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ABSTRACT. Given a concave integro-differential opera-
tor I, we study regularity for solutions of fully nonlinear,
nonlocal, parabolic equations of the form ut − Iu = 0. The
kernels are assumed to be smooth but non necessarily sym-
metric, which accounts for a critical non-local drift. We
prove a Cσ+α estimate in the spatial variable and C1,α

estimates in time assuming time regularity for the boundary
data. The estimates are uniform in the order of the opera-
tor I, hence allowing us to extend the classical Evans-Krylov
result for concave parabolic equations.

1. Introduction. In this work, we are interested in studying regu-
larity of solutions of

ut − inf
L∈L

Lu = 0 in B1 × (−1, 0],(1.1)

where L is a linear integro differential operator of the form,

Lu(x) := (2− σ)

∫
Rn

δu(x; y)
K(y)

|y|n+σ
dy + b ·Du(x),

and δu is given by

δu(x; y) := u(x+ y)− u(x)−Du(x) · yχB1(y).

Here, the class L corresponds to family of linear operators with kernels
K/|y|n+σ comparable to the kernel of the fractional Laplacian of order
σ ∈ [1, 2), that is, λ/|y|n+σ ≤ K(y)/|y|n+σ ≤ Λ/|y|n+σ. In Section 2,
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we give a more precise definition of this class, but at this point we stress
the fact that we are not assuming that the kernels are symmetric.

As was discussed in a previous paper [10], the odd part of the kernel
brings a non-local drift term after rescaling the equation. This is the
main reason why we included the first order term b ·Du above, since it
allows us to account for the standard drift. We point out that the non-
local drift term has the same order as the non-local diffusion. Therefore,
it cannot be absorbed by rescaling the equation which creates additional
difficulties. This is one of the main differences with respect to the
second order case, where the lower order drift can be absorbed in
the estimates of the purely second order equation at sufficiently small
scales.

These types of equations appear naturally when studying stochastic
control problems (see economic applications [11], ergodic control prob-
lems [16, 20]), in which the random part is given by a purely jump
process and most of the time is non necessarily symmetric. The partic-
ular concave case can be seen as a one-player stochastic game, where
at each step he can choose a strategy to minimize the expected value of
some fixed function evaluated at the first exit point of a given domain.

In the local case (σ = 2) this problem was first studied independently
by Evans and Krylov (see [12, 15]. Recently, Caffarelli and Silvestre
provided a new proof of the classic results in [6]). They obtain C2,α

a priori estimates, and therefore, the existence of classical solutions by
the continuity method.

A first study in the elliptic nonlocal case was done by Abels and
Kassmann [1], in which the non-linearity was the maximum of two
linear operators. They obtain Hσ interior estimates and Hσ/2 up to
the boundary using a variational approach. Also using a variational
approach Felsinger and Kassmann proved interior regularity and a weak
Harnack inequality in the parabolic nonlocal linear case, for a general
kernel and general right hand side (see [13]).

Caffarelli and Silvestre proved in [5] that solutions of the elliptic
problem Iu = 0, where I is a concave operator with smooth kernels,
are Cσ+α. By concave operator, we mean that, for smooth functions
u and v, s ∈ [0, 1], we have I(su + (1 − s)v) ≥ sI(u) + (1 − s)I(v).
The arguments in their work rely on the theory of viscosity solutions
developed in [3, 4]. The regularity obtained is enough to evaluate the
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operator in the classical sense. Moreover, the estimates obtained are
independent of the order of the equation and extend the theory to the
classical case.

A recent improvement of the aforementioned work, done by Serra
[18], allows to remove the smoothness condition for symmetric kernels
in order to prove Cσ+α estimates. It proceeds by a compactness
argument that blows up the solution, reducing the problem to a
Liouville type of result. We need to stress that this work does not
account for critical non-local drifts, as pointed out by the author, since
the term does persist after the blow up.

Regularity for parabolic nonlocal equations has been studied by the
authors in [8, 9, 10] in which Hölder estimates are proven for general
equations like (1.1) with a non zero right hand side. Recent advances
include the work of Serra [17] for C1,α estimates with rough kernels
and the work of Jin and Xiong [14] for higher order, optimal Schauder
estimates.

We extend the ideas of [5] to the parabolic nonlocal case to prove
the desired Cσ+α interior regularity in the spatial variable. The order
σ is assumed at least one in order for the drift to be at most comparable
with the diffusion. On the other hand, for σ ∈ (0, 1], the C1,α estimates
established in [10] already give classical solutions. In the upcoming
results, we require the boundary data to have first derivatives in time.
For general boundary data, one cannot expect C1,α regularity in time,
even for the fractional heat equation; an example is discussed in [8].

We now state the main result.

Theorem 1.1. Let σ ∈ [1, 2), L ⊆ Lσ
2 (λ,Λ, β) (sufficiently smooth

kernels to be defined), and suppose u satisfies in the viscosity sense,

ut − inf
L∈L

Lu = 0 in B1 × (−1, 0].

Then, there is some α ∈ (0, 1) and C > 0, depending only on n, λ,Λ
and β such that u ∈ C1,α(B1/2 × (−1/2, 0]) and, for all fixed t,

u(·, t) ∈ Cσ+α(B1/2). More precisely, for t ∈ [−1/2, 0], we have

∥u(·, t)∥Cσ+α(B1/2)≤C(∥u∥L1((−1,0]7→L1(ωσ))+[uχBc
1
]C0,1((−1,0] 7→L1(ωσ)))).

The paper is divided as follows. In Section 2, we introduce the
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family of operators we are considering, the notion of viscosity solution
and recall some properties. We also state some previous results that
we need for the rest of this work. We use the concavity of the non-
linearity in Section 3 to determine an equation for the average of a given
solution; in particular, we get an equation for the fractional Laplacian.
In Section 4, we use the previous equation to obtain Cσ estimates on the
fractional Laplacian of the solution. Finally, in Section 5, we prove a
diminish of oscillation lemma for the fractional Laplacian, which implies
our main theorem.

2. Preliminaries and viscosity solutions. We begin this section
with some preliminary notation.

The cylinder of radius r, height τ and center (x, t) in Rn × R is
denoted by Cr,τ (x, t) := Br(x) × (t − τ, t]. Whenever we omit the
center we are assuming that they are centered at the origin in space
and time.

Given the scaling properties of linear operators with non symmetric
kernels discussed in [7, 10], it is reasonable to enlarge the family of
linear operators to include (classical) drift terms. With this in mind,
let us introduce the following notation where the time variable has been
omitted

(2.1)
Lσ
K,bu(x) := (2− σ)

∫
Rn

δu(x; y)
K(y)

|y|n+σ
dy + b ·Du(x),

δu(x; y) := u(x+ y)− u(x)−Du(x) · yχB1(y).

Consider kernels bounded from above and away from zero 0 < λ ≤
K ≤ Λ < ∞. Since the drift comes not only from the term b · D but
also from the odd part of the kernel (after rescaling), we will assume
that they are controlled in the following way:

(2.2) sup
r∈(0,1)

∣∣∣∣b+ (2− σ)

∫
B1\Br

yK(y)

|y|n+σ
dy

∣∣∣∣ ≤ β.

For a thorough discussion on the scaling properties of these types of
operators we refer to [10].

We denote by Lσ
0 (λ,Λ, β) the family of all linear operators above

and suppress some of its parameters whenever it is clear from the
context; usually we just write L0. A sufficient regularity/integrability
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condition on u to evaluate Lσ
K,bu(x) is u ∈ C1,1(x) ∩ L1(ωσ) where

ωσ(y) = min(1, |y|−(n+σ)).

An approach in order to prove higher regularity estimates is to
assume smoothness of the kernels. This corresponds to the initial
approach taken in [3, 4, 5] in order to use an integration by parts
techniques to control rough oscillations of the boundary data of the
solution. This work uses the same technique; therefore, let us define
the class Lσ

1 (λ,Λ, β) ⊆ L0 by

|DK(y)| ≤ Λ|y|−1,

where K is a kernel defining a linear operator of the class. Similarly,
we define Lσ

2 (λ,Λ, β) ⊆ L1

|D2K(y)| ≤ Λ|y|−2.

Recall that the smoothness hypotheses of the previous works have
been lifted in [17, 18] for symmetric kernels. Their techniques apply
also if drift terms or lower order terms are included because of scaling
considerations. However, an odd kernel renews the non-local drift (see
[10]) and keeps it comparable to the diffusion even when the scale goes
to zero, so their technique does not apply directly.

Given L ⊆ L0 a non linearity I is given by a function I : Ω×(t1, t2]×
RL → R, such that

Iu(x, t) := I(x, t, (Lu(x, t))L∈L).

I is considered to be elliptic if it is increasing in RL.

The nonlinearity in our main theorem is constructed from L ⊆ L2

such that
Iu = M−

Lu := inf
L∈L

Lu.

It satisfies the following uniform ellipticity relation with the extremal
operators

M−
L (u− v) ≤ Iu− Iv ≤ M+

L(u− v).

where M+
L := supL∈L L.

Given a family L, the operators

M+
L := sup

L∈L
L, M−

L := inf
L∈L

L,
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are usually referred to as the maximal and minimal operators. This
definition is closely related with the classical second order maximal
and minimal Pucci operators (see [2]).

2.1. Viscosity solutions. We recall some definitions pertaining to
viscosity solutions u for the equation ut − Iu = f . A test function
φ needs to be sufficiently smooth/integrable near the contact point
where the equation is tested. Moreover, qualitative properties, such as
the continuity of Iu, require the tail of u to be at least continuous in
time in the following integrable sense.

Definition 2.1. The space C((t1, t2] 7→ L1(ωσ)) consists of all mea-
surable functions u : Rn × (t1, t2] → R such that, for every t ∈ (t1, t2],

(1) ∥u(·, t)−∥L1(ωσ) <∞.
(2) limτ→0− ∥u(·, t)− u(·, t− τ)∥L1(ωσ) = 0.

Here u(·, t) = u(·, t)+ − u(·, t)−, with

u(·, t)+ = max{u(·, t), 0}, u(·, t)− = max{−u(·, t), 0},

that is, u has been decomposed in its positive and negative part for
each t.

Next we define our suitable test functions. We point out that, in
order to evaluate the operator I in the classical sense, we only need
the function to be C1,1 punctually (see [3]). As mentioned before, we
require the tail of u to be continuous in an integrable sense in order to
have continuity of I.

Definition 2.2 (Test functions). A test function is a pair (φ,Cr,τ (x, t)),
such that φ ∈ C1,1

x C1
t (Cr,τ (x, t)) ∩ C((t− τ, t] 7→ L1(ωσ)).

Whenever the cylinder in the Definition 2.2 becomes irrelevant we
will refer to the test function (φ,Cr,τ (x, t)) just by φ.

Definition 2.3. Given a function u and a test function φ, we say that
φ touches u from below at (x, t) if there is τ > 0 such that,

(1) φ(x, t) = u(x, t),
(2) φ(y, s) ≤ u(y, s) for (y, s) ∈ Rn × (t− τ, t].
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A similar definition for contact from above can be done by reversing
the previous inequality.

Definition 2.4 (Viscosity (super) solutions). Given an elliptic oper-
ator I and a function f , a function u ∈ C(Ω × (t1, t2]) ∩ C((t1, t2] 7→
L1(ωσ)) is said to be a viscosity super solution to ut − Iu ≥ f in
Ω×(t1, t2] if, for every lower semi-continuous test function (φ,Cr,τ (x, t))
touching u from below at (x, t) ∈ Ω× (t1, t2], we have that φt−(x, t)−
Iφ(x, t) ≥ f(x, t).

Recall that φt− denotes the left time derivative of φ, natural for time
evolution problems.

The definition of u being a viscosity sub solution to ut − Iu ≤ f
in Ω × (t1, t2] is done similarly to the definition of super solution
replacing contact from below by contact from above and reversing the
last inequality. A viscosity solution to ut − Iu = f in Ω × (t1, t2] is a
function which is a super and a sub solution simultaneously.

2.2. Previous results. Several qualitative results for viscosity solu-
tions of our parabolic equation such as the stability, comparison prin-
ciple and the existence of (viscosity) solutions have been established in
[8, 9, 10]. We recall at this point some quantitative estimates for the
solutions which will be used in this work.

Theorem 2.5 (Stability). Let Ik be a sequence of uniformly elliptic
operators with respect to L0. Let {uk}k≥1 ⊆ LSC(Ω × (−T, 0]) ∩
C(−T, 0;L1(ω)) be such that

(i) (uk)t − Ikuk ≥ fk in the viscosity sense in Ω× (−T, 0],
(ii) uk → u in the Γ sense in Ω× (−T, 0] and in C(−T, 0;L1(ω)),
(iii) fk → f locally uniformly in Ω× (−T, 0],
(iv) Ik → I weakly in Ω× (−T, 0] (with respect to ω),
(v) |uk(x, t)| ≤ C for every (x, t) ∈ Ω× (−T, 0].

Then, also ut − Iu ≥ f in the viscosity sense in Ω× (−T, 0].

Theorem 2.6 (Point estimate). Let σ ∈ [1, 2). Suppose u ≥ 0 satisfies

ut −M−
L0
u ≥ −f(t) in C2r,2rσ (0, r

σ).
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Then, for every s ≥ 0,

|{u > s} ∩ Cr,rσ |
|Cr,rσ |

≤ C

(
inf

Cr,rσ (0,rσ)
u+ rσ

∫
-
rσ

−rσ
f+(s) ds

)ε

s−ε,

for some constants ε and C depending only on n, λ,Λ and β.

The oscillation lemma provided in [10] controls the pointwise size
of a non negative sub solution in terms of an integral norm.

Lemma 2.7 (Oscillation lemma). Let L ⊆ L0, I : Ω×(t1, t2]×RL → R
be uniformly elliptic and such that I0 = 0. Let u satisfy,

ut − Iu ≤ f in Ω× (t1, t2].

Then, for every Ω′ × (t′1, t2] ⊂⊂ Ω× (t1, t2],

sup
Ω′×(t′1,t2]

u+ ≤ C
(
∥u+∥L1((t1,t2] 7→L1(ωσ)) + ∥f+∥L1((t1,t2]7→L∞(Ω))

)
,

for some universal C > 0, independent of σ ∈ [1, 2), depending on the
domains.

Theorem 2.8 (Hölder regularity). Let u satisfy

ut −M+
L0
u ≤ f(t) in C1,1,

ut −M−
L0
u ≥ −f(t) in C1,1,

Then there is some α ∈ (0, 1) and C > 0, depending only on n, λ, Λ
and β, such that, for every (y, s) and (x, t) ∈ C1/2,1/2

|u(y, s)− u(x, t)|
(|x− y|+ |t− s|1/σ)α

≤ C
(
∥u∥L1((−1,0] 7→L1(ωσ)) + ∥f∥L1(0,1)

)
.

We say that I is translation invariant in space or time if the function
I does not depend on the variable x or t. Translation invariant,
without making reference to the space or time variable, means that
it is translation invariant with respect to both.

Theorem 2.9 (Regularity for translation invariant operators). Let
L ⊆ L1, I : RL → R be uniformly elliptic, translation invariant and
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such that I0 = 0. Let u satisfy

ut − Iu = f(t) in C1.

Then there is some α ∈ (0, 1) and C > 0, depending only on n, λ, Λ
and β, such that for every (y, s), (x, t) ∈ C1/2,1/2,

|Du(x, t)|+|Du(x, t)−Du(y, s)|
(|x−y|+ |t−s|1/σ)α

≤C
(
∥u∥L1((−1,0]7→L1(ωσ)) + ∥f∥L1(0,1)

)
.

The previous theorem does not give more regularity in time even
if I is translation invariant in time and f ≡ 0. In [8], the authors
gave an example of a function, which is not better than Lipschitz in
its time variable, solving the fractional heat equation. However, better
regularity in time can be obtained via the oscillation lemma if the
Dirichlet data has a smoothness condition controlled by

[u]C0,1((t1,t2]7→L1(ωσ)) := sup
(t−τ,t]⊆(t1,t2]

∥u(t)− u(t− τ)∥L1(ωσ)

τ
.

Theorem 2.10 (Further regularity in time). Let L ⊆ L0, I : RL → R
be uniformly elliptic and translation invariant such that I0 = 0. Let u
satisfy

ut − Iu = 0 in C1,1.

Then there is some α ∈ (0, 1) and C > 0, depending only on n, λ, Λ
and β, such that, for every (x, t), (y, s) ∈ C1/2,1/2 we have

|ut(x, t)|+
|ut(x, t)− ut(y, s)|

(|x− y|+ |t− s|1/σ)α
≤ C[u]C0,1((−1,0]7→L1(ωσ)).

3. Equations for Lu by concavity and translation invariance.
We fix for this section σ ∈ [1, 2), L ⊆ L2, and u such that,

ut −M−
Lu = 0 in C8,3,

∥u∥L∞((−3,0] 7→L1(ωσ)) + [u]C0,1((−3,0] 7→L1(ωσ)) ≤ 1.

We can assume that u is a classical solution with smooth boundary
and initial data. Otherwise, we approximate u by a sequence of clas-
sical solutions with smooth boundary and initial data and recover the
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estimates of this section in the limit by the regularization procedure de-
scribed in [9]. When approximating the solution we need to make sure
that the a priori estimates are independent of (fractional) derivatives
of u.

Note that many results in this and the following sections can be
obtained by controlling ∥u∥L1((−5,0] 7→L1(ωσ)), instead of the L∞ norm.
However, when the bound for ∥u∥L1((−5,0] 7→L1(ωσ)) is coupled with the
bound for [u]C0,1((−5,0] 7→L1(ωσ)), one can check that this implies a bound
for the L∞ norm.

It is convenient for this section to introduce the following notation.
Given K(y) ≥ 0, let

Kσ(y) := (2− σ)
K(y)

|y|n+σ
.

We denote the convolution by

v ∗ w(x) :=
∫
Rn

w(x− y)v(y) dy.

In particular, given that K ≥ 0 goes to zero near the origin with at
least a quadratic rate, then we can decompose a linear operator as:

Lσ
K,bu =

(
Kσ ∗ − ∥Kσ∥1 −

(∫
B1

yKσ(y) dy − b

)
·D

)
u.

Property 3.1. Let α ∈ R, b ∈ Rn and η ≥ 0 ∈ L1(Rn). Then the
following holds for any regular function v:

(1) Homogeneity. M±
L (αv) = αM±

Lv.

(2) Translation. M−
L (b ·Dv) ≤ b ·DM±

Lv ≤ M+
L(b ·Dv).

(3) Concavity. η ∗M−
Lv ≤ M±

L (η ∗ v) ≤ η ∗M+
Lv.

Corollary 3.2. Let K ≥ 0, b ∈ Rn and φ ∈ C∞
0 (B2 7→ [0, 1]) be such

that φ = 1 in B1. Then

(Lσ
K,bu)t−M+

L(L
σ
K,bu)≤([(1− φ)Kσ] ∗ u)t−M−

L ([(1− φ)Kσ] ∗ u),

in C6,3. In particular, if suppK ⊆ B1, then

(Lσ
K,bu)t −M+

L(L
σ
K,bu) ≤ 0 in C6,3.
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Proof. Let, for ε ∈ (0, 1), Kε := χBc
ε
K. We decompose the operator

Lσ
Kε,b

as a sum of a local and nonlocal operator, where the nonlocal

operator is given by (1− φ)Kσ∗,

Lσ
Kε,b = L+NL,

:= (Lσ
Kε,b −Kσ

ε (1− φ)∗) +Kσ
ε (1− φ)∗,

=

(
φKσ

ε ∗ − ∥Kσ
ε ∥1 −

(∫
B1

yKσ
ε (y) dy − b

)
·D

)
+Kσ

ε (1− φ) ∗.

Then,

(Lσ
Kε,bu)t −M+

L(L
σ
Kε,bu) ≤

(
(Lu)t −M+

L(Lu)
)

+
(
(NLu)t −M−

L (NLu)
)

≤ L
(
ut −M−

Lu
)
+
(
(NLu)t −M−

L (NLu)
)
.

In C6,3, the first term is zero as the local operator L does not take
into account the values of (ut −M−

Lu) outside of B8. The result now
follows by the stability Theorem 2.5 and letting ε ↘ 0 (see [10] for
more details). �

Property 3.3 (Integration by parts). Let K ≥ 0, b ∈ Rn, (K(y), b) :=
(K(−y),−b) and, for L = Lσ

K,b, L = Lσ
K̄,b̄

. Then the following holds

for any pair of regular/integrable functions v and w:∫
Rn

vLw =

∫
Rn

wLv.

In particular,
L(v ∗ w) = v ∗ (Lw) = (Lv) ∗ w.

Corollary 3.4. For Lσ
K,b ∈ L2, it holds that

(Lσ
K,bu)t −M+

L(L
σ
K,bu) ≤ C in C6,3,

for some universal constant C > 0.

Proof. Corollary 3.2 tells us that it suffices to estimate ([(1−φ)Kσ]
∗ u)t −M−

L ([(1− φ)Kσ] ∗ u) in C6,3,

([(1− φ)Kσ] ∗ u)t = [(1− φ)Kσ] ∗ ut
≤ C[u]C0,1((−3,0] 7→L1(ωσ)) = C,
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and so we get

M−
L ([(1− φ)Kσ] ∗ u) ≥ inf

L∈L2

L([(1− φ)Kσ] ∗ u)

= inf
L∈L2

(L[(1− φ)Kσ] ∗ u)

≥ −C.

In the last inequality, we used that |DK(y)| ≤ Λ|y|−1, |D2K(y)| ≤
Λ|y|−2 and ∥u∥L∞((−3,0] 7→L1(ωσ)) ≤ 1. �

From now on, we denote, for r1 > r2 > 0, ψr1,r2 ∈ C∞
0 (Br1 → [0, 1])

such that ψr1,r2 = 1 in Br2 .

Corollary 3.5. Let 6 ≥ r1 > r2 > 0, K ≥ 0, b ∈ Rn, such that either
Lσ
K,b ∈ L2 or |b| ≤ β′, suppK ⊆ B1 and K(y) ∈ [0,Λ′]. Then,

(ψr1,r2L
σ
K,bu)t −M+

L(ψr1,r2L
σ
K,bu) ≤ C in Cr2,3,

for some universal constant C > 0 depending also on r1, r2, β
′ and Λ′.

Proof. We use either Corollary 3.2 or 3.4 to get that ψr1,r2L
σ
K,bu

satisfies the following inequality in Cr2,3:

(ψr1,r2L
σ
K,bu)t −M+

L(ψr1,r2L
σ
K,bu)

≤ C + sup
L∈L2

L((1− ψr1,r2)L
σ
K,bu)

= C + sup
L∈L2

KL ∗ ((1− ψr1,r2)L
σ
K,bu),

where KL is the kernel associated to L ∈ L2. Notice that there are
cancellations provided by the fact that (1−ψr1,r2) and its gradient are
zero in Br2 .

Now we take a closer look at [KL ∗ ((1 − ψr1,r2)L
σ
K,bu)](x, t) for

(x, t) ∈ Cr2,3,

[KL ∗ ((1− ψr1,r2)L
σ
K,bu)](x, t)

= [(KL(1− ψr1,r2(x+ ·))) ∗ Lσ
K,bu](x, t)

= [Lσ
K̄,b̄(KL(1− ψr1,r2(x+ ·))) ∗ u](x, t)

≤ C.
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In the last inequality we used that |DKL(y)| ≤ Λ|y|−1, |D2KL(y)| ≤
Λ|y|−2 and ∥u∥L∞((−3,0] 7→L1(ωσ)) ≤ 1. �

4. Estimate for ∆σ/2u. In this section, we keep the same assump-
tions as before: σ ∈ [1, 2), L ⊆ L2 and u is such that

ut −M−
Lu = 0 in C8,3,

∥u∥L∞((−3,0] 7→L1(ωσ)) + [u]C0,1((−3,0] 7→L1(ωσ)) ≤ 1.

Lemma 4.1. For K(y) ∈ [0,Λ], b ∈ Bβ,

∥Lσ
K,bu∥L∞(C1,1) ≤ C,

for some universal constant C.

Proof. We prove it in several steps. Here is the summary of the
strategy:

(1) For L ∈ L, we bound Lu from below by using the equation for u
and the control we have for ut inside the domain.

(2) For L ∈ L, we integrate by parts to control ∥Lu(t)∥L1(ωσ) and then
apply Lemma 2.7 to bound Lu from above.

(3) For general K and b, we use L2 theory to control ∥Lσ
K,bu(t)∥L1(ωσ)

and then apply Lemma 2.7 to bound Lσ
K,bu from above.

(4) For general K and b, we apply the previous step to

(K ′′, b′′) = Λ(K ′, b′)− λ(K, b),

with Lσ
K′,b′ ∈ L to bound Lσ

K,bu from below.

Step 1. L ∈ L, then Lu ≥ −C in C8,3.

It follows from the equation for u and the regularity in time that

Lu ≥ M−
Lu = ut ≥ −[u]C0,1((−3,0]7→L1(ωσ)).

Step 2. L ∈ L, then Lu ≤ C in C4,2.

For this step, we recall the definition of the cut-off function ψr1,r2 :
for r1 > r2 > 0, ψr1,r2 ∈ C∞

0 (Br1 → [0, 1]) such that ψr1,r2 = 1 in Br2 .

We apply the oscillation lemma to ψ6,5Lu. By Corollary 3.5, ψ6,5Lu
satisfies

(ψ6,5Lu)t −M+
L(ψ6,5Lu) ≤ C in C5,3.
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We now estimate ∥(ψ6,5Lu)
+∥L1((−3,0]7→L1(ωσ)). As ψ6,5Lu is bounded

from below and compactly supported, all we need is to control the
following integral∫ 0

−3

∫
Rn

ψ6,5 Lu =

∫ 0

−3

∫
Rn

(
Lψ6,5

)
u ≤ C.

By Lemma 2.7, we have that ψ6,5Lu is bounded from above in C4,2,
where it coincides with Lu.

Step 3. Given K(y) ∈ [0,Λ′] and b ∈ Bβ′ , then Lσ
K,bu ≤ C in C1,1.

Given L ∈ L, the previous steps imply that Lu is bounded in C4,2.
From Fourier analysis techniques we then get that (see [6, Theorem
4.3]),

∥Lσ
K,bu(t)∥L2(B2) ≤ C∥Lu(t)∥L2(B3) ≤ C

=⇒ ∥Lσ
KχB1

,bu(t)∥L1(B2) ≤ C + ∥Lσ
KχBc

1
,0u(t)∥L1(B2)

=⇒ ∥ψ3,2L
σ
KχB1 ,b

u∥L1((−2,0] 7→L1(ωσ)) ≤ C.

By Corollary 3.5, ψ3,2L
σ
KχB1

,bu satisfies

(ψ3,2L
σ
KχB1

,bu)t −M+
L(ψ3,2L

σ
KχB1

,bu) ≤ C in C2,2∫ 0

−4

f(t) dt ≤ C.

By Lemma 2.7, ψ3,2L
σ
KχB1

,bu gets bounded from above in C1,1. By

the hypotheses, we also obtain the bound for ψ3,2L
σ
K,bu in C1,1 where

it coincides with Lσ
K,bu,

ψ3,2L
σ
K,bu ≤ C + ψ3,2L

σ
KχBc

1
,bu ≤ C + ∥u∥L∞((−1,0] 7→L1(ωσ)).

Step 4. Given K(y) ∈ [0,Λ] and b ∈ Bβ , then L
σ
K,bu ≥ −C in C1,1.

Consider Lσ
K′,b′ ∈ L, and

Lσ
K′′,b′′ := ΛLσ

K′,b′ − λLσ
K,b,

such that |b′′| ≤ (Λ+λ)β,andK ′′(y) ∈ [0,Λ2]. Given the result from the
second step, it suffices to show that Lσ

K′′,b′′u ≥ −C in C1,1. This is just
a consequence of applying the bound of the third step to Lσ

K′′,b′′u. �
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Corollary 4.2. There is a universal constant C > 0 such that

(2− σ)

∫
Rn

|δu(x, t; y)|
|y|n+σ

dy ≤ C in C1,1.

In particular, by Morrey estimates, we have that u ∈ Cα
x (C1,1) for

every α ∈ [1, σ), see [21].

Proof. Using K(y) := Λ(2− σ)|y|−(n+σ) in the previous lemma, we
get

(2− σ)

∫
Rn

δu(x, t; y)

|y|n+σ
dy ≥ −C in C1,1.

Fixing (x, t) ∈ C1,1 and usingK(y) := Λ(2−σ) sign (δu(x, t; y))|y|−(n+σ)

in the previous lemma, we get

(2− σ)

∫
Rn

δ+u(x, t; y)

|y|n+σ
dy ≤ C.

Adding them up, the corollary is concluded. �

5. Further regularity. Regularity C2,α can be reduced to Hölder
regularity of the Laplacian. The same holds with respect to Cσ+α

regularity and the fractional Laplacian (−∆)σ/2. Now, the fractional
Laplacian, (−∆)σ/2u, can be thought as a difference of an average of u
with itself, which relates with the concavity ofM−

L in a proper way. We
will exploit these two facts in this section to prove our Cσ+α regularity
result.

We keep the previous hypotheses for this section, L ⊆ L2 and u
satisfy

ut −M−
Lu = 0 in C8,3,

∥u∥L∞((−3,0] 7→L1(ωσ)) + [u]C0,1((−3,0] 7→L1(ωσ)) ≤ 1.

In particular we know by now that, for K(y) ∈ [0,Λ], b ∈ Bβ ,

∥Lσ
K,bu∥L∞(C1,1) ≤ C.

Given A ⊆ B1, let

Kσ
A(y) := (2− σ)

χA(y)

|y|n+σ
.
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Fix φ ∈ C∞
0 (B1 → [0, 1]) such that φ = 1 in B1/2, and define

wA(x, t) := φ(x)

∫
Rn

(δu(x, t; y)− δu(0, t; y))Kσ
A(y) dy.

By the properties deduced in the previous sections we have that wA is
globally bounded and satisfies

(wA)t −M+
LwA ≤ C,

in the cylinder C1,1.

Let us also consider the extremal functions

P (x, t) := sup
A⊆B1

wA=(2−σ)φ(x)
∫
B1/2

(δu(x, t; y)−δu(0, t; y))+

|y|n+α
dy,

N(x, t) := sup
A⊆B1

(−wA) = (2−σ)φ(x)
∫
B1/2

(δu(x, t; y)−δu(0, t; y))−

|y|n+α
dy.

Our goal is to prove diminishing of the oscillation lemma for P +N .
This implies that (−∆)σ/2u is Hölder continuous, and therefore, the
desired Cσ+α regularity. We start by proving that P and N are
comparable modulus a controlled error.

Lemma 5.1. There exist universal constants C > 0 and α ∈ (0, 1)
such that, for (x, t) ∈ C1/8,1/2, we have

λ

Λ
N − C|x|α ≤ P ≤ Λ

λ
N + C|x|α.

Proof. For x ∈ B1/8, let ux(y, t) = u(x + y, t). Since u solves

ut −M−
Lu = 0 in C1,1, then the difference (ux − u) satisfies in C7/8,1,

(ux − u)t −M+
L(ux − u) ≤ 0,

(ux − u)t −M−
L (ux − u) ≥ 0.

To recover P and N from the previous relations we consider for
L = Lσ

K,0 ∈ L2,

L(ux − u)(0) =

∫
Rn

(δu(x, t; y)− δu(0, t; y))Kσ(y) dy,
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λP (x, t)− ΛN(x, t) ≤
∫
B1

(δu(x, t; y)− δu(0, t; y))Kσ(y) dy

≤ ΛP (x, t)− λN(x, t).

Changing variables, we can rewrite∫
Bc

1

(δu(x, t; y)− δu(0, t; y))Kσ(y) dy

=

∫
Rn

u(y, t)
(
Kσ(y − x)χBc

1
(y − x)−Kσ(y)χBc

1
(y)

)
dy

+ (u(x, t)− u(0, t))

∫
Bc

1

Kσ(y) dy.

By Theorem 2.9, the last term is of order |x|. The first term can be
estimated using the smoothness hypothesis of K,∫

Rn

|Kσ(y − x)χBc
1
(y − x)−Kσ(y)χBc

1
(y)| dy

≤
∫
Bc

1/2

|Kσ(y − x)−Kσ(y)| dz ≤ C|x|.

On the other hand, we have the estimate ∥(ux − u)t∥∞ ≤ C|x|α from
Theorem 2.10. Therefore,

[(ux − u)t − L(ux − u)](0, t) ≥ −C|x|α − ΛP (x) + λN(x).

Taking the infimum over L ∈ L2 and using the equation for (ux − u),
we get

0 ≥ −C|x|α − ΛP (x, t) + λN(x, t).

A similar computation with (ux − u)t −M−
L (ux − u) ≥ 0 provides

the other inequality. �

The next result is a diminishing of the oscillation lemma. As we
have learned from [3, 4, 5, 8, 9] it is important to strengthen the
hypothesis of being just bounded and allow some growth at infinity.
This allows iteration of the lemma by noting that the tails grow in a
controlled way.
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By rescaling, we can further assume that, for ε1 > 0 sufficiently
small (to be fixed) and for every set K ⊆ Rn, we have

|wK | ≤ 1/2 in C1,1,(5.1)

|wK | ≤ |x|1/2 in Bc
1 × [−1, 0],(5.2)

(wK)t −M+
LwK ≤ ε1 in C1,1.(5.3)

Additionally, by the previous lemma, we can assume that in C1/2,1

(5.4)
λ

Λ
N(x, y)− ε1|x|α ≤ P (x, t) ≤ Λ

λ
N(x, t) + ε1|x|α.

Lemma 5.2. Assume (5.1), (5.2), (5.3) and (5.4). There are constants
κ, θ > 0, sufficiently small such that in Cκ,κσ

P ≤ 1

2
− θ.

Remark 5.3. We should ask ourselves how small κ and θ should be in
order to be able to iterate the lemma. We need the rescaled function
w̃K , given by

w̃K(x, t) =
wK(κx, κσt)

1− θ
,

to satisfy the same hypotheses (5.1), (5.2), (5.3) and (5.4). Now, (5.1)
is immediate and (5.2) holds if (1 − θ) − κ1/2 ≥ θ/2 > 0, which is
reasonable as κ, θ can be chosen even smaller. Also, (5.3) holds if
(1 − θ) > κσ which was already contained in the previous inequality
as σ > 1/2. Finally, (5.4) holds if κσ−α ≤ (1 − θ) which is possible
because σ > 1 > α.

Proof. Assume by contradiction that, for some (x0, t0) ∈ Cκ,κσ ,
P (x0, t0) > (1/2− θ). There is then some set A such that wA(x0, t0) >
(1/2− θ). The function vA, given by the following truncation,

vA :=

(
1

2
− wA

)+

,

satisfies an equation coming from (5.3). The truncation introduces an
error that can be controlled in the interior

(vA)t −M−
LvA ≥ −C in C1/2,1.
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We use the point estimate (Theorem 2.6) to control the distribution
of vA in Cκ,κσ (0,−κσ),

(5.5)
|{vA > sθ} ∩ Cκ,κσ (0,−κσ)|

|Cκ,κσ (0,−κσ)|
≤ C(θ + κσ)ε(sθ)−ε.

Take κσ ≤ θ; we can make the right hand side Cs−ε sufficiently small,
independently of θ, by taking s sufficiently large. This makes the set
G, defined by

G := {wA ≥ (1/2− sθ)} ∩ Cκ,κσ (0,−κσ),

cover a fraction of Cκ,κσ (0,−κσ) close to one.

In G, wA and P are close to 1/2. Thanks to (5.4), N can also be
forced to be strictly positive in G by making ε1 + θ ≤ 1/4. Therefore,
we can assume N is larger than λ/(4Λ) in G. Also, in G and for
B = B1\A, wB has to be close to −N . This follows from the relation
wA + wB = P −N ; therefore,

0 ≤ N + wB = P − wA ≤ sθ.

This allows us to make wB ≤ −λ/(8Λ) in G by choosing θ < λ/(8sΛ).

Now we use the oscillation lemma to obtain the contradiction.
Consider, for η ∈ (0, 1), the function vB given by

vB(x, t) =

(
wB(κηx, (κη)

σt− κσ) +
λ

8Λ

)+

.

It still satisfies in C(κη)−1,(κη)−σ ,

(vB)t −M+
L(vB) ≤ ε1(κη)

σ ≤ ε1.

Also, from (5.5), we know that

|{vB > 0} ∩ Cη−1,η−σ | ≤ Cη−(n+σ)s−ε.

By the oscillation lemma,

λ

8Λ
= vB(0, 0) ≤ C

(
ε1 + η−(n+σ)s−ε + sup

t∈[−η−σ,0]

∫
Bc

η−1

|vB(y, t)|
|y|n+σ

dy

)
.
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Changing variables,∫
Bc

η−1

|vB(y, t)|
|y|n+σ

dy = (κη)σ
∫
Bc

κ

(wB(y, (κη)
σt− κσ) + (λ/8Λ))

+

|y|n+σ
dy,

≤ Cησ,

where the last inequality holds by the bounds (5.1) and (5.2). Putting
it back into the estimate, we obtain

λ

8Λ
≤ C

(
ε1 + η−(n+σ)s−ε + ησ

)
.

This gives us a contradiction by choosing ε1, η
σ < λ/(100CΛ), and

then sε > (100CΛ)/(ληn+σ). �

We are now able to prove the parabolic nonlocal Evans-Krylov
theorem.

Theorem 5.4 (Classical solutions). Let L ⊆ L2, u be a bounded
function in Rn × (−1, 0] solving

ut −M−
Lu = 0 in viscosity in C1,1.

Then, (−∆)σu is Hölder continuous with the following estimate

∥(−∆)σu∥Cα(C1/2,1/2)≤C(∥u∥L∞((−1,0] 7→L1(ωσ))+[u]C0,1((−1,0]7→L1(ωσ))).

Proof. The case σ ≤ 1 is contained in [10]. By the regularization
procedure of [9] we can assume that (−∆)σu is continuous, and by
translation invariance, all we need to show is that the estimate holds
at the origin. As usual, we renormalize u in order to have

∥u∥L∞((−1,0] 7→L1(ωσ)) + [u]C0,1((−1,0] 7→L1(ωσ)) ≤ 1.

By the definitions of N and P , we have the following identity in
B1/8 × (−1, 0]

(−∆)σu(0, t)− (−∆)σu(x, t)

= C

(
P (x, t) +N(x, t) + (2− σ)

∫
Bc

1

δu(x, t; y)− δu(0, t; y)

|y|n+σ
dy

)
.

The third term can be bounded by C|x| as in the proof of Lemma 5.1.
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Lemma 5.2 and Remark 5.3 give a geometric decay for P around
the origin which implies a Hölder modulus of continuity for it. By
Lemma 5.1, this is equivalent to a similar modulus of continuity for N .
Then, the first two terms above can be bounded by C|x|α, for some
universal α, which concludes the proof. �
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8. Héctor Chang-Lara and Gonzalo Dávila, Regularity for solutions of non local
parabolic equations, Calc. Var. Partial Diff. Equat. 49 (2014), 139–172

9. , Regularity for solutions of non local parabolic equations, J. Diff.
Equat. 256 (2014), 130–156.
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