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ABSTRACT. This article investigates the solvability of
volume integral equations arising in elastodynamic scatter-
ing by penetrable obstacles. The elasticity tensor and mass
density are allowed to be smoothly heterogeneous inside the
obstacle and may be discontinuous across the background-
obstacle interface, the background elastic material being ho-
mogeneous. Both materials may be anisotropic, within cer-
tain limitations for the background medium. The volume in-
tegral equation associated with this problem is first derived,
relying on known properties of the background fundamental
tensor. To avoid difficulties associated with existing radia-
tion conditions for anisotropic elastic media, we also propose
a definition of the radiating character of transmission solu-
tions. The unique solvability of the volume integral equation
(and of the scattering problem) is established. For the im-
portant special case of isotropic background properties, our
definition of a radiating solution is found to be equivalent
to the Sommerfeld-Kupradze radiation conditions. Moreover,
solvability for anisotropic elastostatics, directly related to
known results on the equivalent inclusion method, is recov-
ered as a by-product.

1. Introduction. Volume integral equations, also known as Lipp-
mann-Schwinger integral equations, arise naturally when considering
the scattering of waves by penetrable inhomogeneities embedded in a
homogeneous background medium, for which a fundamental solution is
known. They have been developed and used in various areas of physics,
such as electromagnetism and optics [3, Chapter 2], [8, Chapter 9],
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acoustics [9, Chapter 8], [28], or elastodynamics [34, 35, 39], for
a long time. If the penetrable object has homogeneous properties,
scattering may alternatively be modeled using coupled surface integral
equations, see e.g., [13] for elastodynamics. Variational formulations,
combined with appropriate handling of the solution behavior at infinity,
can also be applied to such scattering problems.

Volume integral equations have a geometrical support restricted to
the spatial region where material properties differ from the background.
This feature makes them useful, e.g., for deriving asymptotic or homog-
enized models involving inhomogeneities of low contrast or vanishing
size [2, 38]. Moreover, as they provide a direct mathematical link be-
tween unknown inhomogeneities and remote measurements, they are
also convenient for medium imaging inverse problems [5], for instance,
providing a foundation for contrast source inversion methods [32] or
allowing rather explicit expressions of far-field patterns.

In contrast with the vast existing literature on the mathematical
aspects of boundary integral equations and their application to scat-
tering by impenetrable obstacles characterized by Dirichlet, Neumann
or impedant boundary conditions, comparatively few studies are avail-
able regarding the mathematical properties of volume integral equa-
tions. The well-posedness of volume integral formulations for vari-
ous electromagnetic scattering problems is addressed in [33] for two-
dimensional orthotropic inhomogeneities and in [21, 22, 23, 24] for
three-dimensional problems where connections to (and complementar-
ity with) variational formulations are emphasized. Solvability and
other mathematical properties of volume integral equations for three-
dimensional electromagnetic scattering are addressed in [10, 11]. All of
these studies assume isotropic properties for the background material.

The goal of this article is to establish the solvability of volume in-
tegral equations associated with elastodynamic scattering by penetra-
ble obstacles, a question which to the best of our knowledge is not
addressed in the available literature (see, however, [18] for obstacles
characterized by a mass density perturbation and [16] for Eshelby-type
elastostatic problems involving elastic inhomogeneities). The relevant
material properties (elasticity tensor, mass density) are assumed to
be smooth inside the obstacle; they may be discontinuous across the
background-obstacle interface and are otherwise allowed to be arbitrary
(e.g., in terms of heterogeneity or elastic anisotropy). The background
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elastic material is assumed to be homogeneous. To make this study
as general as possible, anisotropy is also allowed for the background
material. The elastodynamic fundamental tensor for the background
medium is then known as a Fourier integral that, unlike in the isotropic
case, cannot be evaluated in closed form. The background anisotropy
permitted is constrained by a set of assumptions, expressed in terms
of the geometry of the slowness surfaces, that allow reasonably simple
far-field asymptotic formulas for the fundamental tensor, a framework
that was previously used in [31] for studying the solvability of sur-
face integral formulations of anisotropic elastodynamic exterior prob-
lems. We thus rely on some results of [31] regarding, e.g., properties of
the anisotropic fundamental tensor. The subclass of anisotropic back-
ground permitted properties, termed as class I anisotropy in the three-
class categorization of [4], includes isotropic materials as an important
special case.

The assumption of background anisotropy complicates the solv-
ability problem at hand. First, the available generalization of the
Sommerfeld-Kupradze radiation conditions [31, 36] is inconvenient,
prompting us to adopt instead (inspired by [12] and [29, Chapter 7])
another definition of the radiating character of transmission solutions
that is easier to formulate and use, and is equivalent to Sommerfeld-
type radiation conditions in situations when the latter are available.
We also show that this definition achieves solutions that have outgo-
ing energy flux, i.e., are radiating in a physical sense. Moreover, the
unavailability of expansions of elastodynamic solutions as a series of
eigenfunctions deprives one of Rellich’s lemma, so we rely instead on a
theorem [26] valid for a large class of linear partial differential opera-
tors, which, however, must also here conform to the class I anisotropy
restrictions.

This article is organized as follows. The rest of this section is
devoted to introducing the scattering problem of interest and collecting
background and notation pertaining to anisotropic elastodynamics. In
Section 2, we derive the governing volume integral equation for this
problem, relying on known properties of the background fundamental
tensor that are recalled along the way, and specifying a definition of the
radiating character of transmission solutions which is both appropriate
and convenient for the context of this work. The unique solvability of
the volume integral equation (and of the scattering problem), which is
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our main result, is established in Section 3. Remarks on the important
special case of isotropic background properties are given in Section 4,
where our definition of a radiating solution is in particular shown to
be equivalent to the Sommerfeld-Kupradze radiation conditions [25].
Finally, unique solvability for anisotropic elastostatics is obtained as a
by-product in Section 5, this time without restrictions on anisotropy;
this result is closely related to that of [16] on the equivalent-inclusion
method. Some auxiliary proofs are finally given in Section 6.

1.1. Formulation of the problem. We consider the scattering of
time-harmonic elastic waves by an elastic inhomogeneity embedded in
an unbounded background elastic medium. The inhomogeneity oc-
cupies a bounded domain D1 ⊂ R3. The unbounded complement
D0 := R3 \D1 of D1 is assumed to be connected, the background ma-
terial filling D0 being homogeneous and anisotropic. The constitutive
material of the scatterer is also anisotropic and may be heterogeneous.
The (possibly anisotropic) elastic properties of the background medium
and the scatterer are, respectively, characterized by the fourth-order
elasticity tensors C0 and C1. The corresponding mass densities are ρ0

and ρ1. These material characteristics are all real-valued. Moreover, C0

and ρ0 are assumed to be uniform, while C1 and ρ1 are C1,α(D1) func-
tions. The primary field variable characterizing an elastodynamic state
is the vector-valued displacement. For a given displacement fieldw, the
stress tensor σℓ[w] in Dℓ (ℓ= 0, 1) is then given by σℓ[w] = Cℓ :ε[w],
where ε[w] := 1

2 (∇w+∇wT) is the linearized strain tensor associated
with w. The tractions tℓ[w], i.e., the force surface densities exerted by
medium ℓ on the interface Γ separating D0 and D1 (with n conven-
tionally denoting the unit normal to Γ pointing outwards of D1), are
then defined by

(1.1) tℓ[w](x) = lim
h>0→0

σℓ[w](x+(−1)ℓhn)·n(x), x∈Γ, ℓ=0, 1.

In (1.1) and hereinafter, the symbols ‘ · ’ and ‘ : ’ denote single and
double inner products, e.g., (σ ·n)i = σijnj and (C0 : ε)ij = C0

ijkℓεkℓ,
with Einstein’s convention of summation over repeated indices implic-
itly used throughout and component indices always referring to an or-
thonormal frame. To define a physically meaningful problem, the ma-
terial parameters obey the following assumptions: the elasticity tensors
Cℓ verify Cℓ

ijkℓ = Cℓ
kℓij = Cℓ

ijℓk (major and minor symmetries) and define
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symmetric positive quadratic forms over the symmetric second-order
tensors (i.e., ε : Cℓ : ε > 0 for any ε ∈ R3×3

sym \ {0}), while the mass

densities ρℓ are strictly positive and bounded away from zero.

In the absence of body forces, any displacement field w in Dℓ

(ℓ=0, 1) satisfies the homogeneous time-harmonic elastodynamic field
equation

(1.2) Bℓw = 0 in Dℓ,

where the partial differential operator Bℓ associated to medium ℓ,
defined by

(1.3) Bℓw = −div
(
Cℓ :ε[w]

)
− ρℓω2w

(with the divergence of any second-order tensor field σ defined by
(divσ)i = ∂jσij), is strongly elliptic [29, Chapter 4] and formally
self-adjoint. The time-harmonic factor e−iωt is implicitly understood
for all field quantities.

The transmission problem under consideration concerns the scat-
tering by the inhomogeneity of a given incident field uI, which is an
elastodynamic solution for the background medium, i.e., it satisfies

(1.4) B0uI = 0 in R3.

Writing the total displacement field u in D0∪D1 in the form u = v+uI,
the restrictions v0 := v|D0 and v1 := v|D1 of the scattered field v satisfy
the field equations

(1.5) (a) B0(v0+uI) = 0 in D0, (b) B1(v1+uI) = 0 in D1,

and the transmission conditions

(1.6) (a) v1 = v0, (b) t1[v1+uI] = t0[v0 + uI] on Γ.

In what follows, any solution v to (1.5) and (1.6) will be called a
transmission solution.

In addition, v0 is assumed to be radiating at infinity. Radiation
conditions for anisotropic elastic media, while known [36], are cum-
bersome as they involve an additive split of v0 into three parts that
are not explicitly defined. An alternative, simpler, definition for the
radiating character of v0 will be stated and adopted later in this article
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(see Definition 2.6 in subsection 2.3); until then, the precise meaning
of “radiating” is left unspecified.

We are interested in transmission solutions v which have finite
local energy: v ∈ H1

loc(R3), i.e., v1 ∈ H1(D1) and v0 ∈ H1
loc(D0),

where boldface symbols H1,L2 . . ., indicate Sobolev function spaces
of complex-valued vector fields, e.g., H1(X) := H1(X;C3) for some
domain X ⊂R3. We introduce the bilinear forms

⟨u,w⟩CX :=

∫
X

ε[u] :C :ε[w] dV =

∫
X

∇u :C :∇w dV ,(1.7) (
u,w

)ρ
X

:=

∫
X

ρu·w dV ,(1.8)

respectively associated with elastic strain energy and kinetic energy,
for some domain X ⊂R3, elasticity tensor C and mass density ρ. Any
transmission solution v ∈H1

loc(R3) of (1.5) and (1.6) then satisfies

(1.9)
⟨
v,ψ

⟩C
R3 − ω2

(
v,ψ

)ρ
R3 = −

⟨
uI,ψ

⟩∆C
D1

+ ω2
(
uI,ψ

)∆ρ

D1
,

for all test displacements ψ ∈ H1
comp(R3), having set C := C0 +

(∆C)1D1 and ρ := ρ0 + (∆ρ)1D1 ; this stems from taking the inner
product of (1.4) and (1.5) (a), (b) with ψ ∈ H1

comp(R3), invoking
in each case the first Green identity, and combining the resulting
equalities. Equation (1.9) is the variational form of

(1.10) Bv = div
(
∆C :ε[uI]

)
+∆ρω2uI in R3 \Γ

(with Bv := −div
(
C : ε[v]

)
− ρω2v) combined with the transmission

conditions (1.6).

1.2. Auxiliary results and notation. This section collects auxiliary
results and notation associated with the framework of [31], adopted
in this study, regarding anisotropic elastodynamics and constraints
(stated in Assumption 1.1 below) on the background elasticity tensor.

1.2.1. Matrix form of elastodynamic equation. The general in-
homogeneous elastodynamic equation B0w = f for the background
medium can be given the equivalent matrix form

(1.11) B0(−i∇)w = f ,
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with ∇ = (∂1, ∂2, ∂3), B0(ξ) = A(ξ) − ρ0ω2I and the acoustic tensor
A(ξ) defined by Aik(ξ) = C0

ijkℓξjξℓ. The positive definiteness of

ε 7→ ε : C0 : ε over R3×3
sym implies that A(ξ) ∈ R3×3 is positive definite

for any ξ ∈R3 \{0}. Let

(1.12) D(ξ) = Det (B0(ξ)) = Det (A(ξ)− ρ0ω2I)

denote the characteristic determinant of B0. The adjugate matrix
N(ξ) of B0(ξ), i.e., the transpose of its cofactor matrix, is then given
(since B0(ξ) ∈ R3×3) by

N(ξ) =
(

1
2

(
[Tr (B0)]

2 − Tr (B0
2)
)
I − Tr (B0)B0 +B0

2
)
(ξ),

and is such that

B0(ξ)·N(ξ) =N(ξ)·B0(ξ) = D(ξ)I.

In particular, when B0(ξ) is invertible, B0
−1(ξ) = D(ξ)−1N(ξ).

Finally, defining Â(n, ξ) by Âik(n, ξ) = C0
ijkℓnjξℓ, 1 ≤ i, k ≤ 3, the

traction operator w 7→ t0[w] can be given the form

(1.13) t0[w] = Â(n,∇)w.

1.2.2. Characteristic (slowness) surfaces. Plane waves, i.e, dis-
placement fields w of the form w(x) = eiξ·xb in the background
medium (with the vectors ξ, b ∈ R3 defining propagation and polariza-
tion directions, respectively), solve the field equation B0(−i∇)w = 0,
provided the linear system B0(ξ)·b = 0 has nonzero solutions b = b(ξ).
The propagation vector ξ must therefore satisfy the characteristic equa-
tion

D(ξ) = 0.

Setting ξ = λξ̂ with ξ̂ ∈ Ŝ and λ > 0 (Ŝ denoting the unit sphere in
R3), the above characteristic equation implies, for given propagation

direction ξ̂ ∈ Ŝ, that ρ0ω2/λ2 are eigenvalues of the (real, symmetric,

positive definite) matrix A(ξ̂). Counting possible multiplicities, there

are three such values 0 < α1(ξ̂) ≤ α2(ξ̂) ≤ α3(ξ̂). The corresponding
polarization directions bq (where |bq| = 1 may be assumed) solve

B0(λ
qξ̂) ·bq(ξ̂) = 0, and B0(ξ) is given in terms of the αq and bq
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by

(1.14) B0(ξ) =

3∑
q=1

(
|ξ|2αq(ξ̂)− ρ0ω2

)
bq(ξ̂)⊗bq(ξ̂).

Real solutions of D(ξ) = 0 form three characteristic surfaces Sq, q =

1, 2, 3, in ξ-space, defined by Sq =
{
ξ ∈R3, ξ = [ρ0ω2/αq(ξ̂)]ξ̂, ξ̂ ∈ Ŝ

}
.

The Sq are often called slowness surfaces [4]. The adjugate matrix
N(ξ) of B0(ξ) for ξ ∈Sq has rank 1 and is given, when the Sq are all
distinct, by

N(ξ) = γq(ξ̂) bq(ξ̂)⊗bq(ξ̂),(1.15)

γq(ξ̂) = (ρ0ω2)2
∏
p ̸=q

(
1− αp(ξ̂)/αq(ξ̂)

)
, ξ ∈Sq.(1.16)

In particular, we have (−1)qγq(ξ̂)> 0, q=1, 2, 3.

1.2.3. Restrictions on background anisotropy. For reasons which
will appear later, the permitted anisotropic elastic properties of the
background material are subject to the following constraints:

Assumption 1.1. The background elasticity tensor C0 is such that the
following conditions (which define the class I anisotropy in the three-
class categorization of [4]) are satisfied :

(i) ∇D ̸= 0 at any real zero of the polynomial D(ξ);
(ii) The Gaussian curvature κq of Sq does not vanish anywhere on

Sq, q=1, 2, 3.

Assumption 1.1 ensures that Sq are closed, convex and non-self-
intersecting surfaces containing the origin in their interior [31]. The
outward unit normal to Sq being given by ν(ξ) = (−1)q∇D(ξ)/|∇D(ξ)|,
conditions (i) and (ii) also imply that, for any given unit direction

x̂ ∈ Ŝ, there exists a unique vector ξq(x̂) on Sq such that ν(ξq) = x̂
(in which case we also have −ξq ∈ Sq and ν(−ξq) = −x̂).



VOLUME INTEGRAL EQUATION FORMULATION 177

2. Volume integral equation of Lippmann-Schwinger type.

2.1. Elastodynamic radiating fundamental tensor. Let G =
ek ⊗Gk be the fundamental tensor for the unbounded background
medium, with each vector Gk defined as the radiating displacement
field solving

(2.1) B0G
k = δek

(δ denoting the Dirac distribution supported at the origin). As shown
in [31], G is given by

(2.2) G(x) = lim
ϵ>0→0

lim
R→+∞

1

(2π)3

×
∫
|ξ|≤R

[
A(ξ)− ρ0(ω+iϵ)2I

]−1
eiξ·x dV (ξ),

with the chosen limiting process with respect to ϵ expressing the
limiting absorption principle. No closed-form expression of (2.2) is
known for general anisotropic elasticity (whereas one is available for
isotropic elasticity, see e.g., [14, 25] and Section 4). G(x) has the
properties

(2.3)
(a) G(x) = G(−x) = GT(x) (symmetry),

(b) G(x) = O(|x|−1), |x| → 0 (singularity),

which can be proved by a suitable change of variables in the Fourier
integral representation (2.2) (or inferred from the alternative represen-
tation of G given in [37], based on the Radon transform). Moreover,
translational invariance of the homogeneous full space implies that the
fundamental tensor generated by a point source located at y isG(x−y).

The far-field asymptotic behavior of G(x−y) for |x| → ∞ (with y
fixed) is given by

G(x−y) =
( 3∑

q=1

(−1)qE(ξq)N(ξq)eiξ
q·(x−y)

)
|x|−1 +O

(
|x|−2

)(2.4a)

(see [31, Lemma 3.2]) with ξq = ξq(x̂) and

E(ξq) =
(
2π

∣∣∇D(ξq)
∣∣)−1

[κ(ξq)]−1/2.
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Using (1.13), the corresponding far-field asymptotic form of the funda-

mental traction tensor T = ek⊗T k such that T k := t0[G
k] is then

T (x−y) =
(
i

3∑
q=1

(−1)qE(ξq)Â(n(x), ξq)·N(ξq)eiξ
q·(x−y)

)
|x|−1

(2.4b)

+O
(
|x|−2

)
.

Remark 2.1. The far-field asymptotic formulas (2.4a), (2.4b) are
valid for anisotropic materials satisfying Assumption 1.1 [31], so that
ξq(x̂) are the (nondegenerate) critical points arising in a stationary-
phase approximation of the integral representation (2.2) for |x| → ∞.
Materials of this class for which the characteristic surfaces Sq are
in addition ellipsoidal are determined in [6]. Anisotropic elasticity
tensors failing to satisfy Assumption 1.1, i.e., corresponding to class
II or III materials in [4], give rise to additional far-field contributions,
some of them decaying at a rate slower than O(|x|−1) along certain
observation directions x̂ (see, e.g., [17]), making the far-field behavior
of G significantly more complex; they are not considered in this work.

2.2. Volume potentials. Define the volume vector potentials Vω

and Wω, for respective densities g ∈ L2(D1) and h ∈ L2(D1;C3×3),
by

Vω[g](x) =

∫
D1

G(x−y)·g(y) dV (y),(2.5a)

Wω[h](x) = div

∫
D1

G(x−y)·h(y) dV (y),(2.5b)

with the divergence operator in (2.5b) defined as in (1.3). By virtue of
known mapping properties of integral operators treated as pseudodif-
ferential operators [20, Theorem 6.1.12], Vω and Wω are well defined
as L2(D1;C3) → H2

loc(R3) and L2(D1;C3×3) → H1
loc(R3) operators,

respectively. Moreover, we note for later reference that Wω[h] can be
reformulated by using property (2.3a) of G, to obtain

Wω[h](x) =

∫
D1

∇G(x−y) :h(y) dSy(2.6)
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= −
∫
D1

∇G(y−x) :h(y) dSy

= Vω

[
divh

]
(x)− Sω[h·n](x),

where the last equality results from an integration by parts and

Sω[f ](x) :=

∫
Γ

G(y−x)·f(y) dSy

is the elastodynamic single-layer potential with density f , satisfying
B0Sω[f ] = 0 in R3 \Γ.

The following two lemmas state properties of fields given by vol-
ume potentials that will be useful later in proving uniqueness for the
transmission problem.

Lemma 2.2. Any displacement field w of the form w = Vω[g]+Wω[h]
has the far-field asymptotic expansion

w(x) = |x|−1
3∑

p=1

(−1)pγp(ξ̂
p)E(ξp)

[
b(ξp)·Ip(x̂)

]
eiϱx̂·ξ

p

b(ξp)(2.7a)

+O(|x|−2),

t0[w](x) = i|x|−1
3∑

q=1

(−1)qγp(ξ̂
p)E(ξq)

[
b(ξp)·Ip(x̂)

]
eiϱx̂ξ

q

(2.7b)

Â(x̂, ξq)·b(ξp) +O(|x|−2),

with ξp = ξp(x̂) ∈ Sp as defined after Assumption 1.1 and with the
vectors Ip(x̂) defined by

Ip(x̂) =

∫
D1

e−iy·ξp[
g + divh

]
(y) dVy −

∫
Γ

e−iy·ξp

h(y)·n(y) dSy.

Proof. The lemma follows directly from the far-field asymptotic
form (2.4a), (2.4b) of the fundamental elastodynamic tensor and the
equivalent representation w = Vω[g+divh]−Sω[h·n] of w stemming
from (2.6). �

Lemma 2.3. Let Sϱ denote the sphere
{
x∈R3, |x|= ϱ

}
of radius ϱ.
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(a) The integrals

IR,k := R−1

∫ 2R

R

{∫
Sϱ

Gk(x)·T k(x) dSx

}
dϱ

are such that ℑ
(
IR,k

)
< 0 for R large enough.

(b) For any displacement field w of the form w = Vω[g] + Wω[h],
define IR(w) by

IR(w) := R−1

∫ 2R

R

{∫
Sϱ

w(x)·t0[w](x) dSx

}
dϱ.

We have

(2.8)
IR(w) = −i

3∑
p=1

(−1)p
∫
Ŝ

γp(ξ̂
p)
(
2π2

∣∣∇D(ξp)
∣∣κ(ξp))−1

×
∣∣Ip(x̂)·bp(ξ̂p) ∣∣2 dSx̂ + o(1),

with ξp = ξp(x̂) ∈ Sp as defined after Assumption 1.1. In
particular, ℑ(IR) < 0 for R large enough.

Proof. See subsection 6.1. �

Remark 2.4. Lemma 2.3 (a) confirms that the elastodynamic state

associated with each Gk is radiating in the physical sense: the time
average over one period of the energy flux across Sϱ averaged over
R≤ ϱ≤ 2R is negative for large enough R (see also Remark 6.1).

Moreover, upon replacing ω+iϵ with ω−iϵ in the integrand of (2.2),G
represents incoming, rather than outgoing, waves (see [31] for details);
this change, in particular, manifests itself through the substitution
i → −i in (2.4a) and (2.4b).

Then, part (b) shows that any w = Vω[g] +Wω[h] is radiating in
the physical sense. The strict inequality in the last statement therein
requires that the leading O(1) contribution to IR(w) does not vanish.
The uniqueness study of subsection 3.3 implies that any nonvanishing
w in fact satisfies this condition.

2.3. Radiating transmission solutions and volume integral
equation. We now establish a representation identity for transmission
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solutions in terms of volume potentials, from which the volume integral
equation will follow. This step entails accounting for the behavior at
infinity of transmission solutions and, in particular, defining what a
radiating transmission solution is in the present context. We follow for
that purpose the approach of [12] and [29, Chapter 7]. Accordingly,
for u solving B0u = 0 in D0, let M[u](x) be defined for any given
x∈D0 by

(2.9) M[u](x) :=

∫
SA

(
G(·−x) · t0[u]− T (·−x) ·u

)
dS

(where SA is the sphere of radius A centered at the origin) for any
A > |x|. This definition does not depend on the choice of (large
enough) A: for any A′ > A, the first Green’s identity applied to the
elastodynamic states u and G(· − x), which verifies B0u = 0 and
B0G(· − x) = 0 in the region enclosed by the spheres SA and SA′ ,
implies (using the exterior unit normal on both spheres SA and SA′)∫

SA′

(
G(·−x) · t0[u]− T (·−x) ·u

)
dS

=

∫
SA

(
G(·−x) · t0[u]− T (·−x) ·u

)
dS.

Lemma 2.5. Let the scattered field v ∈H1
loc(R3) satisfy the field equa-

tions (1.5) and transmission conditions (1.6) for some given incident
field uI. Then, the value of the total field u = uI + v at any point
x ∈ D0∪D1 is given by the representation formula

u(x) = Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[∆ρu1 ](x) + uI(x) +M

[
v0

]
(x).

Proof. Consider a bounded domain X ⊂ R3, and let the partial
differential operator B be defined (in the distributional sense) by
Bw = −div

(
C : ε[w]

)
− ρω2w for some elasticity tensor C and mass

density ρ. Let w ∈H1(X) be such that Bw = 0 in X, and define the
distribution w̃ as the extension of w by zero in R3 \X. For any test
function φ∈C∞

0 (R3;C3), one has(
B0w̃,φ

)
=

(
w̃, (B0−B)φ

)
+
(
w̃,Bφ

)
=

(
w, (B0−B)φ

)
X
+
(
w,Bφ

)
X
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(with
(
·, ·
)
and

(
·, ·

)
X

respectively denoting the distributional duality

product and the L2(X) scalar product), since B0 involves only even-
order derivatives. Next, using the definition of operators B and B0 and
the first and second Green identities [29, Theorem 4.4] for the domain
X, one has(
w, (B0−B)φ

)
X

=
(
w, t[φ]−t0[φ]

)
∂X

−
⟨
w,φ

⟩C−C0

X
+ω2

(
w,φ

)ρ−ρ0

X(
w,Bφ

)
X

= −
(
w, t[φ]

)
∂X

+
(
t[w],φ

)
∂X

(φ → t[φ] denoting the surface traction operator relative to elastic
properties C, and, with the second equality using the formal self-
adjointness of B and Bw = 0 in X), therefore
(2.10)(
B0w̃,φ

)
=−

(
w, t0[φ]

)
∂X

+
(
t[w],φ

)
∂X

−
⟨
w,φ

⟩C−C0

X
+ω2

(
w,φ

)ρ−ρ0

X
.

Equality (2.10) holds for arbitrarily chosen bounded domain X ⊂ R3

and physically acceptable material properties C, ρ. It is now applied
(i) for X = D1 with w = u1 and B = B1, and (ii) for X = D0 ∩ BR

with w = u0 and B = B0 (where BR is the ball of radius R centered
at the origin, bounded by the sphere SR), yielding the identities(
B0ũ1,φ

)
=−

(
u1, t0[φ]

)
Γ
+
(
t1[u1],φ

)
Γ
−
⟨
u1,φ

⟩∆C
D1

+ω2
(
u1,φ

)∆ρ

D1
,(

B0ũ0,φ
)
=
(
u0, t0[φ]

)
Γ
−
(
t0[u0],φ

)
Γ
−
(
u0, t0[φ]

)
SR
+
(
t0[u0],φ

)
SR

(the sign inversion for integrals over Γ in the second equality being
caused by the unit normal to Γ conventionally pointing inwards of D0).
Summing those equalities and invoking the transmission conditions
(1.6) gives

(2.11)

(
B0(ũ0+ ũ1),φ

)
= −

⟨
u1,φ

⟩∆C
D1

+ω2
(
u1,φ

)∆ρ

D1

−
(
u0, t0[φ]

)
SR

+
(
t0[u0],φ

)
SR

.

Equality (2.11) holds for any test function φ∈C∞
0 (R3;C3), so it is an

equality between two distributions whose supports are compact. One
can then take the distributional convolution of both members by the
fundamental tensor G, which satisfies B0G = δI, to obtain

(2.12)

(
ũ0+ ũ1,φ

)
= −

⟨
u1,G ⋆φ

⟩∆C
D1

+ ω2
(
u1,G ⋆φ

)∆ρ

D1

−
(
u0, t0[G ⋆φ]

)
SR

+
(
t0[u0],G ⋆φ

)
SR

,
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where the left-hand side results fromG⋆B0(ũ0+ũ1) = B0G⋆(ũ0+ũ1) =
ũ0+ũ1 while the right-hand side stems from

(
G ⋆w,φ

)
=

(
w,G ⋆φ

)
for any compactly supported distribution w ∈ D′(R3;C3); note that
here the convolution ⋆ entails an inner product, e.g., G⋆φ =

∫
R3 G(·−

x)·φ(x) dV (x).

The remaining task is to evaluate each term on the right-hand side
of (2.12). We have(
u1,G ⋆φ

)∆ρ

D1
=

∫
D1

∆ρ(y)u1(y)·
{∫

R3

G(y − x)·φ(x) dV (x)

}
dV (y)

=

∫
R3

{∫
D1

∆ρ(y)G(x−y)·u1(y) dV (y)

}
·φ(x) dV (x)

=
(
Vω[∆ρu1],φ

)
(the second equality exploiting the symmetry properties (2.3) (a) of G)
and, similarly,⟨
u1,G ⋆φ

⟩∆C
D1

=

∫
D1

∇u1(y) :∆C(y) :

∇
{∫

R3

G(y − x)·φ(x) dV (x)

}
dV (y)

= −
∫
R3

{∫
D1

∇G(x− y) :∆C(y) :∇u1(y) dV (y)

}
·φ(x) dV (x)

= −
(
Wω

[
∆C :ε[u1]

]
,φ

)
(the second equality again exploiting properties (2.3) (a)). Finally, the
last two terms on the right-hand side of (2.12) are evaluated under the
additional assumption that φ∈C∞

0 (BR;C3), so that

−
(
u0, t0[G ⋆φ]

)
SR

+
(
t0[u0],G ⋆φ

)
SR

=

∫
SR

(
t0[u0](y)·

{∫
R3

G(y−x)·φ(x) dV (x)

}
−u0(y)

· t0
[ ∫

R3

G(y − x)·φ(x) dV (x)

])
dS(y)

=

∫
R3

{∫
SR

(
t0[u0](y)·G(y − x)−u0(y)·T (y−x)

)
dS(y)

}
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·φ(x) dV (x)

=
(
M[u0],φ

)
, for all φ∈C∞

0 (BR;C3).

Inserting the last three identities into (2.12), sending R to infinity and
noting that the resulting distributions are locally summable functions,
we obtain

u = Wω

[
∆C :ε[u1]

]
+ ω2Vω[∆ρu1] +M

[
u0

]
in D0∪D1.

Finally, since uI solves B0uI = 0 in R3 (in which case ∆C = 0 and
∆ρ = 0), applying equality (2.10) to X = BR and w = uI|BR

and
subsequent convolution by the fundamental tensor G provides

M
[
uI

]
= uI, i.e., M

[
u0

]
= uI +M

[
v0

]
.

This completes the proof of the lemma. �

When defined in terms of the radiating Green’s tensor, M[v] is
the “contribution from infinity” to a displacement v, i.e., its “non-
radiating” part. In usual contexts such as linear acoustics, electromag-
netism or isotropic elasticity, radiating solutions are defined by enforc-
ing relevant Sommerfeld-type radiation conditions at infinity, which is
in fact equivalent to setting M[v] = 0 (see, e.g., [29, Chapter 9] for
acoustics, and Section 4). Since radiation conditions are rather in-
volved for general anisotropic media [31, 36] or configurations such as
semi-infinite media, we choose here to adopt the latter definition:

Definition 2.6. A solution v of B0v = 0 in D0 is radiating if
M[v] = 0.

Remark 2.7. The viewpoint of Definition 2.6 is, for example, adopted
in [27], where elastodynamic problems for layered semi-infinite media
are considered.

Lemma 2.5 implies that radiating solutions (in the sense of Defini-
tion 2.6) of the transmission problems (1.5) and (1.6) satisfy a volume
integro-differential equation of the Lippmann-Schwinger type:
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Proposition 2.8 (Lippmann-Schwinger integral equation). Define the
integral operator Aω :H1(D1) →H1(D1) by

(2.13) Aω[w](x) = Wω

[
∆C :ε[w]

]
(x) + ω2Vω

[
∆ρw

]
(x), x∈D1.

(a) For any solution v of the transmission problems (1.5) and (1.6)
that are radiating (in the sense of Definition 2.6), the total field
u1 = uI+v1 satisfies the integral equation

(2.14) (I −Aω)u1(x) = uI(x) (x ∈ D1),

with I denoting the identity operator.
(b) Then, u0 = uI+v0 is given explicitly in terms of u1 by the integral

representation formula

u0(x) = uI(x) +Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[∆ρu1](x)(2.15)

(x ∈ D0).

The main concern of this work is then to establish that the volume
integral equation (2.14) is uniquely solvable and is equivalent to seeking
radiating solutions to the initial transmission problems (1.5) and (1.6).

3. Solvability of the volume integral equation. To investigate
the solvability of integral equation (2.14), we begin by establishing
relevant properties of the volume potentials and the Fredholm character
of the integral operator, following the steps used in [21, 22, 23, 24] for
transmission problems involving the Helmholtz or Maxwell equations.
The solvability result (Theorem 3.10) will then follow from showing
that the homogeneous transmission problem has at most one radiating
solution.

3.1. Volume potentials as radiating solutions.

Lemma 3.1. The volume potentials Vω and Wω defined by equations
(2.5a), (2.5b) are radiating (in the sense of Definition 2.6).

Proof. We first consider the case of Vω, and set w :=Vω[g]. Using
the definition (2.5a) of Vω[g] in equation (2.9) and effecting some
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manipulation, we obtain

M[w](x) =

∫
D1

{∫
SA

(
G(z−x)·T (z−y)−TT(z−x)·G(z−y)

)
dS(z)

}
· g(y) dV (y).

Then, observing that G(z−x)·T (z−y)−TT(z−x)·G(z−y) = O(A−3)
as A = |z| → ∞ (by virtue of the far-field asymptotic formulas (2.4a)
and (2.4b), and noting that the matrixN(ξq) is symmetric), we obtain
M[w](x) = 0 since (i) M as defined by equation (2.9) is independent
on A for large enough A and (ii) the above integral over SA is O(A−1),
D1 is bounded and g ∈ L2(D1,C3).

Essentially the same proof applies to Sω, and hence to Wω by virtue
of equation (2.6). �

Lemma 3.2. Consider the volume potentials Vω and Wω, as defined
by equations (2.5a) and (2.5b), for respective densities g ∈ C0,α(D1;C3)
and h ∈ C1,α(D1;C3×3).

(i) The displacement w = Vω[g] +Wω[h] is a radiating solution in
R3 of

(a) B0w =

{
g + divh in D1

0 in D0
,

(b) w0 = w1, t0[w0] = t0[w1] + h·n on Γ.

(ii) The above problem has the variational form

(3.1)
⟨
v,ψ

⟩C0

R3 − ω2
(
v,ψ

)ρ0

R3 = −
(
h,∇ψ

)
D1

+
(
g,ψ

)
D1

for all ψ ∈H1
comp(R3).

Proof. We know from Lemma 3.1 that w is radiating. To finish
proving Lemma 3.2 (i), we first use the alternative expression (2.6)
of Wω[h]. Recalling that B0Sω[f ] = 0 in D0 ∪ D1, treating the
volume potential as a convolution in the distributional sense, and using
B0G = δI, one readily obtains

B0w = B0

(
Vω

[
g+divh

]
− Sω[h·n]

)
=

[
B0G

]
⋆
[
1D1(g+divh)

]
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= 1D1(g+divh) in D0∪D1,

which proves (a). For (b), single-layer and volume potentials with
C0,α densities are known to define C0(R3) and C1(R3) functions,
respectively, see e.g., [15, Chapter 4] or [25, Chapter 4] for isotropic
elastodynamics (the proof of [15], while expounded about the Laplace
equation, relies only on the fact that G ∈ C∞(R3 \ {0};R3×3) and
has a O(|x|−1) singularity at the origin, which therefore applies to the
present case as well). Consequently,

w = Vω

[
g+divh

]
− Sω[h·n]

is, in particular, continuous across Γ. Moreover, the derivatives of
Vω

[
g + divh

]
are also continuous across Γ (in the sense of traces),

and therefore so is its traction vector. Finally, the known jump
properties of the conormal derivative of a single-layer potential [29,
e.g., Theorem 6.11], which are valid for any strongly elliptic partial
differential operator (the conormal derivative considered here being the
traction operator (1.1)), yield

t0
[
Sω[h·n]

]
(x+) = t0

[
Sω[h·n]

]
(x−) + h(x)·n(x), x∈Γ.

This completes the proof of transmission conditions (ii) verified by the
displacement w.

Part (ii) follows from the weak form
(
B0w,ψ

)
D0

+
(
B0w,ψ

)
D1

=(
g+divh,ψ

)
D1

of (a), by applying the first Green identity to each

term in the left-hand side, using the transmission conditions (b) and
noting that

(
divh,ψ

)
D1

=
(
h ·n,ψ

)
Γ
−

(
h,∇ψ

)
D1

, by virtue of the

first Green identity. �

3.2. Fredholm character of the volume integral operator. Let
the inner product

⟨⟨
w′,w′′⟩⟩ be defined for vector fields w′,w′′ ∈

H1(D1) by

(3.2)
⟨⟨
w′,w′′⟩⟩ = ⟨

w′,w′′⟩C0+C1

D1
+
(
w′,w′′)ρ0+ρ1

D1
.

By virtue of Korn’s inequality, ∥w∥H(D1) :=
⟨⟨
w,w

⟩⟩1/2
then defines a

norm. Let H(D1) denote the completion of H1(D1) with respect to
∥·∥H(D1).
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Lemma 3.3. The operator I−Ai is coercive in H(D1):

ℜ
⟨⟨
(I−Ai)v,v

⟩⟩
≥
⟨⟨
v,v

⟩⟩
for any v ∈ H(D1).

Proof. For v ∈ H(D1), define w by w = Ai[v], which is of the
form w = Vω[g] +Wω[h] considered in Lemma 3.2 with g = −∆ρv,
h = ∆C :ε[v] and ω= i. Moreover, w has a fast decay at infinity such
that, in particular, w ∈ H1(R3) (see subsection 6.2 for a proof). The
variational equation (3.1) with ω = i therefore takes the form⟨

w,ψ
⟩C0

R3 +
(
w,ψ

)ρ0

R3 = −
(
v,ψ

)∆C
D1

−
(
v,ψ

)∆ρ

D1

for any ψ ∈ H1(R3). Then, starting from the definition of the inner
product

⟨⟨
,
⟩⟩
and exploiting the above variational equation with ψ = w,

we have

ℜ
⟨⟨
(I −Ai)v,v

⟩⟩
= ℜ

⟨⟨
v −w,v

⟩⟩
=

⟨
v,v

⟩C0+C1

D1
+
(
v,v

)ρ0+ρ1

D1

−ℜ
⟨
w,v

⟩C0+C1

D1
−ℜ

(
w,v

)ρ0+ρ1

D1

=
⟨
v,v

⟩C0+C1

D1
+
(
v,v

)ρ0+ρ1

D1
−2ℜ

⟨
w,v

⟩C0

D1
−2ℜ

(
w,v

)ρ0

D1

+
⟨
w,w

⟩C0

R3 +
(
w,w

)ρ0

R3

=
⟨
v,v

⟩C1

D1
+

(
v,v

)ρ1

D1
+
⟨
w−v,w−v

⟩C0

D1

+
(
w−v,w−v

)ρ0

D1

≥
⟨
v,v

⟩C1

D1
+

(
v,v

)ρ1

D1
.

The desired coercivity finally follows from the fact that
[⟨
v,v

⟩C1

D1
+(

v,v
)ρ1

D1

]1/2
and ∥v∥H(D1) define equivalent norms, the material coef-

ficients having by assumption (subsection 1.1) the requisite positivity
properties. �

For any ω ∈ C \ {0}, the differences Gω − G0 and ∇Gω − ∇G0

are known to be non-singular at the origin, even for the anisotropic
elastodynamic Green’s tensor, see e.g., [31, 37]. Therefore, the same
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holds for Gω −Gi = (Gω −G0)− (Gi −G0), implying that Aω −Ai

is compact as an operator from H1(D1) to H1(D1). This, combined
with Lemma 3.3, shows:

Proposition 3.4. The integral operator I−Aω :H1(D1) →H1(D1)
is Fredholm with index 0.

Remark 3.5. The formulation and proof of Lemma 3.3 adapt and
modify [24, Lemma 1] (where transmission problems involving the
anisotropic scalar wave equation are considered) and its method of
proof to the present context. The coercivity result of [24] rests upon the
electromagnetic counterpart of the positive definiteness of ∆C (albeit,
as stressed therein, alternative lines of reasoning also allow to establish
bounded invertibility of I −Ai without such restriction).

3.3. Uniqueness. A solution v ∈ H1
loc(R3) to the homogeneous

transmission problem (i.e., when uI = 0) verifies

(3.3)
⟨
v,v

⟩C
Bϱ

− ω2
(
v,v

)ρ
Bϱ

= (t0[v],v)Sϱ ,

where Bϱ is the ball
{
x ∈ R3, |x| < ϱ

}
of radius ϱ; this stems from

taking the inner product of equations (1.4), (1.5) (a) and (1.5) (b)
with v ∈ H1(Bϱ), invoking in each case the first Green identity, and
combining the resulting equalities. Taking the imaginary part of the
above identity gives

ℑ(t0[v],v)Bϱ = 0 = ℑ(t0[v],v)Bϱ .

Hence, IR(v) = 0, as well, with IR(v) defined as in Lemma 2.3.
The asymptotic form of IR(v), given by Lemma 2.3, together with

(−1)p
∫
Ŝ
γp(ξ̂

p)
(
2π2

∣∣∇D(ξp)
∣∣κ(ξp))−1

> 0, then implies that Ip(x̂) ·
bp(x̂p) = 0 for each p. Moreover, any radiating transmission solution is
given by the integral representation (2.15), whose far-field asymptotic
approximation is of the form (2.7a). Exploiting Ip(x̂) ·bp(x̂p) = 0 in
the latter implies that:

Lemma 3.6. Radiating solutions to the (homogeneous) transmission
problems (1.5) and (1.6) with uI = 0, verify v(x) = o(|x|−1).
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The next step consists of showing that v vanishes in D0 as a
consequence of Lemma 3.6. This requires a Rellich-type lemma, which
is not readily available for anisotropic elasticity. We will instead
rely on a theorem by Littman [26]. Considering a solution v to the
homogeneous transmission problem, which is C∞ in D0 by virtue of the
integral representation (2.15), let ṽ denote a C∞(R3) extension of the
restriction of v to R3\BR, and set f :=−B0ṽ. The body force density
f is a C∞(R3) function with compact support (since, by construction,
f = 0 is outside of BR). Now, the relationship N(ξ)·B0(ξ) = D(ξ)I
shows that each component of ṽ satisfies the sixth-order scalar PDE,

D(−i∇)ṽi = Nij(−i∇)fj , i = 1, 2, 3.

Littman’s theorem states the following. Consider a partial differen-
tial operator P (−i∇) (where P (ξ), the symbol of the operator, is a
polynomial in ξ ∈R3 with constant coefficients), such that:

(i) the solution set in R3 of P (ξ) = 0 is the union of a finite number
of smooth surfaces,

(ii) ∇P (ξ) ̸= 0 on S, and
(iii) the Gaussian curvature κ(ξ) is nonzero at any ξ ∈S.

If a solution v of the PDE P (−i∇)v = g is such that v = o(|x|−1) as
|x| → ∞, then v has compact support. Conditions (i), (ii) and (iii)
are satisfied here by P = D and g = Nij(−i∇)fj by virtue of D(ξ)
being the characteristic determinant of B0(ξ) and Assumption 1.1.
Consequently,

Lemma 3.7. Radiating solutions to the homogeneous transmission
problems (1.5) and (1.6) have compact support.

Remark 3.8. The assumptions underpinning Littman’s theorem here
require the background material properties to have a class I anisotropy.

Since v0 = 0 in D0 \ supp (f) and v0 solves B0v0 = 0 in D0, which
is a homogeneous elliptic PDE with constant coefficients, the unique
continuation principle applies, so that v = 0 in D0. Then, the method
used in [7, subsection 5.4] for scalar problems involving orthotropic

scatterers allows us to show that v = 0 in D1 as well. Let C̃1 and
ρ̃1 denote continuously differentiable extensions in BR of C1 and ρ1
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that satisfy all relevant physical requirements listed in subsection 1.1,

with the ball BR chosen such that D1 b BR and with B̃ denoting the
corresponding elastodynamic operator. Since v verifies: (i) v0 = 0 in
BR \D1, (ii) the homogeneous transmission conditions v0 = v1 and
t0[v0] = t1[v1] on Γ, and (iii) the field equation B1v1 = 0 in D1, it

satisfies B̃v = 0 in BR. Elliptic regularity results then imply that v is
C1 in the interior of BR, allowing us to apply the unique continuation
principle (see [19, Theorem 17.2.6]), showing that v = 0 in BR as a
consequence of v0 = 0 in D0. We have thus shown that:

Proposition 3.9. The transmission problems (1.5) and (1.6) have at
most one radiating solution.

3.4. Equivalence and well-posedness. Summarizing, we know at
this point that:

(1) any radiating transmission solution v is such that u1 = uI + v1
solves the integral equation (2.14);

(2) any solution of equation (2.14), together with the integral repre-
sentation equation (2.15), defines a radiating transmission solution
v = u−uI;

(3) the integral operator Aω of equation (2.14) is Fredholm with
index 0;

(4) the homogeneous transmission problem has at most one radiating
solution.

Moreover, (4) implies uniqueness for the integral equation (2.14)
since a non-trivial solution w to (I−Aω)w = 0 would otherwise, by
Lemma 3.2, define a radiating solution of the homogeneous transmission
problem that is nonzero at least in D1, a contradiction. Existence and
bounded invertibility for equation (2.14) therefore follows due to (3) and
the Fredholm alternative. Our following main result is thus established:

Theorem 3.10. Assume that D1, C0, ρ0 and C1, ρ1 satisfy the as-
sumptions in subsection 1.1, with C0 additionally constrained by As-
sumption 1.1, i.e., of class I anisotropy. Then:

(i) the transmission (scattering) problem defined by equations (1.5)
and (1.6) for a given incident field uI satisfying B0uI = 0 in R3
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has a unique solution v ∈H1
loc(R3) that is radiating in the sense

of Definition 2.6;
(ii) The integral operator I−Aω : H1(D1) → H1(D1) is invertible

with bounded inverse;
(iii) The unique solution u1 ∈ H1(D1) of integral equation (2.14) is

the restriction of u to D1;
(iv) The total field u0 = uI+v0 outside the inhomogeneity is given in

terms of u1 by the integral representation formula (2.15).

3.5. General transmission problem. A more general form of the
transmission problem consists of seeking displacement fields u1 in D1

and v0 in D0 solving

(1) the field equations of linear elastodynamics

(a) B0v0 = 0 in D0, (b) B1u1 = 0 in D1,

(2) the transmission conditions

(a) u1 = v0 + f , (b) t1[u1] = t0[v0] + g on Γ,

for given f , g, and
(3) the radiation condition M[v0] = 0.

The scattering problem studied in this article then corresponds to(
f , g

)
=

(
uI, t0[uI]

)
. Upon adapting the proof of Proposition 2.5 to

this case, the above version of the transmission problem leads to an
integral representation identity which differs from equation (2.15) by
involving layer potentials on Γ with densities f and g in addition to
the volume potentials. The latter cancel out, as expected, whenever
f and g are compatible, i.e.,

(
f , g

)
=

(
uI, t0[uI]

)
for some uI solving

B0uI = 0.

3.6. Inhomogeneity with piecewise-smooth properties. The solv-
ability result of Theorem 3.10 can be extended to scatterers for which
C1 and ρ1 are piecewise C1,α in D1, assuming that the interfaces be-
tween components of D1 with smooth properties (a) have only two such
components adjacent at any point (e.g., no triple interfacial point), and
(b) are separated from Γ. The unique continuation principle can then
be applied stepwise through each interface, while the representation for-
mula of Lemma 2.5 can be shown to satisfy the requisite transmission
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conditions at the new interfaces, and the coercivity result of Lemma 3.3
relies only on C1 and ρ1 to be positive and bounded away from zero.

4. Isotropic background material. The foregoing analysis covers
the important case of isotropic background materials, which belong to
class I. Some features of this case are, however, worth discussing, as
(a) there are only two distinct characteristic surfaces, and (b) radiating
solutions can be defined using the Kupradze-Sommerfeld radiation
conditions, which raises the issue of equivalence with the present
constraint M[v] = 0.

An isotropic background material is characterized by an elasticity
tensor C0 of the form C0 = λI⊗I + 2µI, where λ and µ are the so-
called Lamé constants of the elastic material and I and I denote the
second-order and symmetric fourth-order identity tensors, respectively.
The fundamental tensor G is available in closed form [14, 25]:

G = GP +GS;

GP(x) = −kP(µk
2
S)

−1∇∇GP(x),(4.1)

GS(x) = (µkS)
−1

(
k2SI +∇∇

)
GS(x),

where the functionsGα (α=P, S) are defined byGα(x) = g(kα|x|) with
g(t) := eit/(4πt), and with kP :=ω

[
ρ0/(λ+2µ)

]1/2
and kS :=ω(ρ0/µ)1/2

denoting the wavenumbers of compression and shear elastic bulk waves,
respectively. Equation (4.1) in fact gives the Helmholtz decomposition
of G in terms of its irrotational and solenoidal parts GP and GS (since
∇×GP(x) = 0 and divGS(x) = 0 for any x ̸= 0). The far-field
behavior of G and T is characterized by

(4.2)

GP(x) =
kP

λ+2µ
GP(x) x̂⊗ x̂+ o(|x|−1),

GS(x) =
kS
µ
GS(x) (I − x̂⊗ x̂) + o(|x|−1),

TP(x) = ik2PGP(x) x̂⊗ x̂+ o(|x|−1),

T S(x) = ik2SGS(x) (I − x̂⊗ x̂) + o(|x|−1).
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4.1. Characteristic surfaces. The characteristic equation D(ξ) = 0
takes the form

µ2(λ+2µ)
(
|ξ|2 − k2S

)2(|ξ|2 − k2P
)
= 0.

Hence, S1 and S2 are identical spheres of radius kS in ξ-space while

S3 is a sphere of radius kP; moreover, b3(ξ̂) = ξ̂. The vectors ξq(x̂)
associated with an observation direction x̂ are ξ1(x̂) = ξ2(x̂) = kSx̂
and ξ3(x̂) = kPx̂ and so are, in particular, collinear to x̂. The adjugate
matrix N(ξ) of B0(ξ) is given (having omitted the constant factor
µ(λ+2µ)) by

N(ξ) =
(
|ξ|2 − k2P

)
I −

(
|ξ|2 − k2S

)
ξ̂⊗ ξ̂

and satisfiesB0(ξ) ·N(ξ) =
(
|ξ|2−k2S

)(
|ξ|2−k2P

)
I. Littman’s theorem

applies with N(ξ) thus defined; alternatively, a Rellich-type lemma is
available.

4.2. Radiating character of energy flux. Equations (4.2) yield

(4.3)

[
Gk ·T k

]
(x) =

[
(ek ·G)·(ek ·T )

]
(x)

=
−i

(4π|x|)2

[
kP

λ+2µ
x̂2
k +

kS
µ
(1− x̂2

k)

]
+ o(|x|−2),

implying ℑ
(
Gk(x) ·T k(x)

)
< 0 for large enough |x|. Likewise, the

far-field asymptotic behavior of any displacement field of the form
w = Vω[g] + Wω[h] = Vω[g + divh] − Sω[h·n] is found from
equation (4.2), by straightforward computations to be given by

w(x) =
kP

λ+2µ
GP(x)

[
IP(x̂)·x̂

]
x̂

+
kS
µ
GS(x)

(
IS(x̂)−

[
IS(x̂)·x̂

]
x̂
)
+ o(|x|−1)

with

Iα(x̂) =

∫
D1

e−ikαx̂·y(g+divh
)
(y) dVy

−
∫
Γ

e−ikαx̂·yh(y)·n(y) dSy (α=P,S),
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from which we deduce that
(4.4)

t[w](x)·w(x) = −i

[
kP

λ+2µ
|IP(x̂)·x̂|2

+
kS
µ

(
|IS(x̂)|2−|IS(x̂)·x̂|2

)] 1

(4π|x|)2
+ o(|x|−2),

implying ℑ
(
t[w] ·w

)
(x) < 0 if |x| is large enough. Equations (4.3)

and (4.4) are the counterpart of Lemma 2.3 for the isotropic case;

they evidence the physically radiating character of Gk and of volume
potentials, respectively.

4.3. Radiating fields and radiation conditions. It is well known
that any displacement v solving B0w = 0 in the isotropic case can
be additively decomposed into irrotational and solenoidal parts, i.e.,
v = vP+vS with divvP = 0 and ∇×vS = 0. Radiating solutions v
can then be defined as satisfying the Kupradze-Sommerfeld radiation
conditions [25]:

(4.5)
(
∂r − ikP

)
vP(y) = o(|y|−1),

(
∂r − ikS

)
vS(y) = o(|y|−1),

which are known [25, Chapter 3, Theorem 2.9] to be equivalent to

(4.6)
t0[vP](y)− ikP(λ+2µ)vP(y) = o(|y|−1),

t0[vS](y)− ikSµvS(y) = o(|y|−1).

In particular, vα = Gk
α(· − x) verifies (4.6) for k=1, 2, 3, α = P,S and

any fixed x∈R3.

Proposition 4.1. Letv solve the transmission problems (1.5) and (1.6),
the background medium being isotropic. The Kupradze-Sommerfeld
radiation conditions (4.6) are equivalent to the requirement M[v] = 0.

Proof. First, assume that v satisfies the radiation conditions (4.6).
It is a known result (see e.g., [25, Chapter 3, subsection 2.4]) that
conditions (4.6), together with properties (4.2), ensure

lim
A→∞

∫
SA

(
G(·−x) · t0[u]− T (·−x) ·u

)
dS = 0,
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i.e., imply M[v](x) = 0. Conversely, let v solve equations (1.5) and
(1.6), and verify M[v] = 0. Then, from (2.15),

v(x) = Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[ ∆ρu1 ](x) (x ∈ D0) (x∈D0).

Now, using the decomposition G = GP+GS in the above potentials,
splitting v into v = vP+vS accordingly, evaluating the tractions t0[vP]
and t0[vS] by differentiating the potentials under the integral sign and
invoking properties (4.2) (b) of G, conditions (4.6) are readily found
to be verified by v. �

4.4. Solvability. The foregoing remarks show that Theorem 3.10
applies to the case of isotropic background elasticity.

5. Anisotropic elastostatics. In the case of anisotropic elastostat-
ics the transmission problem is defined by the field equations (1.5) with
ω=0, i.e.,

(5.1)
div

(
C0 :ε[uI+v0]

)
= 0 in D0,

div
(
C1 :ε[uI+v1]

)
= 0 in D1,

and the transmission conditions (1.6), while uI solves div
(
C0 :ε[uI]

)
=

0 in R3. For instance, solutions for polynomial “incident” fields uI

are often sought for the purposes of, e.g., evaluating elastic moment
tensors [1], that are involved in small-inclusion asymptotics or in the
estimation of effective properties.

The static fundamental tensor G0 is known, e.g., [30, Chapter 1,
equation (5.26)], to be given by

G0(x) =
1

8π2|x|

∫ 2π

0

A−1(ξ̂(ϕ)) dϕ,

for any anisotropic elasticity tensor C0, where ϕ 7→ ξ̂(ϕ) is an angular

parametrization of the unit circle Ĉ :=
{
ξ̂ ∈ Ŝ, ξ̂·x̂=0

}
. G0 is clearly

a homogeneous function with degree −1 in x. Unlike in the time-
harmonic case, no restriction needs to be put on C0. The counterpart
of Lemma 2.5 is the representation identity

u(x) = W0

[
∆C :ε[u1]

]
(x) + uI(x) +M

[
v0

]
(x),
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where M[v0] and the volume potential W0 are defined in terms of
G0. The requirement M[v] = 0 is readily found to define fields v
of the form v0 = W0

[
∆C : ε[u1], which decay as v(x) = O(|x|−2)

and t0[v](x) = O(|x|−3) for |x| → ∞; conversely, this decay implies
M[v] = 0. The volume integral equation is

(5.2) (I −A0)u1(x) = uI(x) (x ∈ D1)

with the integral operator A0 : H1(D1) → H1(D1) defined by
A0[w](x) = W0

[
∆C : ε[w]

]
(x). Proposition 3.4 applies for ω = 0

and ρ1 = ρ0, and the integral operator I−A0 :H1(D1) →H1(D1) is
Fredholm with index 0.

The static counterpart of (3.3) implies that any transmission so-
lution v of the homogeneous problem (for which uI = 0) verifies⟨
v,v

⟩C
Bϱ

= (t0[v],v)Sϱ . Then, due to the above decay conditions,

limϱ→0(t0[v],v)Sϱ = 0 = limϱ→0

⟨
v,v

⟩C
Bϱ

. The latter limit requires

v to be a rigid-body motion in D0 and D1, which must then vanish
in both regions due to decay and transmission conditions. Therefore,
there is at most one decaying transmission solution. In conclusion,

Theorem 5.1. Assume that D1, C0 and C1 satisfy the assumptions
in subsection 1.1. Let uI be a given displacement field satisfying
div

(
C0 :ε[uI]

)
= 0 in R3. Then:

(i) The elastostatic transmission problem defined by equations (1.6)
and (5.1) has a unique decaying solution v=u−uI ∈H1

loc(R3);
(ii) The integral operator I −A0 : H1(D1) → H1(D1) is invertible

with bounded inverse;
(iii) The unique solution u1 ∈H1(D1) of integral equation (5.2) is the

restriction of u to D1;
(iv) The total field u0 = uI+v0 outside the inhomogeneity is given in

terms of u1 by u0(x) = uI(x) +W0

[
∆C :ε[u1]

]
(x).
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6. Auxiliary proofs.

6.1. Proof of Lemma 2.3.

Proof of part (a). Using the far-field asymptotics (2.4a) and (2.4b),
the integral IR,k is given by

IR,k =
3∑

p,q=1

IpqR,k + o(1),

where IpqR,k are defined, for p, q ∈ {1, 2, 3}, by

IpqR,k = −i(−1)p+qR−1

∫ 2R

R

{∫
Ŝ

eiϱx̂·(ξ
p−ξq)

(
ek ·gpq(x̂)·ek

)
dSx̂

}
dϱ,

(6.1a)

gpq(x̂) = E(ξp)E(ξq)N(ξp)·Â(x̂, ξq)·N(ξq)

(6.1b)

First, consider IpqR,k for p ̸= q. In this case, since x̂·(ξp−ξq) ̸=0 [31],
the integrand is an oscillatory function of ϱ, and a direct calculation
yields that IpqR,k vanishes in the limit R → ∞:

R−1

∫ 2R

R

eiϱx̂·(ξ
p−ξq) dϱ = O(R−1) = o(1).

Then, the remaining integrals IppR,k are given by

IppR,k = −i

∫
Ŝ

(
ek ·gpp(x̂)·ek

)
dSx̂ + o(1),

with gpp given by

gpp(x̂) = 1
2 [E(ξp)]2N(ξp)·

(
Â(x̂, ξp)+Â(ξp, x̂)

)
·N(ξp),

by virtue of (6.1b), the fact that N(ξp) is real symmetric, and

Â(ξp, x̂) = Â(x̂, ξp)T. We now evaluate gpp(x̂) by means of a method
used in the proof of [31, Lemma 4.1]. We have B0(ξ)·N(ξ) = D(ξ)I,
and therefore, N(ξ)·B0(ξ)·N(ξ) = D(ξ)N(ξ). Taking the directional
derivative with respect to ξ and in the direction ν(ξ) (denoted by the
symbol ∂ν(ξ)) on both sides of the latter equality yields

∂ν(ξ)N(ξ)·B0(ξ)·N(ξ) +N(ξ)·∂ν(ξ)B0(ξ)·N(ξ) +N(ξ)
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·B0(ξ)·∂ν(ξ)N(ξ) =
(
∂ν(ξ)D(ξ)

)
N(ξ) +D(ξ)∂ν(ξ)N(ξ).

For any ξ ∈Sp, D(ξ) = 0 and B0(ξ)·N(ξ) = 0, so that

N(ξ)·∂ν(ξ)B0(ξ)·N(ξ) =
(
∂ν(ξ)D(ξ)

)
N(ξ), ξ ∈ Sp.

With the additional observation that Â(x̂, ξp)+Â(ξp, x̂) = ∂ν(ξ)B0(ξ
p)

(stemming from definition (1.11) of B0(ξ) and the quadratic and
symmetric character of ξ 7→ A(ξ)), we obtain

N(ξp)·
(
Â(x̂, ξp)+Â(ξp, x̂)

)
·N(ξp)

= ∂ν(ξ)D(ξp)N(ξp)

= (−1)p|∇D(ξp)|γp(ξ̂p) bp(ξ̂p)⊗bp(ξ̂p),

where the last equality rests on (1.15) and the fact that ∂ν(ξ)D(ξp) =
∇D(ξp)· ν(ξp) = (−1)p|∇D(ξp)| (see the comment after Assump-
tion 1.1). As a result, gpp(x̂) is found to be given by

(6.2) gpp(x̂) = (−1)pγp(ξ̂
p)
(
2π2

∣∣∇D(ξp)
∣∣κ(ξp))−1

bp(ξ̂p)⊗bp(ξ̂p).

Finally,

ℑ
(
IR,k

)
=−

3∑
p=1

(−1)p
∫
Ŝ

γp(ξ̂
p)
(
2π2

∣∣∇D(ξp)
∣∣κ(ξp))−1(

ek·b(ξ̂p)
)2

dSx̂

+O(R−1),

where the O(1) contribution is negative since (−1)pγp(ξ̂
p)> 0.

Proof of part (b). Using the far-field asymptotic form of w and t0[w]
(Lemma 2.2), IR(w) is given by

IR =

3∑
p,q=1

IpqR + o(1),

IpqR := −i(−1)p+qR−1

∫ 2R

R

×
∫
Ŝ

eiϱx̂·(ξ
p−ξq)

(
Ip(x̂)·gpq(x̂)·Iq(x̂)

)
dSx̂ dϱ, p, q ∈ {1, 2, 3},

with gpq(x̂) given by (6.1b). Using the same argument as in the proof
of part (a), we have IpqR = o(1) for p ̸= q. Then, if p = q, the limiting
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behavior of IppR is easily found by using expression (6.2) of gpp(x̂),
yielding the previously claimed asymptotic expression (2.8) of IR(w).

Then, again noting that (−1)pγp(ξ̂
p)> 0, we conclude that ℑ

(
IR

)
< 0

for large enough R.

Remark 6.1. The integral over Ŝ in (6.1a) would be expected to vanish
in the limit ϱ → ∞ by virtue of a stationary phase argument, which
would make radial averaging unnecessary. However, finding the critical
points of the phase function in (6.1a) and determining whether or not
they are degenerate is involved due to the complicated dependence of
ξq on the observational direction x̂, making radial averaging a simpler
approach.

6.2. Proof of fast decay of Ai[v]. We begin by showing exponential
decay for |x| → ∞ of G(x) if ω= i. In this case, (2.2) becomes

(6.3) G(x) = lim
R→+∞

1

(2π)3

∫
BR

F (ξ) eix·ξ dV (ξ) = F [F ](x),

where the matrix-valued function F is defined by F (ξ) =
[
A(ξ)+ρ0I

]−1

and F stands for the three-dimensional Fourier transform (the limit
ϵ → 0 in (2.2) being straightforward since the matrix A(ξ) + ρ0I is
invertible for any ξ). In fact, F ∈ C∞(R3,C3×3) ∩ L2(R3,C3×3).

Letting m = (m1,m2,m3) ∈ N3 denote a multi-index of length
|m| := m1 +m2 +m3, it is easy to show by induction on |m| that
∂mF = O(|ξ|−2−|m|) for |ξ| → ∞ (where multi-index notation is
used); in particular, ∂mF ∈ L1(R3,C3×3) for |m| ≥ 2. Choosing
m such that |m| = 2, ∂mF is a C∞ function that is summable
together with all its derivatives; therefore, F [∂mF ](x) decays faster
than any negative power of |x| as |x| → ∞ by virtue of well-known
properties of the Fourier transform in L1. Since, in addition, we have
F [∂mF ] = i|m|xmF [F ], F [F ](x) itself has a fast decay at infinity.

For isotropic materials, the Fourier integral (6.3) can be evaluated
analytically in closed form, showing that G(x) in fact decays exponen-
tially fast at infinity in this case.

In view of definition (2.13) of Aω, the fast decay of G clearly carries
over to Ai[v](x) as |x| → ∞, for any displacement v ∈ H(D1) and
compact inhomogeneity region D1. This, in particular, ensures that
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Ai[v] ∈ H1(R3), as Ai[v] ∈ H1
loc(R3) by known general properties of

the volume potentials involved.
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