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ABSTRACT. According to fractional calculus theory and
Sadovskii’s fixed point theorem, we establish sufficient con-
ditions for controllability of the fractional integro-differential
equation with state-dependent delay. An example is provided
to illustrate the theory.

1. Introduction. The purpose of this paper is to establish suffi-
cient conditions for controllability of the fractional integro-differential
equation of the form

Dq
tx(t) = Ax(t) +Bu(t)(1.1)

+

∫ t

0

a(t, s)f(s, xρ(s,xs), x(s)) ds, t ∈ J = [0, T ],

x(t) = ϕ(t), t ∈ (−∞, 0],

where Dq
t is the Caputo fractional derivative of order 0 < q < 1, A is

a generator of an analytic semigroup {S(t)}t≥0 of uniformly bounded
linear operators on X, f : J × B ×X → X and ρ : J × B → (−∞, T ]
are appropriated functions, a : D → R (D = {(t, s) ∈ J × J : t ≥ s}),
ϕ ∈ B where B is called the phase space, to be defined in Section 2. B
is a bounded linear operator from X into X, the control u ∈ L2(J ;X),
the Banach space of admissible controls. For any function x defined on
(−∞, T ] and any t ∈ J , we denote by xt the element of B defined by

xt(θ) = x(t+ θ), θ ∈ (−∞, 0].
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Here xt represents the history of the state up to the present time, t.

Fractional differential equations have recently been proved to be
valuable tools in the modeling of many phenomena in various fields
of science and engineering, so they attracted many researchers (cf.,
e.g., [3, 32] and references therein). On the other hand, integrod-
ifferential equations arise in various applications such as viscoelas-
ticity, heat equations and many other physical phenomena (cf., e.g.,
[13, 25, 26, 27, 42] and references therein). The existence of frac-
tional differential equations with state-dependent delay are one of the
theoretical fields that have been investigated by many authors [2, 18].
Very recently, Benchohra and Litimein [12, 14] have investigated the
existence and uniqueness of a mild solution for fractional integral and
integro-differential equations with state-dependent delay on infinite in-
terval, whereas Kavitha et al. [23] have studied the existence of mild
solutions for neutral functional fractional differential equations with
state-dependent delay.

Controllability is one concept of control dynamic systems that some
classes of such systems can be represented by nonlinear differential
equations [1, 5, 10, 15, 16]. In recent years, the problems of control-
lability for various kinds of fractional differential and integrodifferential
equations have been discussed in [4, 6, 11, 17, 22, 24, 30, 31, 38, 39].
Recently, in [37], the authors established sufficient conditions for the
approximate controllability of certain classes of abstract fractional evo-
lution equations in Hilbert spaces.

The aim of our paper is to establish controllability results for frac-
tional evolution integrodifferential systems with state-dependent delay
by using fractional calculus and Sadovskii’s fixed point theorem, com-
bined with the Kuratowski measure of noncompactness. An example
is presented to show an application of the abstract results.

2. Preliminaries. In this section, we include some notations, defi-
nitions and theorems needed to establish our results.

Let (X, ∥ · ∥) be a real Banach space, C(J,X) the Banach space of
all X-valued continuous functions on J with norm

∥y∥∞ = sup{∥y(t)∥ : t ∈ J},

L(X) the Banach space of all linear and bounded operators on X,
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L1(J,X) the space of X−valued Bochner integrable functions on J
with the norm

∥y∥L1 =

∫ T

0

∥y(t)∥ dt.

L∞(J,R) is the Banach space of essentially bounded functions, normed
by

∥y∥L∞ = inf{d > 0 : |y(t)| ≤ d, almost everywhere t ∈ J}.

In this paper, we will employ an axiomatic definition for the phase
space B which is similar to that introduced by Hale and Kato [19].
Specifically, B will be a linear space of functions mapping (−∞, 0] into
X endowed with a seminorm ∥.∥B and satisfies the following axioms:

(A1) If x : (−∞, T ] → X is continuous on J and x0 ∈ B, then
xt ∈ B and xt is continuous in t ∈ J and

(2.1) ∥x(t)∥ ≤ C∥xt∥B,

where C ≥ 0 is a constant.
(A2) There exist a continuous function C1(t) > 0 and a locally

bounded function C2(t) ≥ 0 in t ≥ 0 such that

(2.2) ∥xt∥B ≤ C1(t) sup
s∈[0,t]

∥x(s)∥+ C2(t)∥x0∥B,

for t ∈ [0, T ] and x as in (A1).
(A3) The space B is complete.

Remark 2.1. Condition (2.1) in (A1) is equivalent to ∥ϕ(0)∥ ≤
C∥ϕ∥B, for all ϕ ∈ B.

Example 2.2. The phase space Cr × Lp(g,X).

Let r ≥ 0, 1 ≤ p < ∞, and let g : (−∞,−r) → R be a nonnegative
measurable function which satisfies the conditions (g − 5), (g − 6) in
the terminology of [21]. Briefly, this means that g is locally integrable,
and there exists a nonnegative, locally bounded function Λ on (−∞, 0],
such that g(ξ + θ) ≤ Λ(ξ)g(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r)\Nξ,
where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.

The space Cr × Lp(g,X) consists of all classes of functions φ :
(−∞, 0] → X such that φ is continuous on [−r, 0], Lebesgue-measurable
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and g∥φ∥p on (−∞,−r). The seminorm in ∥.∥B is defined by

∥φ∥B = sup
θ∈[−r,0]

∥φ(θ)∥+
(∫ −r

−∞
g(θ)∥φ(θ)∥pdθ

)1/p

.

The space B = Cr × Lp(g,X) satisfies axioms (A1), (A2) and (A3).
Moreover, for r = 0 and p = 2, this space coincides with C0×L2(g,X),

H = 1, M(t) = Λ(−t)1/2, K(t) = 1 + (
∫ 0

−r
g(τ) dτ)1/2, for t ≥ 0 (see

[21, Theorem 1.3.8], for details).

Definition 2.3. Let α > 0 and f : R+ → X be in L1(R+, X). Then
the Riemann-Liouville integral is given by:

Iαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds,

where Γ(.) is the Euler gamma function.

Definition 2.4 ([34]). The Caputo derivative of order α for a function
f : [0,+∞) → X can be written as

Dα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds

= In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 ≤ α < 1, then

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

Definition 2.5. A function f : J × B × X → X is said to be a
Carathéodory function if it satisfies:

(i) for each t ∈ J the function f(t, ·, ·) : B ×X → X is continuous;
(ii) for each (v, w) ∈ B × X, the function f(·, v, w) : J → X is

measurable.

Definition 2.6. Problem (1.1) is said to be controllable on interval
J if, for every initial function ϕ ∈ B and x1 ∈ X there exists a
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control u ∈ L2(J,X) such that the mild solution x(·) of (1.1) satisfies
x(T ) = x1.

Next we give the concept of a measure of noncompactness [8].

Definition 2.7. Let B be a bounded subset of a seminormed linear
space Y . Kuratowski’s measure of noncompactness of B is defined as

α(B) = inf{d > 0 : B has a finite cover by sets of diameter ≤ d}.

We need to use the following basic properties of the α measure and
Sadovskii’s fixed point theorem here (see [36]).

Lemma 2.8. Let A and B be two bounded sets of a Banach space X.
Then:

(i) If A ⊆ B then α(A) ≤ α(B),
(ii) α(A) = 0 ⇔ A is compact (A is relatively compact),
(iii) α(A+B) ≤ α(A) + α(B).

Theorem 2.9. (Sadovskii’s fixed point theorem). Let N be a con-
densing operator on a Banach space X, i.e., N is continuous and takes
bounded sets into bounded sets, and α(N (D)) < α(D) for every bounded
set D of X with α(D) > 0. If N (S) ⊂ S for a convex, closed and
bounded set S of X, then N has a fixed point in S.

3. Controllability results. In this section, we prove the main
results for controllability of the system (1.1). We give first the definition
of the mild solution of the problem.

Definition 3.1. A function x : (−∞, T ] → X is said to be a mild
solution of (1.1) if x0 = ϕ, xρ(τ,xτ ) ∈ B for every τ ∈ J and

x(t) = −Q(t)ϕ(0) +

∫ t

0

R(t− s)Bu(s) ds(3.1)

+

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ)) dτ ds, t ∈ J,
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where

Q(t) =

∫ ∞

0

ξq(σ)S(t
qσ) dσ,

R(t) = q

∫ ∞

0

σtq−1ξq(σ)S(t
qσ) dσ,

and ξq is a probability density function defined on (0,∞) such that

ξq(σ) =
1

q
σ−1−1/qϖq(σ

−1/q) ≥ 0,

where

ϖq(σ) =
1

π

∞∑
n=1

(−1)n−1σ−qn−1Γ(nq + 1)

n!
sin(nπq),

σ ∈ (0,∞).

Remark 3.2. Note that {S(t)}t≥0 is a uniformly bounded semigroup,
i.e., there exists a constant

M > 0 such that ∥S(t)∥ ≤ M for all t ∈ [0, T ].

More details on semigroups and their properties can be found in
[9, 33].

Remark 3.3. According to [29], a direct calculation gives that

(3.2) ∥R(t)∥ ≤ Cq,M tq−1, t > 0,

where Cq,M = qM/Γ(1 + q).

Set
R(ρ−) = {ρ(s, φ) : (s, φ) ∈ J × B, ρ(s, φ) ≤ 0}.

We always assume that ρ : J × B → (−∞, T ] is continuous. Addition-
ally, we introduce following hypothesis:

(Hφ) The function t → φt is continuous fromR(ρ−) into B, and there
exists a continuous and bounded function Lϕ : R(ρ−) → (0,∞)
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such that

∥ϕt∥B ≤ Lϕ(t)∥ϕ∥B for every t ∈ R(ρ−).

Remark 3.4. The condition (Hφ), is frequently verified by functions
continuous and bounded. For more details, see, for instance, [21].

Remark 3.5. In the rest of this section, C∗
1 and C∗

2 are the constants

C∗
1 = sup

t∈J
C1(t); C∗

2 = sup
t∈J

C2(t).

Lemma 3.6. ([20]). If x : (−∞, T ] → X is a function such that
x0 = ϕ, then

∥xs∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup{|y(θ)|; θ ∈ [0,max{0, s}]},
s ∈ R(ρ−) ∪ J,

where Lϕ = supt∈R(ρ−) L
ϕ(t).

Now we introduce the following assumptions:

(H1) f : J ×B ×X → X satisfies the Carathéodory conditions, and
there exists a positive function µ1(t) ∈ L1(J,R+) such that

∥f(t, v, w)∥ ≤ µ1(t) (∥v∥B + ∥w∥X) ,(3.3)

(t, v, w) ∈ J × B ×X.

(H2) For each t ∈ J , a(t, s) is measurable on [0, t] and a(t) =
ess sup{|a(t, s)|, 0 ≤ s ≤ t} is bounded on J . The map t → at
is continuous from J to L∞(J,R); here, at(s) = a(t, s).

(H3) The linear operator W : L2(J,X) → X defined by

Wu =

∫ T

0

R(T − s)Bu(s) ds,

has an inverse operator W̃−1, which takes values in L2(J,X)/
kerW , and there exist two positive constants M1 and M2 such
that

∥B∥L(X) ≤ M1, ∥W̃−1∥L(X) ≤ M2.(3.4)
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(H4) Let
M1M2a

∗C2
q,MT 2q∥µ1∥L1(C∗

1 + 1)

q2
< 1,

where a∗ = supt∈J a(t).

Remark 3.7.

(i) The construction of the bounded inverse operator W̃−1 in general
Banach space is outlined in Remark 3.10.

(ii) When the space X is of finite dimension, condition (H3) is equiv-
alent to the assumption that the Gramian matrix is invertible, or
positive definite; see [7, 41].

(iii) In general Banach spaces, condition (H3) has been widely used
by many authors; see, for instance, the papers [28, 40] and the
references therein.

Theorem 3.8. If the hypotheses (Hφ) and (H1)–(H4) are satisfied,
and if

(C∗
1 + 1)∥µ1∥L1 < 1,(3.5)

then the problem (1.1) is controllable on the interval (−∞, T ].

Proof. Let Y = {u ∈ C(J,X) : u(0) = ϕ(0) = 0} be endowed with
the uniform convergence topology and N : Y → Y defined by

N(x)(t) = −Q(t)ϕ(0) +

∫ t

0

R(t− s)Bu(s) ds

+

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ)) dτ ds, t ∈ J,

where x : (−∞, T ] → X is such that x0 = ϕ and x = x on J .
Let ϕ : (−∞, T ] → X be the extension of ϕ to (−∞, T ] such that
ϕ(θ) = ϕ(0) = 0 on J .
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Define the control u ∈ L2(J,X) by

(3.6) u(t) = W̃−1

[
x1 +Q(t)ϕ(0)

−
∫ T

0

∫ s

0

R(T − s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ)) dτ ds

]
(t).

Choose

r ≥
M1M2a

∗C2
q,MT 2q∥µ1∥L1 (C

∗
2+Lϕ)∥ϕ∥B

q2

1− M1M2a∗C2
q,MT 2q∥µ1∥L1 (C∗

1+1)

q2

,

and consider the set

Br = {x ∈ Y : ∥x∥∞ ≤ r}.

Clearly, the subset Br is closed, bounded, and convex. �

We need the following lemma.

Lemma 3.9. If x ∈ Br, then we have

(3.7) ∥xρ(t,xt)∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1r,

and

∥u(s)∥ ≤ M2

[
∥x1∥+MC∥ϕ∥B

+ a∗Cq,M

∫ T

0

∫ τ

0

(t− τ)q−1∥f(ι, xρ(ι,xι), x(ι))∥ dι dτ
]
.

Proof. Using Lemma 3.6 and equations (3.4) and (3.6), we obtain

∥xρ(t,xt)∥B ≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1 sup{|y(θ)|; θ ∈ [0,max{0, t}]}

≤ (C∗
2 + Lϕ)∥ϕ∥B + C∗

1r.

Also, we get

∥u(s)∥ ≤ ∥W−1∥
[
∥x1∥+ ∥Q(t)ϕ(0)∥

]
+ ∥W−1∥

[ ∫ T

0

∫ τ

0

∥R(t− τ)∥∥a(τ, ι)∥∥f(ι, xρ(ι,xι), x(ι))∥ dι ds
]
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≤ M2

[
∥x1∥+MC∥ϕ∥B

+ a∗Cq,M

∫ T

0

∫ τ

0

(t− τ)q−1∥f(ι, xρ(ι,xι), x(ι))∥ dι dτ
]
.

The lemma is proved. �

Now we decompose N as N1 +N2 on Br, where

(N1x)(t) =

∫ t

0

R(t− s)Bu(s) ds, t ∈ J,

and

(N2x)(t) = −Q(t)ϕ(0) +

∫ t

0

∫ s

0

R(t− s)a(s, τ)f(τ, xρ(τ,xτ ), x(τ)) dτ ds,

t ∈ J.

Firstly, we show that the operator N1 maps Br into itself. Next, we
prove that N2 is completely continuous. In order to apply Theorem 2.9,
we give the proof in several steps.

Step 1. Let x ∈ Br, then show that N1x ∈ Br. For t ∈ J , we have

∥(N1x)(t)∥ ≤
∫ t

0

∥R(t− s)Bu(s)∥ ds

≤ M1M2Cq,M

×
∫ t

0

(t− s)q−1
[
∥x1∥+MC∥ϕ∥B + a∗Cq,M

×
∫ T

0

∫ τ

0

(t− τ)q−1∥f(ι, xρ(ι,xι), x(ι))∥ dι dτ
]
ds

≤ M1M2Cq,M
T q

q

[
∥x1∥+MC∥ϕ∥B

+ a∗Cq,M
T q

q
∥µ1∥L1(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

]
≤ M1M2Cq,MT q

q

[
∥x1∥+MC∥ϕ∥B

]
+

M1M2a
∗C2

q,MT 2q∥µ1∥L1

q2
[
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

]
≤ r.
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Step 2. N2 is continuous. Let {xn}n∈N be a sequence such that
xn → x in Br as n → ∞. Since f satisfies (H1), for almost every t ∈ J ,
we get

f(τ, xn
ρ(τ,xn

τ )
, xn(τ)) −→ f(τ, xρ(τ,xτ ), x(τ)), as n → ∞.

The Lebesgue dominated convergence theorem implies that

∥(N2x
n)(t)− (N2x)(t)∥

≤
∫ t

0

∫ s

0

∥R(t− s)∥∥a(s, τ)∥∥f(τ, xn
ρ(τ,xn

τ )
, xn(τ))

− f(τ, xρ(τ,xτ ), x(τ))∥ dτ ds

≤ a∗Cq,M

∫ t

0

∫ s

0

(t− s)q−1∥f(τ, xn
ρ(τ,xn

τ )
, xn(τ))

− f(τ, xρ(τ,xτ ), x(τ))∥ dτ ds.

Hence,
lim

n→∞
∥(N2x

n)(t)− (N2x)(t)∥ = 0.

This means that N2 is continuous.

Step 3. We show that N2(Br) ⊂ Br. For this, we prove by
contradiction that there exists a function xr(·) ∈ Br and t ∈ J such
that ∥(N2x

r)(t)∥ > r. Thus, from (3.7), we have

r < ∥(N2x
r)(t)∥

≤ ∥ −Q(t)ϕ(0)∥

+

∫ t

0

∫ s

0

∥R(t− s)a(s, τ)f(τ, xr
ρ(τ,xr

τ )
, xr(τ))∥ dτ ds

≤ MC∥ϕ∥B + a∗ Cq,M

×
∫ t

0

∫ s

0

(t− s)q−1µ1(τ)
(
∥xr

ρ(τ,xr
τ )
∥+ ∥xr(τ)∥

)
dτ ds

≤ MC∥ϕ∥B
+ a∗ Cq,M

(
(C∗

2 + Lϕ)∥ϕ∥B + C∗
1r + r

)
×
∫ t

0

∫ s

0

(t− s)q−1µ1(τ) dτ ds

≤ MC∥ϕ∥B
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+
T qa∗Cq,M

q

(
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

)
∥µ1∥L1 .

Dividing on both sides by r and taking the lower limit as r → ∞, we
have

(C∗
1 + 1)∥µ1∥L1 ≥ 1.

This contradicts condition (3.5). Hence, N2(Br) ⊂ Br.

Step 4. N2(Br) is bounded and equicontinuous. By Step 2, it
is obvious that N2(Br) ⊂ Br is bounded. For the equicontinuity of
N2(Br), set

G(·, xρ(·,x(·)), x(·)) =
∫ ·

0

a(·, τ)f(τ, xρ(τ,xτ ), x(τ)) dτ.

Let 0 < τ2 < τ1 < T and x ∈ Br. Then we can see

∥(N2x)(τ1)− (N2x)(τ2)∥ ≤ I1 + I2 + I3,

where

I1 = ∥Q(τ1)−Q(τ2)∥∥ϕ(0)∥,

I2 =

∥∥∥∥ ∫ τ2

0

[R(τ1 − s)−R(τ2 − s)]G(s, xρ(s,xs), x(s)) ds

∥∥∥∥,
I3 =

∫ τ1

τ2

∥R(τ1 − s)∥∥G(s, xρ(s,xs), x(s))∥ ds.

The continuity of S(t) in the uniform operator topology follows for
t > 0 such that I1 tends to zero, as τ2 → τ1.

In view of (3.2), we have

I2 ≤
∥∥∥∥∫ τ2

0

[
q

∫ ∞

0

σ(τ1 − s)q−1ξq(σ)S((τ1 − s)qσ)

∥∥∥∥ dσ
− q

∫ ∞

0

σ(τ2 − s)q−1ξq(σ)S((τ2 − s)qσ) dσ

]
×G(s, xρ(s,xs), x(s))ds∥

≤ q

∫ τ2

0

∫ ∞

0

σ∥[(τ1 − s)q−1 − (τ2 − s)q−1]ξq(σ)S((τ1 − s)qσ)

×G(s, xρ(s,xs), x(s))∥ dσ ds

+ q

∫ τ2

0

∫ ∞

0

σ(τ2 − s)q−1ξq(σ)∥
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× S((τ1 − s)qσ)− S((τ2 − s)qσ)∥

× ∥G(s, xρ(s,xs), x(s))∥ dσ ds

≤ Cq,M

∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1
∣∣

× ∥G(s, xρ(s,xs), x(s))∥ ds

+ q

∫ τ2

0

∫ ∞

0

σ(τ2 − s)q−1ξq(σ)∥S((τ1 − s)qσ)− S((τ2 − s)qσ)∥

× ∥G(s, xρ(s,xs), x(s))∥ dσ ds

≤ a∗∥µ1∥L1

[
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

]
×
[
Cq,M

∫ τ2

0

∣∣(τ1 − s)q−1 − (τ2 − s)q−1
∣∣ ds

+ q

∫ τ2

0

∫ ∞

0

σ(τ2 − s)q−1ξq(σ)

× ∥S((τ1 − s)qσ)− S((τ2 − s)qσ)∥ dσ ds
]
.

Clearly, the first term on the right-hand side of the above inequality
tends to 0 as τ2 → τ1. The second term on the right-hand side of
the above inequality tends to 0 as τ2 → τ1 as a consequence of the
continuity of S(t) in the uniform operator topology for t > 0. For I3,
we have

I3 ≤ Cq,M

∫ τ1

τ2

(τ1 − s)q−1∥G(s, xρ(s,xs), x(s))∥ ds

≤ a∗ Cq,M

[
(C∗

2 + Lϕ)∥ϕ∥B + (C∗
1 + 1)r

]
×

∫ τ1

τ2

(τ1 − s)q−1ds

−→ 0, as τ2 → τ1.

From the above, it is clear that N2(Br) is equicontinuous.

Finally, combining Step 2–Step 4 together with Ascoli’s theorem, we
conclude that the operator N2 is compact. In fact, by Step 1–Step 4
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and Lemma 2.8, one can conclude that N = N1+N2 is continuous and
takes bounded sets into bounded sets.

Meanwhile, it is easy to see α(N2(Br)) = 0 since N2(Br) is relatively
compact. It follows from N1(Br) ⊆ Br and α(N2(Br)) = 0 that
α(N(Br)) ≤ α(N1(Br)) + α(N2(Br)) ≤ α(Br) for every bounded set
Br of X with α(Br) > 0.

Since N(Br) ⊂ Br for a convex, closed and bounded set Br of Y
using Theorem 2.9, we conclude that N has a fixed point x ∈ Br.
Hence, N has a fixed point which is a mild solution to the problem (1.1)
satisfying x(T ) = x1. Thus, system (1.1) is controllable on (−∞, T ].

Remark 3.10. (see also [35]). Construction of W̃−1. Let E =
L2(J, U)/ kerW. Since ker W is closed, E is a Banach space under
the norm

∥u∥E = inf
u∈ū

∥u∥L2(J,U) = inf
Wû=0

∥u+ û∥L2(J,U),

where u are the equivalence classes of u.

Define W̃ : E → X by

W̃u = Wu, u ∈ u.

Now W̃ is one-to-one and

∥W̃u∥X ≤ ∥W∥∥u∥E .

We claim that V = RangeW is a Banach space with the norm

∥v∥V = ∥W̃−1v∥E .

This norm is equivalent to the graph norm on D(W̃−1) = RangeW , W̃

is bounded and since D(W̃ ) = E is closed, W̃−1 is closed and so the
above norm makes Range W = V , a Banach space.

Moreover,

∥Wu∥V = ∥W̃−1Wu∥E = ∥W̃−1W̃u∥E
= ∥u∥ = inf

u∈u
∥u∥ ≤ ∥u∥,

so
W ∈ L(L2(J, U), V ).
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Since L2(J, U) is reflexive and kerW is weakly closed, the infimum is
actually attained. For any v ∈ V , we can therefore choose a control

u ∈ L2(J, U) such that u = W̃−1v.

4. An example. To apply our abstract results, we consider the
fractional integrodifferential equation with state dependent delay of
the form

∂q

∂tq
v(t, ζ) =

∂2

∂ζ2
v(t, ζ) + ωµ(t, ζ)

+

∫ t

0

(t− s)2
∫ s

−∞
γ(τ − s)v(τ − ρ1(s)ρ2(|v(s, ζ)|), ζ) dτ ds

+

∫ t

0

(t− s)2 sin |v(s, ζ)| ds, t ∈ [0, T ], ζ ∈ [0, π],(4.1)

v(t, 0) = v(t, π) = 0, t ∈ [0, T ],

v(θ, ζ) = φ(θ, ζ), θ ∈ (−∞, 0], ζ ∈ [0, π],

where 0 < q < 1, ω > 0, µ : [0, T ] × [0, π] → [0, π], ρi : [0,+∞) →
[0,+∞), i = 1, 2, are continuous functions, and ∂q/∂tq := Dα

t .

Set X = L2([0, π]), and define A by

D(A) = {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0},

Au = u
′′
.

It is well known that A is the infinitesimal generator of an analytic
semigroup (S(t))t≥0 on X. Furthermore, A has a discrete spectrum
with eigenvalues of the form −n2, n ∈ N, and the corresponding
normalized eigenfunctions are given by

un(x) =

√
2

π
sin(nx).

In addition, {un : n ∈ N} is an orthogonal basis for X,

S(t)u =
∞∑

n=1

e−n2t(u, un)un, for all u ∈ X and every t ≥ 0.

From these expressions, it follows that (S(t))t≥0 is a uniformly bounded
compact semigroup. For the phase space, we choose B = C0×L2(g,X),
see Example 2.2 for details.
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For t ∈ [0, T ] and ζ ∈ [0, π], we set

x(t)(ζ) = v(t, ζ),

a(t, s) = (t− s)2,

f(t, φ, x(t))(ζ) =

∫ 0

−∞
γ(τ)φ(τ, ζ) dτ + sin |x(t)(ζ)|

ρ(t, φ) = ρ1(t)ρ2(∥φ(0)∥)
Bu(t)(ζ) = ωµ(t, ζ).

Under the above conditions, we can represent the system (4.1) in the
abstract form (1.1). Assume that the operator W : L2(J,X) → X
defined by

Wu(·) =
∫ T

0

R(T − s)ωµ(s, ·) ds,

has a bounded invertible operator W−1 in L2(J,X)/ kerW .

The following result is a direct consequence of Theorem 3.8.

Proposition 4.1. Let φ ∈ B be such that (Hφ) holds, and assume that
the above conditions are fulfilled. Then system (4.1) is controllable on
(−∞, T ].
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