APPLICATION OF NONCOMPACTNESS MEASURE 445

(b) X ⊂ Y implies γ(X) ≤ γ(Y ),
(c) γ(X) = γ(X),
(d) γ(Conv(X)) = γ(X),
(e) γ(X ∪ Y ) = max{γ(X), γ(Y )},
(f) γ(rX) = |r|γ(X) for any r ∈ R,
(g) γ(X + Y ) ≤ γ(X) + γ(Y ).
(h) If the mapping T : D(T ) ⊂ E → F is Lipschitz continuous

with constant k, then γF (TB) ≤ kγE(B) for any bounded set
B ⊂ D(T ), where F is a Banach space and γA denotes the measure
of noncompactness corresponding to a Banach space A.

(i) For all λ ∈ [0, 1],

γ(λX + (1− λ)Y ) ≤ λγ(X) + (1− λ)γ(Y ).

(j) If (Xn)n∈N is a sequence of closed sets from ME such that

Xn+1 ⊂ Xn for all n = 1, 2, 3 . . . , and lim
n→∞

γ(Xn) = 0,

then

X∞ =
∞∩

n=1

Xn ̸= ∅.

The family ker γ described in (a) is said to be the kernel of the measure
of noncompactness γ.

Let I := [0, T ]. We need the following results.

Lemma 2.2 ([8]). If W ⊂ C(I, E) is bounded and equicontinuous,
then the set γ(W (t)) is continuous on I and

γ(W ) = sup
t∈I

γ(W (t)),

γ

(∫ t

0

W (s) ds

)
≤

∫ t

0

γ(W (s)) ds.

Lemma 2.3 ([11]). If (un)n∈N ⊂ L1(I;E) satisfies ∥un∥ ≤ κ(t)
almost everywhere on I for all n ≥ 1 and for some κ ∈ L1(I; (0,∞)),
then the function γ((un(t))n∈N) belongs to L1(I; (0,∞)) and

(2.1) γ

({∫ t

0

un(s) ds : n ≥ 1

})
≤ 2

∫ t

0

γ({un(s) : n ≥ 1} ds.
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The following result will be the key tool in the proof of our main
result.

Lemma 2.4 ([11]). If W ⊂ C(I, E) is bounded, then, for each ϵ > 0,
there exists a sequence (un)n∈N ⊂W such that

(2.2) γ(W ) ≤ 2γ((un)n∈N) + ϵ.

To prove our main result, we need the following theorem due to [1,
Theorem 2.2], which is a generalization of Darbo’s fixed point.

Theorem 2.5 ([1, Theorem 2.2]). Let C be a nonempty, bounded,
closed and convex subset of a Banach space E, and let T : C → C be a
continuous function satisfying

γ(T (W )) ≤ ϕ(γ(W ))

for each W ⊂ C, where γ is an arbitrary measure of noncompact-
ness and ϕ : R+ → R+ is a monotone increasing (not necessarily
continuous) function with

lim
n→∞

ϕn(t) = 0 for all t ≥ 0.

Then T has at least one fixed point in C.

3. Existence of solutions. In this section, we investigate solutions
of the problem:

(3.1) u(t) =

∫ t

0

a(t− s)f(s, u(s)) ds, t ∈ [0, T ],

where a ∈ L1
loc(R+) is a scalar kernel, E is a Banach space with the

norm ∥ · ∥ and f : [0, T ]× E → E satisfies some suitable conditions.

We need the following assumptions:

(H1) f satisfies Carathéodory type conditions, i.e., f(·, x) is mea-
surable for each x and f(t, ·) is continuous for almost every
t ∈ I.
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(H2) For any 0 < q < 1, there exists a function m ∈ L1/β(I;R+)
where 0 < β < q and a nondecreasing continuous function
Φ : R+ → R+ such that

∥f(t, x)∥ 6 m(t)Φ(∥x∥),

for all x ∈ E and almost all t ∈ I.
(H3) There exists a function H ∈ L1(I;R+) such that, for any

bounded B ⊆ X,

γ(f(t, B)) 6 H(t)ϕ(γ(B)),

for almost all t ∈ I. (Here ϕ is some function that satisfies the
same conditions of Theorem 2.5.)

(H4) a ∈ L1/β(I;R) and satisfies

(3.2) lim
h→0

∫ T

0

|a(τ + h)− a(τ)|1/(1−β) dτ = 0.

(H5) There exists at least one solution p ∈ C(I, (0,∞)) to the
inequality

(3.3) Φ(∥p∥0)
∫ t

0

a(t− s)m(s) ds ≤ p(t), t ∈ I,

where ∥ · ∥0 is the sup norm in C(I, (0,∞)).

The next theorem is the main result of this paper.

Theorem 3.1. Suppose that the hypotheses (H1)–(H5) hold. Then
problem (3.1) has at least one solution u ∈ C(I, E).

Proof. Let F : C(I, E) → C(I, E) be defined by

(Fu)(t) :=
∫ t

0

a(t− s)f(s, u(s)) ds, t ∈ I,

for all u ∈ C(I, E). Let p(t) be the function which satisfies (H5) and
p0 = inft∈I p(t) > 0. We define

Bp := {u ∈ C(I, E) : ∥u∥E ≤ p0} .

Set
Cp := ConvFBp.
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We proceed to verify the hypothesis of Theorem 2.5, dividing the proof
into five steps.

Step 1. ConvFBp is equicontinuous. It is enough to prove that FBp

is equicontinuous because the concepts of boundedness and equiconti-
nuity have hereditary properties related to the closure of the convex
hull in C(I, E).

Indeed, let u ∈ Bp, and let 0 ≤ t1 < t2 ≤ T be given. Then

∥F(u)(t2)−F(u)(t1)∥

≤
∥∥∥∥ ∫ t2

0

a(t2 − s)f(s, u(s)) ds−
∫ t1

0

a(t1 − s)f(s, u(s)) ds

∥∥∥∥
≤

∫ t1

0

|a(t2 − s)− a(t1 − s)|∥f(s, u(s))∥ ds

+

∫ t2

t1

|a(t2 − s)|∥f(s, u(s))∥ ds

≤
∫ t1

0

|a(t2 − s)− a(t1 − s)|m(s)Φ(∥u(s)∥) ds

+

∫ t2

t1

|a(t2 − s)|m(s)Φ(∥u(s)∥) ds

≤
∫ t1

0

|a(t2 − s)− a(t1 − s)|m(s)Φ(∥p(s)∥) ds

+

∫ t2

t1

|a(t2 − s)|m(s)Φ(∥p(s)∥) ds

≤ Φ(∥p∥0)
(∫ t1

0

|a(t2 − s)− a(t1 − s)|m(s) ds

+

∫ t2

t1

|a(t2 − s)|m(s) ds

)
.

It follows from the Hölder inequality and (H4) that

∥F(u)(t2)−F(u)(t1)∥
≤ Φ(∥p∥0)∥m∥L1/β(I,(0,∞))

×
[(∫ T

0

|a((t2 − t1) + τ)− a(τ)|1/(1−β) dτ

)1−β
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+

(∫ t2−t1

0

|a(s)|1/β ds
)β]

−→ 0 as t1 → t2.

Step 2. F is continuous on C(I, E). Since f satisfies conditions (H1)
and (H2), then F is well defined (consequence of Young’s inequality).

Let (un) be a sequence of functions in C(I, E) which converges to
u ∈ C(I, E). We need to prove that ∥Fun − Fu∥∞ → 0 as n → ∞.
Since f(t, ·) is continuous, then ∥f(s, un(s)) − f(s, u(s))∥ → 0 as
n→ ∞. On the other hand, it follows from condition (H2) that

∥f(s, un(s))− f(s, u(s))∥ ≤ 2m(s) [Φ(∥un(s)∥) + Φ(∥u(s)∥)] .

By (H2) and (H4), we have that a(t) andm(t) are integrable. Therefore,
the inequality:∫ t

0

|a(t− s)||m(s)||Φ(∥u(s)∥)| ds

≤
∫ t

0

|a(t− s)||m(s)||Φ(∥u∥∞)| ds

= Φ(∥u∥∞)

∫ t

0

|a(t− s)||m(s)| ds,

yields that s 7→ a(t − s)m(s)Φ(∥u(s)∥) is also Lebesgue integrable on
[0, T ]. By the dominated convergence theorem, we obtain

∥(Fun)(t)− (F)u(t)∥

≤
∫ t

0

|a(t− s)∥f(s, un(s))− f(s, u(s))∥ ds −→ 0 as n→ ∞

for all t ∈ I. Hence, ∥Fun −Fu∥∞ → 0 on I as n→ ∞. We conclude
that F is continuous on C(I, E).

Step 3. F is bounded from Bp into itself. Let u ∈ Bp and t ∈ I.
Using (H2) and (H5), we get

∥Fu(t)∥ ≤
∫ t

0

|a(t− s)|∥f(s, u(s))∥ ds

≤
∫ t

0

|a(t− s)m(s)Φ(∥u(s)∥) ds
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≤
∫ t

0

|a(t− s)m(s)Φ(∥p(s)∥) ds

≤ Φ(∥p∥0)
∫ t

0

|a(t− s)m(s) ds ≤ p(t), t ∈ I.

The conclusion follows. This step also proves that F(Bp) ⊂ Bp.

Step 4. F : Cp → Cp is well-defined and continuous. Note that
Bp ⊂ C(I, E) is bounded, closed and convex. Since F(Bp) ⊂ Bp from
the preceding step and from the fact that Bp is convex, we obtain

Cp = ConvFBp ⊂ ConvBp = Bp.

Since the convex hull of a subset is the smallest convex set that contains
to the subset, we have that:

FCp ⊂ FBp ⊂ ConvFBp = Cp.

This shows that F : Cp → Cp is well defined. From Step 2, we have
that F is continuous on Cp.

Step 5. Let C ⊂ Cp be arbitrary. By Step 4, we have that C is
bounded. From Lemma 2.4, we infer that, given ϵ > 0, there exists a
sequence (un)n∈N ⊂ C such that

γ(FC)(t)) = γ

({∫ t

0

a(t− s)f(s, u(s)) ds : u ∈ C

})
≤ 2γ

({∫ t

0

a(t− s)f

(
s, (un(s))n∈N

)
ds : u ∈ C

})
+ ϵ.

Next, Lemma 2.2 and Lemma 2.3 together with condition (H3) imply

γ(FC)(t)) ≤ 4

∫ t

0

a(t− s)γ

({
f(s, un(s)) : n ∈ N

})
ds+ ϵ

≤ 4

∫ t

0

a(t− s)H(s)γ

(
ϕ(γ((un)n∈N))

)
ds+ ϵ

≤ 4ϕ(γ((un)n∈N))

∫ t

0

a(t− s)H(s )ds+ ϵ

≤ 4ϕ(γ((un)n∈N))

∫ T

0

a(t− s)H(s) ds+ ϵ

≤ 4ϕ(γ(C))(a ∗H)(T ) + ϵ,
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where we have used in the last inequality that ϕ is increasing and the
fact that (a ∗H)(t) is well defined. Since ϵ > 0 is arbitrary, we have

(3.4) γ(FC)(t)) ≤ 4(a ∗H)(T )ϕ(γ(C)).

Let
ψ(s) = 4(a ∗H)(T )ϕ(s).

It follows from the properties of ϕ that ψ : [0,∞) → [0,∞) is monotone
increasing and limn→∞ ψn(t) = 0 for all t ≥ 0. Also, by (3.4), we obtain
that γ(FC)(t)) ≤ ψ(γ(C)).

We have proved that F : Cp → Cp is a continuous function satisfying

γ(FC)(t)) ≤ ψ(γ(C))

for each C ⊂ Cp, where γ is a measure of noncompactness and ψ :
[0,∞) → [0,∞) is a monotone increasing function with limn→∞ ψn(t) =
0 for all t ≥ 0. If follows from Theorem 2.5 that F has at least one
fixed point u ∈ Cp ⊂ C(I, E). �

Remark 3.2. We observe that condition (H4) fails in the case of
a(s) = sq for q < −β.

As a particular case, we recover the main result on the existence of
solutions to the Cauchy problem for the fractional difference equation
Dα

t u(t) = f(t, u(t)), 0 < α < 1, established by Aghajani, Pourhadi and
Trujillo [3, Theorem 3.1].

Theorem 3.3. Consider the equation

(3.5) u(t) =
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s)) ds, t ∈ [0, T ],

where q ∈ (0, 1), E is a Banach space with the norm ∥ · ∥ and
f : [0, T ]× E → E satisfies conditions (H1), (H3) and

(H2)′ There exists a function m ∈ L1/β(I;R+) where 0 < β < q and
a nondecreasing continuous function Φ : R+ → R+ such that

∥f(t, x)∥ 6 m(t)Φ(∥x∥)

for all x ∈ E and almost all t ∈ I.



452 EDGARDO ALVAREZ AND CARLOS LIZAMA

(H5)′ There exists at least one solution p ∈ C(I, (0,∞)) to the
inequality

(3.6)
Φ(∥p∥0)
Γ(q)

∫ t

0

(t− s)q−1m(s) ds ≤ p(t), t ∈ I,

where ∥ · ∥0 is the sup norm in C(I, (0,∞)).

Then equation (3.5) has at least one solution u ∈ C(I, E).

Proof. Let a(t) = tq−1/Γ(q) in Theorem 3.1. From (H2)′ we have
0 < β < q < 1 for some β. It follows that

1

Γ(q)1/(1−β)

∫ t

0

[
(τ + h)q−1 − τ q−1

]1/1−β
dτ

≤ 1

Γ(q)1/(1−β)

∫ t

0

[(τ + h)(q−1)/(1−β) − τ (q−1)/(1−β)] dτ

=
1

Γ(q)1/(1−β)

1− β

q − β

[
(t+ h)(q−β)/(1−β) − h(q−β)/(1−β)

− t(q−β)/(1−β)
]
−→ 0,

as h → 0, where we have used the inequality (a − b)r ≤ ar − br,
a > b > 0, r > 0. This shows (H3).

On the other hand, note that (H5) is a direct consequence of (H5)′.
The conclusion follows from Theorem 3.1. �

Remark 3.4. Note that the Hausdorff measure of noncompactness
of the unit ball in finite-dimensional E = Rn is zero. It follows that
condition (H3) is redundant. Thus, we obtain the following result.

Corollary 3.5. Suppose that conditions (H1)–(H2) and (H4)–(H5)
are satisfied. Then the following system of nonlinear Volterra integral
equations has at least one solution, u ∈ C(I,Rn),

(3.7) u(t) =

∫ t

0

a(t− s)f(s, u(s)) ds t ∈ [0, T ],

where u is a vector-valued function.
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4. An application. In this section, we present one example which
does not aim at generality but indicates how our theorems can be
applied to more concrete problems.

Example 4.1. Let c0 the space of all sequences converging to zero.
We know that c0 is a Banach space with the norm:

∥x∥∞ = sup
k∈Z

|xk|.

Consider the following Volterra equation:

(4.1) u(t) =

∫ t

0

e−δ(t−s)f(s, u(s)) ds, t ∈ I := [0, T ],

where 0 < δ < 2, 0 < T < 1/2 and f : I × c0 → c0 is given by

f(t, x) =
1

t2 + 1/2

(
ln(|xk|+ 1) +

t

k2

)∞

k=1

,

t ∈ I, x = (xk)k ∈ c0.

We prove the existence of a solution u ∈ C(I, c0) for equation (4.1). To
do this, we verify conditions (H1)–(H5).

(H1)

(a) For every x ∈ c0, we have that the function

t 7−→ f(t, x) =
1

t2 + 1/2

(
ln(|xk|+ 1) +

t

k2

)∞

k=1

is Lebesgue measurable since it is a continuous function for all
t ≥ 0.

(b) Let t ∈ I be given. We will see that the function

x 7−→ f(t, x)

is continuous on c0. Recall that earlier we showed that the mean
value theorem implies that the function g(s) = ln(s+1) (for s > 0)
is uniformly continuous on (0,∞). Now, let (xn) be a sequence in
c0 such that xn → x in c0 as n→ ∞. Then

sup
k

|f(t, xnk )− f(t, xk)|

≤ 1

t2 + 1/2
sup
k

∣∣ ln(|xnk |+ 1)− ln(|xk|+ 1))
∣∣
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≤ 1

t2 + 1/2
sup
k

∣∣|xnk | − |xk|
∣∣

≤ 1

t2 + 1/2
sup
k

|xnk − xk| −→ 0, n→ ∞, t ∈ I.

Hence, ∥f(t, xn)− f(t, x)∥∞ → 0 as n→ ∞ for all t ∈ I. Thus, we
conclude that f(t, ·) is continuous for all t ∈ I. �

(H2) We define m : I → R+ and Φ : R+ → R+ by

m(t) =
1

t2 + 1/2
and Φ(t) = t+ T.

Let t ∈ I and x = (xk)k in c0 be given. Then, we have

∥f(t, x)∥∞ =

∥∥∥∥ 1

t2 + 1/2

(
ln(|xk|+ 1) +

t

k2

)
k

∥∥∥∥
∞

≤ 1

t2 + 1/2
(sup

k
|xk|+ t)

≤ 1

t2 + 1/2
(∥x∥∞ + T ) = m(t)Φ(∥x∥∞).

Hence, (H2) holds. �
(H3) We define H : I → R+ and ϕ : R+ → R+ by

H(t) =
1

t2 + 1/2
and ϕ(t) = ln(t+ 1).

Note that H ∈ L1(I;R+). Also, we can observe that ϕ is an increasing
function and limn→∞ ϕn(t) = 0 (see [1, Lemma 2.1 and Remark 3.2]).
We will prove that, for any bounded set B ⊂ E,

γ(f(t, B)) ≤ H(t)ϕ(γ(B)).

Indeed, we recall that the Hausdorff measure of noncompactness γ in
the space c0 can be computed by means of the formula:

γ(B) = lim
n→∞

sup
x∈B

∥(I − Pn)x∥∞,

where B is a bounded subset of c0 and Pn is the projection onto
Vn = span {e1, . . . , en} of the first n vectors in the standard basis (see
[4]). Next, let u = (uk)k ∈ B ⊂ c0 and t ∈ I. Fix n ∈ N. Thus, using
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the fact that Pn is the identity operator on Vn, we obtain

ln(|uk|+ 1) ≤ ln(∥(I − Pn)(uk)k∥∞ + 1) for all k > n.

Then

sup
u∈B

∥(I − Pn)(ln(|uk|+ 1)k)∥∞ = sup
u∈B

sup
k>n

| ln(|uk|+ 1)|

≤ sup
u∈B

ln(∥(I − Pn)(uk)k∥∞ + 1)

= ln(sup
u∈B

∥(I − Pn)(uk)k∥∞ + 1).

Letting n→ ∞, we get

lim
n→∞

sup
u∈B

∥(I − Pn)(ln(|uk|+ 1)k)∥∞

= sup
u∈B

sup
k>n

| ln(|uk|+ 1)|

≤ lim
n→∞

ln(sup
u∈B

∥(I − Pn)(uk)k∥∞ + 1)

= ln( lim
n→∞

sup
u∈B

(∥(I − Pn)(uk)k∥∞) + 1).

On the other hand, for k > n, we have that

(I − Pn)

(
t

k2

)
k

=

(
t

k2

)
k

≤
(
t

n2
,
t

n2
, . . .

)
,

and consequently,

lim
n→∞

sup
u∈B

∥∥∥∥(I − Pn)

(
t

k2

)
k

∥∥∥∥
∞

= 0.

It follows that

γ(f(t, B)) =
1

t2 + 1/2
lim

n→∞
sup
u∈B

∥∥∥∥(I − Pn)

(
ln(|uk|+ 1) +

t

k2

)
k

∥∥∥∥
∞

≤ 1

t2 + 1/2
lim

n→∞
sup
u∈B

∥(I − Pn)(ln(|uk|+ 1)k)∥∞

≤ 1

t2 + 1/2
ln( lim

n→∞
sup
u∈B

(∥(I − Pn)(uk)k∥∞) + 1)

= H(t)ϕ(γ(B)).

This proves (H5) is clear from the claim, and hence condition (H3) is
satisfied.
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(H4) is clear from the continuity of a(t).

(H5) We see that there is a solution p(t) ∈ C(I,R+) to the equation

(4.2) Φ(∥p∥0)
∫ t

0

a(t− s)m(s) ds ≤ p(t), t ∈ I.

Note that

(1 ∗ a)(T ) =
∫ T

0

a(s)ds =

∫ T

0

e−δs ds =
1

δ
(1− e−δT ).

Now, we can see (using the mean value theorem) that 1/2 ≤ (1/δ) ln(2/
(2 − δ)) for 0 < δ < 2. Since 0 < T < 1/2 we get that 0 < T <
(1/δ) ln(2/(2− δ)). Then

0 < (1 ∗ a)(T ) < 1

2
.

Let p(t) = λ, where

(4.3) λ ≥ 2T (1 ∗ a)(T )
1− 2(1 ∗ a)(T )

.

Then

Φ(∥p∥0)
∫ t

0

a(t− s)m(s) ds = Φ(λ)

∫ t

0

e−δs

s2 + 1/2
ds

≤ 2(λ+ T )

∫ T

0

e−δsds

= 2(λ+ T )(1 ∗ a)(T ) ≤ λ.

By Theorem 3.1, we obtain the existence of at least one solution to the
Volterra equation (4.1). �

Remark 4.2. If we consider any kernel a(t) such that (H4) holds
and by taking p(t) = λ such that the inequality (4.3) holds, then the
problem (4.1) always has at least one solution for a suitable value of T ,
more precisely, for T satisfying:

0 < (1 ∗ a)(T ) < 1

2
.
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Remark 4.3. We observe that Volterra equation (4.1) in the Banach
space E = c0 is equivalent to the nonlinear lattice model:{

ut(t, n) + δu(t, n) = f(t, u(t, n)) t ∈ [0, T ], n ∈ Z,
u(0, n) = 0.

Consequently, the above example says that, for the given nonlinear
term, and whenever 0 < T < 1/2 and 0 < δ < 2, there exists a solution
satisfying |u(t, n)| → 0 as n→ ∞.
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