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ABSTRACT. The main purpose of this paper is to fo-
cus on various issues inherent to the regularization theory
of Fredholm integral equations of the first kind. Particular
attention is devoted to the probabilistic approach to reg-
ularization, and a regularizing algorithm based on statisti-
cal methods is then proposed and tested on examples. The
information theory approach is studied from two different
viewpoints: the first approach is the standard one based on
probability theory; the second one is formulated, in analogy
with communication theory, in terms of the ε-capacity in the
sense elaborated by Kolmogorov and his school. The classi-
cal problem of the resolving power in optics is then used to
exemplify the relation between these two approaches.

1. Introduction. Inverse problems arise in many areas of science
and technology and, loosely speaking, pertain to situations where one
is interested in determining the cause of a phenomenon from the mea-
surements of its effects. Typical examples of inverse problems occur,
just to mention a few, in medical imaging (e.g., computer aided tomog-
raphy), image processing (deconvolution), radio-astronomy, geophysics,
model fitting, and so on. Inverse problems are often ill-posed in the
sense that a unique solution might not exist, or the solution does not
depend continuously on the input data: slight inaccuracies in the in-
put data may lead to a solution very far from the true one [29]. The
inverse problem needs regularization [23].
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The probabilistic regularization theory of Fredholm integral equa-
tions of the first kind represents one of the fundamental mathematical
tools for analyzing ill-posed inverse problems (see [68] for examples
of practical applications), and presents subtle aspects which deserve
close attention. For instance, some features and similarities between
the solutions provided by deterministic (variational) methods and the
solutions brought by the probabilistic regularization theory are worthy
of being discussed.

As we shall see, the probabilistic approach to regularization gives the
chance of developing the regularization theory in various directions: on
the one hand, it opens the door to using probabilistic information the-
ory, which, eventually, produces statistical algorithms; on the other
hand, it allows for exploiting concepts and language of the communi-
cation theory, which make it possible to elaborate an information theo-
retical approach based on topological instead of probabilistic methods.
For instance, we will see that by taking advantage of the methods of
the topological information theory a relevant expression for the classical
problem of the resolving power in optics (a problem that traces back
to Lord Rayleigh) can be obtained in terms of the maximum number
of messages which can be conveyed back from the image to recover the
object.

Consider the Fredholm integral equation of the first kind

(1.1) (Af)(x) =

∫ b

a

K(x, y) f(y) dy = g(x), a 6 x 6 b,

whose kernelK(x, y) is supposed to be Hermitian and square integrable:

(1.2) K(x, y) = K(y, x)

and ∫ b

a

∫ b

a

|K(x, y)|2 dxdy <∞.

Then, A : L2(a, b) → L2(a, b) is a self-adjoint compact operator.
In (1.1), the kernel K and the data function g are supposed to be
given, and the inverse problem is finding the unknown function f . For
simplicity, we shall suppose hereafter that the kernel K, the function
g and the unknown function f are real-valued functions; in addition,
we assume that the interval [a, b] is a closed and bounded subset of
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the real line. We make an exception to these assumptions only in an
example treated in subsections 3.2 and 3.3, where the function f and,
accordingly, the function g, are assumed to be complex-valued. But
the general results which we obtain hold true, substantially unmodified
also in that case.

The Hilbert-Schmidt theorem guarantees that the integral operator
A admits a set of eigenfunctions {ψk}∞k=1 and, accordingly, a count-
ably infinite set of eigenvalues {λk}∞k=1 such that limk→∞ λk = 0. The
eigenfunctions form an orthonormal basis for the orthogonal comple-
ment of the null space of the operator A. Further, we shall suppose
hereafter that the eigenvalues are ordered as follows: λ1 > λ2 > · · · . In
view of the Hilbert-Schmidt theorem we can associate with the integral
equation (1.1) the following eigenfunction expansion of the sought-after
solution:

(1.3) f(x) =

∞∑
k=1

(
gk
λk

)
ψk(x),

where gk = (g, ψk) ((·, ·) denotes the scalar product in L2(a, b)). In this
case, the series (1.3) converges in the L2-norm.

However, in view of the fact that there always exists an inherent
noise in actual data, instead of (1.1), we have to deal with the following
equation:

(1.4) Af + n = g, g = g + n,

where an additive model of deterministic noise, represented by the
function n belonging to the data space L2(a, b), is assumed. Therefore,
instead of expansion (1.3), we have to consider the following formal
series

(1.5)
∞∑
k=1

(
gk
λk

)
ψk(x),

where gk = (g, ψk). The series (1.5) can even diverge if g does not be-
long to the range of the operator A. This is precisely the manifestation
of the ill-posed character of the Fredholm integral equation of the first
kind.

Several methods of regularization have been proposed (among the
extensive literature on this topic see, e.g., [8, 28, 62, 63, 64] and the
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references quoted therein; for an introductory presentation of general
issues on inverse and ill-posed problems see also [23, 49]). All of these
aim at modifying one of the elements of the triplet {A,X, Y }, where
A is the integral operator defined by (1.1), while X and Y denote the
solution and the data space, respectively.

In general, the initial concern is the choice of the functional ambient
space where the problem can be conveniently formulated. The Banach
space setting is frequently appropriate for many applied problems and
have played an important role in the recent research in regularization
theory for ill-posed problems. In fact, there are various practical
applications where Hilbert space models can be unrealistic and the
formulation of the (linear or nonlinear) model in the more general
setting of Banach spaces (typically, Lp-spaces or spaces of continuous
functions) can help to overcome the limitations of Hilbert spaces
(see, e.g., [58] for a thorough discussion on this topic). However, in
view of the lack of a spectral theorem, variational tools (Tikhonov-
type methods) [33, 57] and iterative regularization methods (Newton-
type methods) [34, 37] rather than regularizing procedures based on
spectral theory are in use. In the case being considered here the
assumptions on the operator A and the Gaussian distributions we
adopted to describe the noise lead naturally to a (separable) Hilbert
space setting (in our case X ≡ Y ≡ L2(a, b)). Even more importantly,
the spectral methods employed in our regularization analysis allow us
to make simpler and particularly transparent the comparison among
variational methods, probabilistic methods and the analysis based on
the topological information theory (see Section 3).

In order to restore the continuity of the operator A−1, it could be
sufficient, in principle, to provide the data space Y with the ad hoc
norm induced by A and X such that: ∥g∥Y = ∥A−1f∥X . However, this
type of regularizing procedure turns out to be usually inadequate since
the induced norm ∥ · ∥Y on the data space does not allow a feasible
description of the measurement errors (as do, e.g., the topologies of C0

and L2). In general, the topology of the data space should instead be
dictated by physical considerations [20].

As alternate methods of regularization, one could suitably modify
the operator A itself in order to generate, and then solve, a new
problem, “close” to the old one, but now well-posed. An example
of this class of methods is the quasi-reversibility [46], developed for
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the regularization of ill-posed boundary value problems for partial
differential equations (see, e.g., [13, 38]).

Most regularizing procedures are founded on a convenient modifi-
cation of the solution space X. These methodologies lend themselves
also to a probabilistic analysis, which will be our concern in Section 2.
Among these, the most popular ones consist in admitting only those
solutions that belong to a suitable subset of the solution space X. This
restriction is realized by implementing a priori bounds, which can be
written when some prior knowledge on the solution is available. There-
fore, in addition to the inequality

(1.6) ∥Af − g∥Y 6 ε, ε = constant,

which corresponds to a bound on the noise, one also considers an a
priori bound on the solution of the following form:

(1.7) ∥Cf∥Z 6 E, E = constant,

where Z denotes the constraint space and, accordingly, C is called the
constraint operator. The operator C : X → Z, which is assumed
to have bounded inverse, must be chosen to express some expected
properties of the solution and has to be prescribed according to the
physical character of the problem. For instance, a frequent choice is
assuming C to be a differential operator so that bound (1.7) represents
a smoothness requirement on the solution. It is obvious that the pair
of positive numbers (ε,E) must be permissible, that is, such that the
set of functions f which satisfies bounds (1.6) and (1.7) be non-empty.
This problem has been extensively treated in the literature (see, for
instance, [52, 62]) and we will not return to it. From bounds (1.6) and
(1.7), we are led to define a regularized solution as the minimum of the
following functional

(1.8) Φ(α; f) = ∥Af − g∥2Y + α2∥Cf∥2Z , α
.
=

ε

E
.

This minimum represents (for a given value of α) the best trade-off
between data-fit and regularity of the solution itself. For the sake of
simplicity and convenience, from now on we take Z ≡ L2(a, b), so that
we have: X ≡ Y ≡ Z ≡ L2(a, b). It is not significantly restrictive to
assume that the operator C is such that C∗C and A∗A commute (A∗

denoting the adjoint operator of A) since stability estimates associated
with the minimization of functional (1.8) actually depend on the
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spectrum of the operator S∗S, where S = A(C∗C)−1/2 is a compact
operator if A is compact [51] (see also [8, 9] for a discussion of this
issue). Then, in such a case we can write C∗Cf =

∑∞
k=1 c

2
kfkψk where

fk = (f, ψk) are the Fourier coefficients of the unknown solution, and
the c2k are the eigenvalues of C∗C. The constraint operator C has
compact inverse if and only if limk→∞ c2k = +∞. By expanding f and
g on the basis {ψk}∞k=1 (induced by A), it can be easily seen that the
minimum of functional (1.8) is given by:

(1.9) f̃(x) =
(
A∗A+ α2C∗C

)−1
A∗ g(x) =

∞∑
k=1

λk gk
λ2k + α2c2k

ψk(x).

One can then prove that f̃ is indeed a regularized solution to problem

(1.1), i.e., limε→0 ∥f − f̃∥ = 0 if and only if limk→∞ c2k = +∞ (where
∥ · ∥ denotes the L2-norm) [8, 9, 52]. Assuming this latter condition
holds and supposing that the sequence {c2k}∞k=1 is monotone, another
solution to problem (1.1) can be built by truncating expansion (1.9) at
the largest integer k, which will be denoted by κ(ε), such that λk > αck
(where ck = +

√
c2k). Then, neglecting (α ck) in comparison with λk

when k 6 κ(ε), it can be proved that the approximation

(1.10) f(x) =

κ(ε)∑
k=1

gk
λk

ψk(x)

converges to the true solution f , as ε→ 0, in the sense of the L2-norm
[8, 9, 52].

In several cases a much milder constraint can be conveniently used:
for instance, we may assume C ≡ I (the identity operator on Z ≡
L2(a, b)) and, therefore, bound (1.7) encodes an a priori knowledge on
the energy of the solution. Accordingly, we have ck = 1 for every k.
In this case, the compactness condition for C−1 is not satisfied, but it
can however be proved that the approximation obtained by truncating
expansion (1.5) at the largest integer k, denoted by kw(ε), such that
λk > α:

(1.11) fw(x) =

kw(ε)∑
k=1

gk
λk
ψk(x),
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still converges, in the weak sense, to the true solution f as ε→ 0, i.e.,
limε→0(f − fw, v) = 0 for every v ∈ L2(a, b) [8, 9, 52].

However, all these procedures are not free from defects. In fact,
these methods perform as a low-pass filter, whose action smooths out
the Fourier components gk for high values of k (see (1.9), (1.10), (1.11)).
But it is very easy to exhibit examples of functions whose Fourier com-
ponents are small for low values of k while the significant contributions
are brought by those components at “intermediate” values of k, which
are smoothed out by the action of the filter. In this situation the stan-
dard variational regularization methods described above fail since the
bulk of the unknown function f is not actually recovered. Moreover, at
low values of k the contribution of the Fourier components gk is kept
without considering whether gk actually brings exploitable informa-
tion on the solution or only noise. Explicit examples of such functions
have been given in [16]. These defects call for the introduction and
implementation of probabilistic and statistical methods, which will be
considered in this paper.

The paper is organized as follows. In Section 2, we expose the main
steps of the probabilistic regularization method together with some
results in information theory. Its relation with the deterministic varia-
tional method of regularization will be also analyzed. In Section 3, we
introduce a topological information theory which is not set up within
the probabilistic framework but makes use of concepts of communica-
tion theory. The probabilistic and topological approaches are then com-
pared in the example of the classical problem of the resolving power
in optics. In Section 4, statistical tools will be used to implement the
ideas developed in Section 2 in order to establish an algorithm able to
provide a probabilistically regularized solution to the ill-posed problem.
In Section 5, some conclusions will be drawn. A short appendix intro-
ducing the notion of weak random variable in Hilbert spaces is finally
given.

2. Probabilistic regularization method and information the-
ory. In this section, we shall reconsider the problem (1.4) from a prob-
abilistic point of view. We rewrite equation (1.4) in the following form:

(2.1) Aξ + ζ = η,
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where ξ, ζ, and η, which correspond to f , n, and g, respectively, are
Gaussian weak random variables (w.r.v.) in the Hilbert space L2(a, b)
[5]. The notion of weak random variable allows us to extend the
problem to include stochastic processes ζ with covariance operator not
of trace class, notably the Gaussian white noise (see the Appendix
for a concise introduction to the concept of Hilbert space valued weak
random variable). A Gaussian w.r.v. is uniquely defined by its mean
element and its covariance operator; in the present case, we denote by
Rξξ, Rζζ , and Rηη the covariance operators on L2(a, b) of ξ, ζ and
η, respectively (see (A.2) in the Appendix for the definition of second
moment of a w.r.v.). Next, we make the following assumptions:

(I) ξ and ζ have zero mean (see Definition (A.1) of first moment of
a w.r.v.);

(II) ξ and ζ are uncorrelated, i.e., Rξζ = 0 (see Definition (A.3));

(III) R−1
ζζ exists.

The first assumption is made only for the sake of simplicity and can be
easily removed. The third assumption is the mathematical formulation
of the fact that all the components of the data function are affected by
noise. As it has been shown by Franklin [24, formula (3.11)], if the
signal ξ and the noise ζ satisfy assumptions (I) and (II), then

(2.2) Rηη = ARξξA
∗ +Rζζ ,

and the cross-covariance operator is given by

(2.3) Rξη = RξξA
∗.

We also assume that Rζζ depends on a parameter ε which tends to zero
when the noise vanishes:

Rζζ = ε2 Rζζ ,

where Rζζ is a given operator (e.g., Rζζ = I, the identity operator on
L2(a, b), for the white noise).

Now, our problem can be formulated as follows.

Problem 2.1. Given a value g of the w.r.v. η find an estimate of the
w.r.v. ξ.
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A linear estimate of ξ will be any w.r.v. ξL = Lη, where L : Y → X
is an arbitrary linear continuous operator. Then, from a value g of η,
one obtains the linear estimate Lg of the w.r.v. ξ. Now, a measure of
the reliability of the estimator L is given by [8, 10]

δ2(ε, v;L) = E
{
|(ξ − Lη, v)|2

}
(2.4)

for all v ∈ X = L2(a, b),

where E{·} denotes the expectation value. Then, we can state the
following proposition.

Proposition 2.2. If the covariance operator Rζζ has bounded inverse,
then there exists a unique operator L0 which minimizes δ2(ε, v;L) for
every v ∈ X, and it is given by

L0 = RξηR
−1
ηη = RξξA

∗ (ARξξA
∗ +Rζζ)

−1
.

Proof. See references [8, 10]. �

The w.r.v. ξ̃L0 = L0η is called the best linear estimator of ξ and,

given a value g of η, the best linear estimate f̃L0 for the value of ξ is
given by

f̃L0 = RξξA
∗ (ARξξA

∗ +Rζζ)
−1

g (A∗ = A).

If the w.r.v. ξ has finite variance (i.e., if the covariance operator Rξξ

has finite trace), then the global mean-square error for the estimator
ξL = Lη may be defined as follows:

(2.5) δ2(ε;L) = E
{
∥ξ − Lη∥2

}
.

When the operator L0 which minimizes (2.4) exists, then it also
minimizes the global mean-square error (2.5) if and only if L0η has
finite variance [8, 10]. Now, exploiting the following identity (which
holds when R−1

ξξ and R−1
ζζ exist):(

A∗R−1
ζζ A+R−1

ξξ

)
RξξA

∗ = A∗R−1
ζζ (ARξξA

∗ +Rζζ) ,
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the operator L0 can be rewritten as:

L0 =
(
RζζA

∗R−1
ζζ A+RζζR

−1
ξξ

)−1 (
RζζA

∗R−1
ζζ

)
.

If the operators A∗ and Rζζ commute (like, e.g., in the case of white

noise), the solution f̃L0 can be written as follows:

(2.6) f̃L0 =
(
A∗A+RζζR

−1
ξξ

)−1

A∗ g.

The best linear estimate f̃L0 is therefore modulated by the operator
RζζR

−1
ξξ , which represents the noise-to-signal spectral density ratio.

Its role in the probabilistic solution (2.6) is very similar to the role

played by the penalty operator C∗C in the variational solution f̃ (see
(1.9)). Only the spectral components of g with high signal-to-noise

ratio contribute to the estimate f̃L0 whereas those with small signal-
to-noise ratio are smoothed out.

Several probabilistic regularization procedures are aimed at incorpo-
rating into the problem prior information on the solution f (see [63]).
For instance, in the Backus-Gilbert approach [4] one seeks for the best
linear estimator that optimally balance the bias and the variance of
the inversion estimate. This task is usually implemented by using a
penalty approach where the smoothness information on the function
is inserted explicitly. For example, in the Tikhonov-Philips method, a
penalty term on the L2-norm of the second derivative of the solution
∥f ′′∥2L2 (assuming f to be twice differentiable with f ′′ ∈ L2) is adopted
in order to penalize the solutions with high local curvature. This type
of method, however, suffers from the non-trivial problem of determin-
ing the optimal parameter (called the “smoothing parameter”) from the
data that controls the trade-off between similarity between data and so-
lution and roughness of the solution. Among the proposed solutions
to this problem, it is worth recalling the generalized cross-validation
algorithm [66, 67] and the L-curve method [30].

In this paper, we follow a different route to achieve a probabilistically
regularized solution. In order to obtain more tractable formulae, it is
convenient to expand ξ and ζ (which are w.r.v. in L2) in a suitable
orthonormal basis. The quite natural choice is to take as a basis the
eigenfunctions {ψk}∞k=1 of the operator A. If the solution space X and
the data space Y are not equal, as instead we assume hereafter, then
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the problem can be worked out similarly in terms of singular values
and singular functions of the operator A [8], and all the results that
we give in what follows can be easily reformulated.

An alternative basis expansion proposed for linear inverse problems
is the so-called wavelet-vaguelette decomposition [21]. Evidently the
eigenfunctions {ψk}∞k=1 carry information only on the operator A, and
it could happen they are not well adapted to the function f we want
to recover. On the other hand, the orthonormal wavelet bases can
provide an efficient representation for ample classes of functions. The
main drawback of the wavelet-vaguelette decomposition is that the
Riesz basis of vaguelettes, i.e., the image through the operator A of
the wavelet basis, are no longer orthonormal. This generates undesired
correlations among the coefficients of the wavelet expansion of the
solution that make it difficult to select the coefficients which are
statistically meaningful.

2.1. Spectral formulation of the inverse problem. Let us return
to the probabilistic formulation (2.1) of the inverse problem (1.4), and
assume, in addition to conditions (I), (II) and (III) stated earlier, that
the Fourier components of the w.r.v. ζ (which describes the noise) are
mutually uncorrelated. This assumption often seems to be reasonable
in many practical situations (e.g., in the case of stationary white noise
[50, page 380]). Now, we project equation (2.1) on the basis {ψk} of
the eigenfunctions of the operator A (see [39] for a similar approach
based on the spectral decomposition of the operator A∗A in the case the
operator A is not self-adjoint). We therefore have an infinite sequence
of one-dimensional equations:

(2.7) λkξk + ζk = ηk, k = 1, 2, . . . ,

where ξk = (ξ, ψk), ζk = (ζ, ψk) and ηk = (η, ψk) are ordinary Gaussian
random variables (see the Appendix).

Consider the Fourier components of the noisy data g, that is, the
set {gk}∞k=1, where g represents a realization of the w.r.v. η, and
the components gk are understood as a realization of the ordinary
random variables ηk. We should, in principle (and as also suggested by
equation (2.6)), split this set into two subsets.

The first subset made up of those components gk from which we
can extract information for recovering the corresponding (unknown)
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Fourier components fk of f (the components fk being understood as
a realization of the ordinary random variables ξk), whereas the second
subset is composed of those Fourier components gk in which the noise
prevails on the noiseless coefficients gk.

Now, returning to the ordinary random variables ηk, which are the
probabilistic counterparts of the coefficients gk, we aim at splitting the
set {ηk}∞k=1 into two subsets: the first subset is composed of those
Fourier components of η from which we can extract information, while
the second one is composed of those Fourier components ηk in which
the noise ζk dominates (see (2.7)). To this end, we should evaluate
the amount of information about the random variable ξk which is
contained in the random variable ηk′ . Now, we may introduce the
variances of the ordinary Gaussian random variables ξk, ζk and ηk:
σ2
k = (Rξξψk, ψk), ε

2ν2k = (Rζζψk, ψk) and λ
2
kσ

2
k + ε2ν2k = (Rηηψk, ψk)

(see equation (2.2)). Next, we consider the mutual information between
ξk′ and ηk [14, 27, 54]:

J(ξk′ , ηk) = −1

2
ln

(
1− r2ξη(k

′, k)
)
, k, k′ = 1, 2, . . . ,

where the squared correlation coefficient r2ξη(k
′, k) is given by:

(2.8) r2ξη(k
′, k) =

|E{ξk′ , η∗k}|2

E{|ξk′ |2}E{|ηk|2}
=

|(Rξηψk′ , ψk)|2

σ2
k′ (λ2kσ

2
k + ε2ν2k)

.

In view of equation (2.3), we have: (Rξηψk′ , ψk) = λk ρk′,k, where
ρk′,k = (Rξξψk′ , ψk). Then, the squared correlation coefficient can be
written as follows:

r2ξη(k
′, k) =

|λk|2 |ρk′,k|2

σ2
k′ (λ2kσ

2
k + ε2ν2k)

=
|ρk′,k|2

σ2
k′ σ2

k

(
1 +

ε2ν2k
λ2kσ

2
k

)−1

(2.9)

=
|ρk′,k|2

σ2
k′ σ2

k

1

1 + s−2
k

,

where s2k = (λkσk/ενk)
2 represents the signal-to-noise ratio associated

with the random variable ηk. Consequently, for k ̸= k′, we have:

J(ξk′ , ηk) ∼
1

2
ln

(
1 +

|ρk′,k|2

σ2
k′ σ2

k

s2k
1 + s2k

)
,(2.10)

|rξ,η(k′, k)| < 1; k, k′ = 1, 2, . . . ; k ̸= k′.
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Now, equation (2.10) informs us that the amount of information about
ξk′ provided by ηk is significant if: (i) the two random variables
ξk′ and ξk are correlated enough (i.e., (|ρk′,k/(σk′σk)| is large), and
(ii) the signal-to-noise ratio s2k associated with ηk (which represents
the kth Fourier component of the noisy data) is sufficiently large (i.e.,
|λkσk| > ε|νk|). Concerning the case k = k′, we have:

(2.11) J(ξk, ηk) =
1

2
ln

(
1 +

λ2kσ
2
k

ε2ν2k

)
=

1

2
ln
(
1 + s2k

)
, k = 1, 2, . . . .

From (2.11), it follows that if |λkσk| < ε|νk|, then J(ξk, ηk) < (1/2) ln 2
and the amount of information on ξk contained in ηk is small. There-
fore, both equations (2.10) and (2.11) lead us to split the set of
the Fourier components representing the noisy data into two subsets:
{ηk}∞k=1 = {ηk}k∈I ∪ {ηk}k∈N , where:

I .
= {k : |λkσk| > ε|νk|},(2.12a)

N .
= {k : |λkσk| < ε|νk|}.(2.12b)

Now, we have J(ξk, ηk) > J(ξk′ , ηk) (k′ ̸= k; |ρk′,k/(σk′σk)| < 1).
Moreover, even in the case of moderately high values of signal-to-
noise ratio s2k and rather correlated signal components ξk′ and ξk,
the amount of information provided by ηk about ξk is much more
than that about ξk′ with k′ ̸= k. For instance, for a signal-to-
noise ratio as low as s2k ∼ 3 dB, the information provided by ηk
on ξk is about twice that on ξk′ with |ρk′,k/(σk′σk)| = 0.8, i.e.:
J(ξk, ηk) ∼ 2 J(ξk′ , ηk), while in the case of poorly correlated signal
components, e.g., |ρk′,k/(σk′σk)| = 0.5, we have J(ξk, ηk) ∼ 6 J(ξk′ , ηk).
This behavior becomes more pronounced as the signal-to-noise ratio s2k
increases. Therefore, since our main purpose is building upon the data
set I (containing components with significant signal-to-noise ratio), we
can adopt a (somewhat crude) model in which cross-correlations are
neglected (also see [39]) and assume the ordinary random variables
ξk and ζk to be mutually independent and normally distributed, in
precisely the following way:

ξk ∼ N(0, σ2
k) and ζk ∼ N(0, ε2ν2k), k = 1, 2, . . . .

Then, equations (2.7) allow us to write the conditional probability
distribution of ηk given ξk:

ηk | ξk ∼ N(λkξk, ε
2ν2k), k = 1, 2, . . . .



44 ENRICO DE MICHELI AND GIOVANNI ALBERTO VIANO

Next, the Bayes’ theorem states that the posterior distribution of ξk
given (the occurrence of) the value gk of the ordinary random variable
ηk is normal:

(2.13) ξk | gk ∼ N (E {ξk | gk},Var {ξk | gk}) ,

with expectation value and variance given by:

E {ξk | gk} =
1

1 + (1/sk)2
gk
λk
,(2.14a)

Var {ξk | gk} =
σ2
k

1 + s2k
.(2.14b)

We see from (2.14) that if k ∈ I, i.e., if the signal-to-noise ratio s2k is
large, the distribution of ξk when the datum ηk takes on the value
gk is tightly peaked around the value (gk/λk) with small variance
Var {ξk | gk} ≃ (ε2ν2k/λ

2
k). Conversely, if k ∈ N , that is, when the

noise submerges the signal, we have E {ξk | gk} ≃ 0. Therefore, it is
reasonable to consider the following approximate estimate ⟨ξk⟩ of the
expected value of ξk (given the occurrence of the noisy datum gk):

⟨ξk⟩ =


gk
λk

for k ∈ I,
0 for k ∈ N .

Consequently, given the value g of the w.r.v. η, we are led to consider
the following estimate of ξ:

(2.15) B̂ g
.
=

∑
k∈I

gk
λk

ψk.

Next, we can state the following proposition.

Proposition 2.3. If the following conditions are satisfied :

(a) limk→∞ ν2k/σ
2
k = +∞ (which implies the set I to be finite for any

fixed positive value of ε),
(b) the operator Rξξ is of trace class,

then the following limit holds true:

lim
ε→0

δ2(ε, B̂) = lim
ε→0

E

{∥∥∥ξ − B̂η
∥∥∥2} = 0,
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where

E

{∥∥∥ξ − B̂η
∥∥∥2} = Tr

(
Rξξ −RξξA

∗B̂∗ − B̂ARξξ + B̂RηηB̂
∗
)
.

Proof. The proof follows with minor modifications the proof of
Theorem 3.5 in [16]. �

We are now in the position of inspecting a connection between the
probabilistic approximation (2.15) and the variational deterministic ap-
proximation presented in Section 1. We have seen that the variational
approximation f(x) given in (1.10) (which is the most frequently used)
converges in the sense of the L2-norm to the unknown function f and is
obtained by truncating the expansion (1.5) at the largest integer k such
that λk > (ε/E)ck, where c

2
k are the eigenvalues of the penalty operator

C∗C, which encodes some a priori knowledge of the solution f . The
sequence of the ck’s is also assumed to be such that limk→∞ c2k = +∞.
For simplicity, but without loss of generality, let us put E = 1 so that
the inequality above reads simply λk > εck.

Now, let us return to the probabilistic approximation (2.15) and
assume, as in Proposition 2.3, that Rξξ is an operator of trace class:
TrRξξ =

∑∞
k=1 σ

2
k 6 E < ∞. Then limk→∞ σ2

k = 0. Further, let us

suppose that R−1
ζζ is bounded. The set I is thus made up as follows:

I = {k : λk > ε |νk/σk|}. Now, for the sake of simplicity, assume that
the sequences {c2k}∞k=1 and {(νk/σk)2}∞k=1 are monotone increasing se-
quences. Therefore, the inequality which fixes the truncation index κ(ε)
in the variational approximation (i.e., λk > εck) is strictly analogous
to that which fixes the set I (i.e., λk > ε|νk/σk|). The role played in
the variational case by the numbers c2k (i.e., the eigenvalues of the con-
straint operator) is played in the probabilistic case by the inverse of the
k-component of the signal-to-noise ratio (νk/σk)

2 (cf., equation (2.6)
in which the operator RζζR

−1
ξξ acts as the penalty operator C∗C in-

deed). Note that, in order to be regularizing sequences, both {c2k}∞k=1

and {(νk/σk)2}∞k=1 are indeed required to be diverging (compactness

condition for C−1 and RξξR
−1
ζζ ) for k going to infinity (see assumption

(a) of Proposition 2.3).

It is, however, worth emphasizing the different rationale of the two
approaches. In the (deterministic) variational paradigm the penalty
operator C∗C encodes some a priori knowledge of the solution, which is
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added to the initial problem. Conversely, in the probabilistic approach
the operator RζζR

−1
ξξ describes information which is actually contained

in the observed data set and that one could act to extract by means of
a suitable statistical analysis of data.

The variational approximation f(x) is built by summing up the
contributions of all the components gk from k = 1 up to k = κ(ε),
disregarding whether some gk actually carry effective information on
the solution f or, rather, are overwhelmed by the noise. Instead, the

approximation B̂g in (2.15) features frequency selectivity, which we will
aim to realize through statistical tools in Section 4. This characteristic
of the probabilistic regularization avoids the drawback represented by
the frequent over-smoothing of Tikhonov reconstructions using L2-
penalty terms (in this connection, see also [58, subsections 1.5 and 4.2]
for a related discussion about regularization under sparsity constraint
in the Banach space setting).

Remark 2.4. The Bayesian paradigm often is the natural framework
whenever information on the statistical structure of unknown solution
and noise is available (see [36] for an introduction to Bayesian inversion
theory). The Bayesian approach has been adopted in [24] for linear
ill-posed inverse problems and then developed in [47]. Examples
of Bayesian formulation of nonlinear inverse problems are given in
[44, 45, 61]. The analysis of inverse problems with non-Gaussian
noise is less frequent in the literature. An excellent example of the
Bayesian approach to an inverse problem with Poisson distribution of
observations and non-Gaussian prior is given in [11].

Recently, the focus is particularly on evaluating convergence rates
under various conditions and assumptions [32, 53]. In [39], contrac-
tion rates are obtained for mildly ill-posed problems in the case of
Gaussian white noise when the operator A and the prior covariance op-
erator are simultaneously diagonalizable. These results have then been
generalized in [1] for non-white noise and operators not simultaneously
diagonalizable. Convergence rates are given in the case of severely ill-
posed problems in [2, 40] again in the simultaneously diagonalizable
setting for the operators A and Rξξ. Proposition 2.3 above guarantees

that the approximation B̂g (given in (2.15)) is a probabilistic regu-
larized solution to Problem 2.1 but does not provide any convergence
rate of approximation (for this matter we refer the interested reader to
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the above papers). However, our goal is different, being rather to re-
veal here the close connection between (deterministic) variational and
Bayesian approach to ill-posed inverse problems (in this regard, see also
[2]), and in the next Section 3 the connection with the approach based
on topological information theory.

3. Topological information theory.

3.1. General theory. Standard information theory is formulated in
the framework and uses language and tools of the probability theory,
but the concept of information can be thought of as more basic and
independent of probability [41]. For this purpose, Kolmogorov and
his school introduced and developed an alternative approach to the
quantitative definition of information. This theory is closely connected
with concepts and language of communication theory, and the infor-
mation flow is related to the concept of direct and backward channels
of communication. Then, the main purpose of this theory is to give an
estimate of the maximum number of messages which can be conveyed
back from the data set to recover the unknown solution. Accordingly,
solving the first kind Fredholm integral equation can be viewed as a
backward channel communication problem.

Let us come back to the standard theory of regularization, and, in
particular, to the a priori bound ∥Cf∥Z 6 E (see (1.7)), where we take
C = I (the identity on Z) as the constraint operator, Z = L2(a, b) as
the constraint space and E = 1. We are thus led to consider the closed
unit ball in the solution space (note that X ≡ Z ≡ L2(a, b)), i.e., the
set {f ∈ X : ∥f∥X 6 1}. The (compact) operator A maps the closed
unit ball in L2(a, b) (which, in view of the reflexivity of the Hilbert
spaces, is therefore weakly compact) onto a compact ellipsoid E in the
range of A, whose semi-axes are the positive eigenvalues λk of A. Let
us note that E ⊂ Y = L2(a, b), which is the data space. Further, we
assume that g = g + n belongs to the range of A (g ∈ R(A)). Now,
even if two data functions g1 and g2 belong to R(A) and their distance
in Y is small, nevertheless the distance between A−1g1 and A−1g2 can
be unlimitedly large.

We now recall some basic definitions from information theory [41]:
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(a) in the theory of information the unit of a collection of information
is the amount of information in one binary sign (that is designating
whether it is 0 or 1).

(b) The entropy of a collection of possible communications undergoing
transmission with a specified accuracy is defined as the number
of binary signs necessary to transmit an arbitrary one of the
communications with a given accuracy.

(c) The capacity of a transmitting apparatus is defined as the number
of binary signs that it can transmit reliably.

Coming back to the compact ellipsoid E , we recall some basic
definitions which give a numerical estimate of its massiveness [48]:

(a′) a family U1, . . . , Un of subsets of Y is an ε-covering of E if the
diameter of each Uk does not exceed 2ε and if these sets cover
E : i.e., E ⊂ ∪n

k=1Uk.
(b′) Points y1, . . . , ym of E are called ε-distinguishable if the distance

between each of them exceeds ε.

Since E is compact, for each ε > 0 there exists a finite ε-covering of E .
Hence, E can contain only finitely many ε-distinguishable points. For
a given ε > 0, the number of sets Uk in a covering family depends on
the family, but the minimal value of n, Nε(E)

.
= minn, is an invariant

(in the sense that it does not depend on the type of covering family)
of the set E , which depends on ε. Its logarithm, that is, the function
Hε(E)

.
= logNε(E) (in this section, log x will denote the logarithm of

x to the base 2) is the ε-entropy of the set E and gives the number of
distinct binary signals in E that can be reconstructed up to ε-accuracy.
Analogously, the number m in the definition (b′) depends on the choice
of the points, but its maximum Mε(E)

.
= max m is an invariant of the

set E which depends on ε. It represents the maximum number of ε-
distinguishable messages that can be used for recovering the unknown
solution. Its logarithm, that is, the function Cε(E)

.
= logMε(E) is the

ε-capacity of the set E and provides the number of binary signals that
can be actually transmitted for recovering the solution [48].

The starting point of our analysis are the following inequalities [17]:

(3.1) Hε(E) 6 Cε(E) 6 Hε/2(E).

Therefore, in order to obtain estimates of the ε-capacity Cε(E) one can
look for a lower bound for Hε(E) and an upper bound for Hε/2(E). We
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can state the following proposition.

Proposition 3.1. The following bounds hold true:

(3.2) Hε(E) >
kw(ε)∑
k=1

log
λk
ε
,

where kw(ε) is the largest integer k such that λk > ε;

(3.3) Hε/2(E) 6 kw

(
ε

4

)[
log

(
1

ε

)
+ log 6 +

1

2
log kw

(
ε

4

)]
,

where kw(ε/4) represents the number of terms in the sequence {λk}∞k=1

that are larger than or equal to ε/4.

Proof. In view of its relevance, we briefly sketch the derivation
of bound (3.2). For the details and the proof of bound (3.3) see
[18, 19, 26, 55].

The operator A maps the unit ball in L2(a, b) onto a compact
ellipsoid E whose semi-axes are the positive eigenvalues λk of the
operator A. Since we have to deal with an expansion in terms of the
eigenfunctions {ψk}∞k=1 of the operator A, we are led to consider the
intersection of the ellipsoid E with the finite k-dimensional subspace Yk
of Y , i.e., the ellipsoid Ek = E ∩ Yk. The semi-axes of Ek are the first

k eigenvalues λk of the operator A. The volume of Ek is just
∏k

n=1 λn
times the volume Ωk of the unit ball in Yk.

Now, we want to estimate how many balls of radius ε are necessary
for covering the ellipsoid Ek. Since the volume of such a ball is εkΩk,
then we are forced to stop the integer k at a value such that the semi-
axes of the ellipsoid Ek are not smaller than the radius ε of the ball.
In view of the fact that the values λk (which coincide with the semi-
axes of E) are a non-increasing sequence, we must then take a finite
subspace Yk, whose dimension equals the largest integer k (denoted by
kw) such that λk > ε. Now, since the volume of an ε-ball in Yk is given
by εkΩk, it follows that, in order to cover the ellipsoid E by ε-balls, we

need at least
∏kw(ε)

k=1 (λk/ε) such balls. In conclusion, it follows that an
estimate of the minimal number of sets in an ε-covering of E is given

by Nε(E) >
∏kw(ε)

k=1 (λk/ε) and, accordingly, bound (3.2) follows. �
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Notice that the definition of the upper summation limit kw(ε) given
here in Proposition 3.1 coincides with the one we have given in Section 2
with reference to the approximation fw(x) (see (1.11)), which was
proved to converge in the weak sense to the true solution.

Now, from inequalities (3.1), (3.2) and (3.3), one can derive lower
and upper bounds for Cε(E) which depend on the way the eigenvalues
λk decrease as k increases. In general (that is, even if we do not specify
how the eigenvalues λk decrease as k increases), we can still evaluate
the leading term of the upper bound of Cε(E), as ε tends to zero.
Indeed, the leading term, as ε → 0, of the right hand side of formula
(3.3) is given by kw(ε/4) log(1/ε), provided that [kw(ε/4)]

1/2 = o(1/ε)
as ε → 0. Strictly speaking, we cannot derive an upper bound for the
ε-capacity taking into account only the leading term of Hε/2(E). But,
for ε sufficiently small, we can neglect all the terms which increase more
slowly than the leading term and, accordingly, write:

(3.4) Cε(E) . kw

(
ε

4

)
log

(
1

ε

)
.

Next, in view of the leftmost inequality in (3.1) and of bound (3.2), we
have:

(3.5) Mε(E) = 2Cε(E) > 2[
∑kw(ε)

k=1 log λk/ε].

Let us note that the above estimate of the minimal ε-covering has been
obtained considering a set of closed balls of radius ε whose centers
are the images, under the operator A, of the functions f belonging
to the subset of the solution space satisfying the a priori bound (1.7)
(with C ≡ I and E = 1). In other words, inequality (3.5) gives us an
estimate of the maximum number of distinguishable messages which
can be extracted from the ellipsoid E and sent back to recover the
functions belonging to the subset of the solution space constrained
by the condition (1.7), where the operator C is the identity and the
constant E is equal to 1.

But, on the other hand, we are obliged to use the data g, which are
perturbed by the noise and do not necessarily belong to the ellipsoid
E even if they are supposed to belong to the range of operator A.
Accordingly, if we keep the whole data set g (without any suitable
truncation) we cannot pretend to reconstruct the functions belonging
to the subset of the solution space constrained by a priori bounds.
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Therefore, on the one hand, we are forced to extract the set of the
distinguishable messages from the data set {gk}∞k=1, but, on the other
hand, we know that in general there can be points that do not belong
to the ellipsoid E .

At this point it is worth recalling that the minimal covering Nε(E)
of a compact set E is an invariant of the set E that depends only upon
ε and not on the family of subsets used to cover E [48, pages 150, 151].
Now, as we said above, we have derived an estimate of the minimal
covering of the ellipsoid Ek by keeping the family generated by the
closed balls whose centers are the images of the elements f belonging
to the unit ball in L2(a, b) and ε is the bound, in the norm of L2,
according to condition (1.6).

Then, we keep a covering family given by the set of closed balls of
radius ε whose centers are an approximation of g such that the minimal
covering of the intersection of Yk with a set E∗ (for the moment not
specified) is given by the largest integer k such that λk > ε. This latter
inequality implies E∗ = E . Accordingly, we are led to an approximation,

denoted by gE , of the data given by the set {gk}
kw(ε)
k=1 , whose elements

gk satisfy the following equality:

(3.6) (gE , ψk) =

{
gk for 1 6 k 6 kw(ε),

0 for k > kw(ε),

where kw(ε) is the largest integer such that λk > ε. In view of
these considerations we can conclude that the maximum number of
distinguishable messages which can be sent back to reconstruct the
subset of the solution space constrained by formulae (1.6) and (1.7)

is at least given by 2
∑kw(ε)

k=1 log2(λk/ε) (i.e., Mε(E) > 2
∑kw(ε)

k=1 log2(λk/ε)),
which tends to +∞ as ε tends to zero. Accordingly, the truncated
approximation is given by

fE(x)
.
=

∞∑
k=1

(gE , ψk)ψk(x) =

kw(ε)∑
k=1

(gE , ψk)ψk(x),

which coincides with the deterministic approximation (1.11), the con-
stant E being taken equal to 1. Finally, the distinguishable messages
are the ones such that ∥g i

E − g j
E∥ > ε, i ̸= j, where gE satisfies equality

(3.6) and belongs to the ellipsoid E .
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Hille and Tamarkin [31] have systematically explored the relation-
ship between the regularity properties of the kernel of the Fredholm first
kind integral equations and the asymptotic behavior of the eigenvalues.
They found that, as the regularity of the kernel increases, passing from
the class C0 to C∞ and then to the class of the analytic functions,
the eigenvalues decrease more and more rapidly as k → +∞. We can
thus say that the relationship (3.4) gives a rough estimate of the maxi-
mum number of ε-distinguishable messages which can be conveyed back
from the data for recovering the solution. Recalling the results of Hille
and Tamarkin, we can say that, in general, the maximum number of
messages decreases as the smoothness of the kernel increases. Let us,
however, remark that this criterion must be taken with caution in view
of the fact that the results of Hille and Tamarkin refer only to the
asymptotic behavior of the eigenvalues.

3.2. A remarkable example. As an illustrative example, consider
the inverse optical imaging problem. Following the simplest scheme for
the formulation of this problem, we consider a one-dimensional object
illuminated by coherent light, and we denote by f(x) the complex
amplitude distribution (for a more detailed specification of the model
see [65]).

The Fourier transform of f(x) is given by:

(3.7) F (ω) =
1√
2π

∫ +∞

−∞
f(x) e−iωx dx, f ∈ L2(−∞,+∞),

but the pupil-stop blocks all the contributions with |ω| larger than a
positive constant Ω. As a consequence, from the image, we will not
recover exactly f(x) but its band-limited version

(3.8) g(y) =
1√
2π

∫ Ω

−Ω

F (ω) eiωy dω.

Plugging the expression (3.7) of F (ω) into (3.8) and assuming that
the complex amplitude distribution of the object vanishes outside the
interval −X0/2 6 x 6 X0/2, we have:

g(y) =
1

2π

∫ Ω

−Ω

dω eiωy

∫ X0/2

−X0/2

f(x) e−iωx dx(3.9)
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=

∫ X0/2

−X0/2

sinΩ(y − x)

π(y − x)
f(x) dx, −X0

2
6 y 6 X0

2
.

The image function g(y) is an entire band-limited function, and the
Sampling theorem guarantees that it can be reconstructed when its
values are known at a set of sampling points chosen in arithmetic
progression with difference π/Ω. In particular, the image g(y) can
be reconstructed in the interval (−X0/2, X0/2) from the knowledge of
the function on a set of S points, where S

.
= X0/(π/Ω) = ΩX0/π is

the Shannon number of the image [65].

Equation (3.9) can be rewritten in operator form as

(Af)(y) =

∫ X0/2

−X0/2

sinΩ(x− y)

π(x− y)
f(x) dx = g(y), −X0

2
6 y 6 X0

2
.

Then, the problem of object restoration is equivalent to solving the
Fredholm integral equation of the first kind Af = g, where A is a self-
adjoint, non-negative and compact operator; g represents the noiseless
data and f is the unknown object distribution. As usual, one has to
take into account the perturbation of the noise and, assuming again an
additive model of noise, one is finally led to the standard form (1.4) of
the equation, i.e., Af +n = g+n = g. The operator A acts as follows:
A : X → Y , where X and Y are the solution and the data space,
respectively. We take, for simplicity, X = Y = L2(−X0/2, X0/2).
Furthermore, the unique solution of the equation Af = 0 is f = 0, and
then the integral operator A admits a complete set of eigenfunctions
{ψk}∞k=1 corresponding to a countable infinite set of real positive
eigenvalues λ1 > λ2 > · · · > 0, which satisfy the limit: limk→∞ λk = 0.
The properties of this integral operator have been already studied by
several authors (see, e.g., [25, 43, 59]).

Now, suppose that S = ΩX0/π is sufficiently large. Then the
eigenvalues λk manifest the following remarkable behavior: they form
a decreasing sequence with a step-like behavior, that is, they are
approximately equal to 1 for k < ⌊S⌋ + 1 (the symbol ⌊x⌋ standing
for the integral part of x), whereas, successively, for k > ⌊S⌋+ 1, they
fall off to zero exponentially (see [18, Figure 2]).

Next, we keep all the assumptions made in subsection 3.1 and, in
particular, we assume the a priori bound ∥f∥X 6 E = 1. Then, we



54 ENRICO DE MICHELI AND GIOVANNI ALBERTO VIANO

have:

(3.10)

kw(ε)∑
k=1

log
λk
ε

=

⌊S⌋∑
k=1

log
λk
ε

+

kw(ε)∑
k=⌊S⌋+1

log
λk
ε
.

Since, for k 6 ⌊S⌋, we have λk ≃ 1, the contribution of the first sum on
the right hand side of (3.10) is approximately S log 1/ε. For k > ⌊S⌋+1,
we have λk ≃ ε, so that the second sum on the right hand side of (3.10)
is nearly null. Then, from inequality (3.2) of Proposition 3.1, we obtain
the following lower bound for the ε-entropy:

(3.11) Hε(E) ∼ S log
1

ε
.

We can thus conclude that the maximum number of ε-distinguishable
messages which can be conveyed back from the image to recover the
object should be at least (see the first inequality in formula (3.1)):

Mε(E) & 2S log(1/ε) −−−→
ε→0

∞.

Let us now assume that k > ⌊S⌋ + 1; then, we can make use of the
formula which gives the asymptotic behavior of the eigenvalues λk for
k → +∞: λk = O{(1/k) exp[−2k ln(2k/(eΩX0))]} [8, 43]. Then, we
can evaluate kw(ε/4). A good estimate of this latter quantity gives:
kw(ε/4) ∼ [eπS + log 1/ε]/2. We can thus obtain from the right hand
side of formula (3.3):

Hε/2(E) ∼
ε→0

1

2

[
eπ S + log

(
1

ε

)]
log

(
1

ε

)
,

which, along with (3.11), yields through (3.4):

S log

(
1

ε

)
< Cε(E) <

eπ

2
S log

(
1

ε

)
+

1

2
log2

(
1

ε

)
.

We then have estimates of the upper and lower limits for the number
of messages conveyed back from the image to reconstruct the object,
and, accordingly, we can write in the limit of low noise:

2S log(1/ε) .Mε(E) . 2(1/2) log
2(1/ε), (as ε→ 0).

We thus obtain a quantitative answer to the classical problem of the
resolving power in optics, which traces back to Lord Rayleigh [56].
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3.3. Comparison between topological and probabilistic infor-
mation theory. In connection with the example illustrated above we
can compare topological and probabilistic information theory. Let us
start with formula (2.11), which we have seen in Section 2 yields, in
the case of high signal-to-noise ratio, the largest amount of informa-
tion provided by the random variable ηk about each variable ξk′ for all
k′ = 1, 2, . . . . We can then evaluate approximately the total amount of
information on the w.r.v. ξ which can be extracted from the w.r.v. η
by summing the contributions brought by only the components with
high signal-to-noise-ratio:

(3.12) J(ξ, η) ≃
∑
k∈I

J(ξk, ηk) =
1

2

∑
k∈I

ln

(
1+

λ2kσ
2
k

ε2ν2k

)
≃

∑
k∈I

ln

∣∣∣∣λkσkενk

∣∣∣∣,
the rightmost approximation made in view of the fact that, for k ∈ I,
we have |λkσk| > ε|νk| (see (2.12a)). It is appropriate to stress that
the expression on the right hand side of (3.12) is only an approximate
estimate of the total amount of information J(ξ, η) since we have
considered here the ordinary Gaussian random variables ξk′ and ηk
(k ̸= k′) as mutually independent, while they actually are not (see
formulae (2.8) and (2.10) in Section 2). Now, we (obviously) assume a
finite energy input signal:

TrRξξ =
∞∑
k=1

σ2
k 6 E.

For simplicity and, without loss of generality, we set E = 1. We have:
σ2
k 6 1 and, hence, for k ∈ I,

λk > ε|νk|/σk > ε|νk| & ε,

follows, where we have put |νk| ≃ 1 (νk = 1 in the case of white
noise). We have, therefore, obtained the inequality λk & ε, which
is indeed the inequality that determines the approximation fw (see
formula (1.11) in the introduction) in the specific case E = 1 (i.e.,

fw =
∑kw(ε)

k=1 (1/λk)gkψk, where kw(ε) is the largest integer k such that
λk > ε). Therefore, we write:

J(ξ, η) ≃
∑
k∈I

J(ξk, ηk) ∼
∑
k∈I

ln
λk
ε
,
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whose structure is actually very similar to the lower bound (3.2) for the
ε-entropyHε(E) we have given in Proposition 3.1. In the inverse optical
imaging problem illustrated above, the eigenvalues λk are nearly equal
to 1 for k < ⌊S⌋+ 1, and, successively, for k ≥ ⌊S⌋+ 1, fall off to zero
exponentially. Hence, it follows that:

J(ξ, η) ≃
⌊S⌋∑
k=1

ln
λk
ε

+

kw(ε)∑
k=⌊S⌋+1

ln
λk
ε

≃ S ln
1

ε
.

Therefore, we can establish a connection between topological and
probabilistic information theory, relating the maximum number Mε(E)
of messages conveyed back from the image to reconstruct the object
with the total information on ξ which can be extracted from η (and
disregarding the difference between logarithms with different bases,
which is immaterial in this context):

Mε(E) ∼ 2S log(1/ε) ≃ 2S ln(1/ε ≃ 2{
∑

k∈I J(ξk,ηk)} ≃ 2J(ξ,η).

4. An algorithm based on statistical methods. It is well known
that a priori bounds of the form (1.6) and (1.7) (occurring in the
deterministic variational methods) are often complicated to have. In
this connection, there exists a huge literature (see, for instance, [7, 23,
66] and the references quoted therein) where it is shown how to obtain
approximate solutions with these methods even in the unfavorable cases
where only one of these bounds, e.g., bound (1.6) (which seems to be
in practice more accessible), is known. But, what undoubtedly results
is that, in the practical cases, the necessity of some prior knowledge on
the solution remains.

Within the probabilistic scheme, however, the a priori knowledge of
the covariance operators Rξξ and Rζζ is completely unrealistic, except
for some reasonable and rather general features such as, e.g., supposing
the covariance operator Rξξ of the unknown solution to be an operator
of trace class. Then it often turns up that the sole possibility we have
to obtain information on the unknown solution is analyzing suitably
the noisy data {gk}∞k=1, so as to be able, in principle, to pick up those
data from which reliable information can be extracted, and discard
those where the noise prevails. That this could be a profitable strategy
is supported by the analysis of Section 2 where the noise-to-signal
spectral density ratio was shown to act as the penalty operator does
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in the deterministic variational scheme (see (2.6) and the discussion
right after).

The same indication is given also by formulae (2.10) and (2.11),
which suggest recognizing those data components ηk with large value
of s2k. The model elaborated in Section 2, which is based on the
probabilistic information theory, aims precisely at splitting the data
set into two disjoint subsets I and N : one composed of those data
from which information can be extracted (see (2.12a)), the other one
composed of those data in which the information is submerged by the
noise (see (2.12b)).

Since, in practice, only the noisy data set {ηk} is available, a possible
route for selecting those components from which effective information
on ξk can be reliably extracted is to evaluate the amount of information
about the random variable ηk′ provided by the random variable ηk, that
is,

J(ηk′ , ηk) = −1

2
ln(1− r2ηη(k

′, k)),

where

(4.1) r2ηη(k
′, k) =

|E{ηk′ , η∗k}|2

E{|ηk′ |2}E{|ηk|2}
.

Since Rηη = ARξξA
∗+Rζζ (see (2.2)) and recalling that the orthonor-

mal basis {ψk}∞k=1 diagonalizes the operator A, we have (see also (2.9)):

E{ηk′ , η∗k} = (Rηηψk′ , ψk) = (ARξξA
∗ψk′ , ψk) + (Rζζψk′ , ψk)

= λk′λk ρk′,k + ε2νk′,k,

where ρk′,k = (Rξξψk′ , ψk) and νk′,k = (Rζζψk′ , ψk). Similarly, we have:
E{|ηk|2} = λ2kσ

2
k + ε2ν2k . Therefore, formula (4.1) yields for k ̸= k′:

r2ηη(k
′, k) =

∣∣λk′λk ρk′,k + ε2νk′,k

∣∣2
(λ2k′σ2

k′ + ε2ν2k′)(λ2kσ
2
k + ε2ν2k)

(4.2)

≃ s2k′

1 + s2k′

s2k
1 + s2k

ρ2k′,k

σ2
k′σ2

k

+ 2
1

sk′ + s−1
k′

1

sk + s−1
k

ρk′,k

σk′σk

νk′,k

νk′νk
, k′ ̸= k,
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where the O(ε4) term has been neglected. Now, the second term on
the right hand side of equation (4.2) is negligible both in the cases of
high and low signal-to-noise ratio sk (or sk′), and is null when the
Fourier components of the noise ζ are mutually uncorrelated (e.g., in
the case of white noise). Hence, large values of r2ηη(k

′, k) occur when the
corresponding Fourier components ξk′ and ξk of the unknown solution
are significantly correlated and, moreover, both feature a high signal-to-
noise ratio. Therefore, evaluating r2ηη(k

′, k) from the noisy data might
be a useful practical tool for actually constructing the sets I and N
(see (2.12)).

A difficulty that is frequently encountered in practice is that, for each
k, only a small number of realizations gk of the random variable ηk is
usually available. If, for each k, multiple independent realizations gk
of the random variable ηk would be available, then one could estimate
the ensemble averages required by formula (4.1). But this is usually
impossible from a practical point of view. In this case, we can introduce
the working assumption that the process {ηk} be stationary in the wide
sense [22], which amounts to assuming that r2ηη(k

′, k) = r2ηη(|k′ − k|),
and then compute estimates of the autocorrelation function by means
of the ergodic hypothesis connecting ensemble and time (i.e., the index
k in our case) averages. Evidently, this assumption introduces in
the process {ηk} an invariance for k-translation that will have to be
removed in the actual realization of the algorithm.

For the practical numerical implementation of the algorithm we use
the following estimator of the sample autocorrelation function, which
is largely adopted by statisticians [35]:
(4.3)

δḡ(n) =

N−n∑
k=1

(gk − ⟨gk⟩) (gk+n − ⟨gk+n⟩)[
N−n∑
k=1

(gk − ⟨gk⟩)2 ·
N−n∑
k=1

(gk+n − ⟨gk+n⟩)2
]1/2

, n ∈ [0, N−1],

where:

⟨gk⟩ =
1

N − n

N−n∑
k=1

gk, ⟨gk+n⟩ =
1

N − n

N−n∑
k=1

gk+n.

Obviously, the correlogram (4.3) does not directly yield the Fourier
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coefficients gk that contribute to the approximate regularized solution
given by formula (2.15), but provides us with estimates of the corre-
lation coefficients between Fourier components separated n frequencies
apart (n = 0, 1, . . . , N − 1). Since our goal is to identify and then re-
ject purely random Fourier components, the matter is to implement a
test of randomness for the sequence {gk}Nk=1, which allows us to decide
when the autocorrelation δḡ at a certain lag n is (statistically) null.
It can be shown that, for a set of N independent and identically dis-
tributed random variables, the variance of δḡ(n) is var (δḡ(n)) = 1/N ,
and δḡ(n) is asymptotically normally distributed under the assumption
of weak stationarity [3]. Therefore, as a first approximation, the 95
percent limit for the one-sided randomness test (notice that we test the

modulus of δḡ(n)) can be placed at approximately 1.65/
√
N . However,

it can be shown [3, 6] that estimates of successive values of δḡ(n) can
be highly correlated, so that a certain value of δḡ(n) might be large
simply because the previous ones, at lower lags, are large. Obviously,
this phenomenon makes it even more difficult to state at which lags
the autocorrelation is significantly different from zero. To account for
this interdependence of the autocorrelations at different lags, use can
be made of the following Bartlett’s adjusted variance of the estimates
of the autocorrelation function [6]:

(4.4) var (δḡ(n)) ≃
1

N − n

[
1 + 2

n0∑
j=1

δ2ḡ(j)

]
, with n0 < n,

whose square root εδ(n) is called the large-lag standard error of δḡ(n).
From (4.4), we see that the error of the autocorrelation coefficient at
any given lag depends on the sample size N and on the estimated
autocorrelation coefficients at shorter lags so that the confidence band
for testing the null hypothesis appears narrower at smaller lags and
gets wider at higher lags (see, for instance, Figures 1 (b) and 2 (b)).
Now, the set L of the lags at which the autocorrelation function is
significantly non-null can be defined as [3]:

(4.5) L = {n : |δḡ(n)| > 1.65 εδ(n)},

and its cardinality will be denoted NL. Any integer ni ∈ L (i =
1, . . . , NL) just indicates a significant correlation between at least two
Fourier coefficients located ni frequencies apart. This means that, in
principle, any couple (gki

, gki+ni
) with 1 6 ki 6 N − ni could have
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generated such a strong correlation at the lag ni. Thus, from the set
L, we can construct NL families Fi, defined as:

(4.6) Fi =
{
(gki

, gki+ni
)
}N−ni

ki=1
, ni ∈ L, i = 1, 2, . . . , NL,

from which, for every i = 1, . . . , NL, the couples of Fourier coefficients
(gk, gk+ni

) which are likely to be correlated may be selected. However,
we remain with the problem of choosing among the couples the single
Fourier coefficients that are likely to be correlated belonging to the sets
Fi. In other words, we now have to break the k-translation invariance,
which was introduced initially with the assumption of wide stationarity
for the process {ηk}. Evidently, the only satisfactory way for solving
this problem would require the computation of the correlation function
through ensemble averages of multiple realizations of {ηk}. Since, in
practice, this is usually not possible, we limit ourselves to adopt a
heuristic criterion suggested by the definition itself of autocorrelation:
for any ni ∈ L, (i = 1, 2, . . . , NL), we select the pair (gk∗

i
, gk∗

i +ni
)

which mostly contributes to the autocorrelation estimate δḡ(ni), i.e.,
we define k∗i as:

k∗i
.
= arg max

k∈[1,N−ni]

{∣∣(gk − ⟨gk⟩) (gk+ni
− ⟨gk+ni

⟩)
∣∣}(4.7)

ni ∈ L, i = 1, 2, . . . , NL.

In this way, for each family Fi we pick up only two components, the
ones at the frequencies k∗i and k∗i + ni.

However, it could happen that more than one pair of components
contributes significantly to the autocorrelation at a certain lag ni. By
using the criterion given above we lose these additional pairs and,
apparently, we would be unable to recover important components gk.
This is only partially true, because the components which could get lost
at a certain lag are likely to be selected at another lag. To illustrate
this with an example, suppose that, at the lag, say n = 2, two couples
(g1, g3) and (g3, g5) concur substantially to the non-null value of |δg(2)|
with, for instance, the first couple being dominant. Therefore, the set
I would be expected to contain all three values k = 1, 3, 5. Instead,
according to the previous criterion of selection, the coefficient g5 would
be rejected. However, if the component g5 does actually emerges from
the noise, then it is likely that even the couple (g1, g5) will be selected
from the analysis at the lag n = 4, leading to correctly recover the
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three components g1, g3, g5.

We can thus construct the set I as (see (2.12a))

(4.8) I = {k∗i }
NL
i=1 ∪ {k∗i + ni}NL

i=1, ni ∈ L,

each element of I being counted only once. The Fourier coefficients
{gi}i∈I selected by this procedure are expected to have a high signal-
to-noise ratio and thus are likely to give a significant contribution to the
regularized solution (2.15) since they emerge neatly from the random
noise.

Conversely, it can happen that some coefficients, which had to
be taken into account in order to have a good reconstruction of the
solution, can get lost. The reasons for that are mainly twofold.
First, referring to equation (4.2), the Fourier components ξk with high
signal-to-noise ratio s2k but “scarcely” correlated with other Fourier
components of ξ can contribute little to the corresponding r2ηη(k

′, k)
for all k′ ̸= k, and therefore cannot be detected. The second reason for
failure is due to the (ever-present) sample errors arising in the statistical
analysis of the finite number of true noisy data.

Finally, once the set I has been constructed, the regularized solution
can be computed by means of (2.15). In conclusion, the main steps of
the algorithm can be summarized as follows:

1. From the set {gk}Nk=1 of Fourier coefficients of the noisy data
estimate the autocorrelations δḡ(n) by formula (4.3);

2. From {δḡ(n)}N−1
n=1 construct the set L by selecting the lags n

which correspond to large autocorrelations |δḡ(n)| according to
the criterion given in (4.5);

3. Build the NL families Fi defined in (4.6), and, for each Fi, pick
up the pair of Fourier coefficients (gk∗

i
, gk∗

i +ni
) which mostly

contributes to |δḡ(ni)|, k∗i defined as in (4.7);
4. Construct the set I in (4.8) with the NL pairs (gk∗

i
, gk∗

i +ni
),

i = 1, . . . , NL;

5. Compute the regularized solution (B̂ g)(x) by formula (2.15).

4.1. Numerical examples. In this section, we illustrate the algo-
rithm described above by considering two examples of the integral
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equation (1.1) with kernel

(4.9) K(x, y) =

{
(1− x) y if 0 6 y 6 x 6 1,

x (1− y) if 0 6 x 6 y 6 1.

Eigenfunctions and eigenvalues of the operator A with kernel (4.9) are,
respectively:

ψk(x) =
√
2 sin(kπx), λk =

1

π2 k2
, k = 1, 2, . . . .

In Figure 1, the main steps of the reconstructing procedure are given
for the test function f1(x) = exp(−3x) sin(3πx). The noise bound is
ε = 10−5, and the “total” (that is, associated with the whole signal,
not with a single Fourier component) signal-to-noise ratio SNR, defined
as the ratio of the mean power of the noiseless data to the noise
variance, is SNR ≃ 66.5 dB. Panel (a) of Figure 1 displays the noisy
Fourier coefficients gk. It is evident that they are significantly different
from zero only for the first few values of k so that we expect that
both the variational solution and the statistical solution would yield a
satisfactory reconstruction of the function f1(x).

In regards to the variational solutions being computed in this section,
we have escaped the ever-present problem of choosing the regularization
parameter α (see, e.g., (1.9)) [7, 12, 15, 42, 60, 66] by setting it
by hand at the value such that the truncation index κ(ε) (see (1.10))
coincides with the maximum value of k which is present in the set I
(see (2.12a)). Figure 1 (c) illustrates the excellent agreement between
the true function f1(x) (solid line) and the two regularized solutions
(dashed line). Notice that, in this example, the variational solution
(1.10) and the statistical solution (2.15) coincide since both select all
first seven Fourier components gk, k = 1, . . . , 7, for the reconstruction

of f1. The statistical solution B̂ g is built on the analysis of the
autocorrelation function shown in Figure 1 (b) from which the lags
at which the autocorrelation function is non-null are selected (see
definition (4.5) of the set L, and the figure legend for the numerical
details).

It is worth comparing the confidence band associated with the
large-lag variance (4.4) (solid line) which allows us to reject many
autocorrelation values abnormally inflated by sample errors, with the
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ḡ
(n
)|

n

εδ(n)

εδ(0)

f 1
(x
)

x

M
(m

)

m

‖f1‖
2

(a) (b)

(c) (d)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 1  3  5  7  9  11  13
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1
 0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 0  5  10  15  20  25  30  35  40

Figure 1. f1(x) = exp(−3x) sin(3πx), ε = 10−5, SNR ≃ 66.5 dB, N =
512. (a) Noisy Fourier coefficients gk (×103). (b) Modulus of the sample
autocorrelation function vs. the lag n (the unit value of autocorrelation at
n = 0 is not shown). The dashed horizontal line gives the 95% confidence
limit for a 512-long purely random sequence. The solid curved line indicates
the large-lag standard error εδ(n) of |δḡ(n)|. L = {1, 2, 3, 4, 5, 6}, I =

{1, 2, 3, 4, 5, 6, 7}. (c) Regularized solutions B̂g and f, which in this example
coincide (dotted line). ck = πk, α = 9.0 × 10−5, κ(ε) = 7. The solid line
indicates the true solution f1(x). (d) M(m)

.
=

∑m
k=1(gk/λk)

2 (×10) versus
m. The value of M(m) corresponding to the exhibited plateau, ranging
approximately from m = 7 through m = 20, is nearly the squared norm of
the true solution ∥f1(x)∥2.

constant band at 1.65/
√
N (dashed line). The plot of the function

M(m) =
∑m

k=1(gk/λk)
2 against m, given in Figure 1 (d), supports the

correctness of the reconstructions. It exhibits a plateau at the value
M(m) ≃ ∥f1∥2, ranging from about m = 7 through m = 20, which
indicates that the bulk of the function f1 may have been actually
recovered. Moreover, carefully inspecting Figures 1 (a) and 1 (d),
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Figure 2. f2(x) = exp[−(x−x0)
2/(2σ2)](sin 2πx+100 sin 30πx), x0 = 0.5,

σ = 0.2, ε = 3×10−4, SNR ≃ 80.9 dB, N = 512. (a) Noisy Fourier coefficients
gk (×103). (b) Modulus of the sample autocorrelation function versus the lag
n (the unit value of autocorrelation at n = 0 is not shown). The horizontal
dashed line gives the 95% confidence limit for a 512-long purely random
sequence. The solid curved line indicates the 95% confidence limit for a
one-sided sequence, computed by using the large-lag standard error εδ(n) of
|δḡ(n)|. From the analysis of |δḡ(n)|, we have: L = {2, 4, 24, 26, 28, 30} and
I = {2, 4, 28, 30, 32}.

one can observe (from Figure 1 (a)) that the Fourier coefficients gk
are relevant up to k = 7 (the coefficients gk with k = 8, 9, 10 can be
neglected); on the other hand, from Figure 1 (d) it can be noted the
sum M(m) reaches at m = 7 the value ∥f1∥2 and then remains nearly
constant up to m ≃ 20. This plateau shows precisely the transition
point from the set I (from which information can be extracted) to the
set N (where the noise is dominant).

In the second example, shown in Figures 2 and 3, the input test
function f2(x) = exp[−(x−x0)2/(2s2)](sin(2πx)+100 sin(30πx) repre-
sents a Gaussian burst signal with two main spectral bulks, centered at
k = 2 and k = 30, respectively. Figure 2 (a) shows indeed that the coef-
ficients gk are grouped around k = 2 and k = 30, so that the variational
method is expected to fail for its lack of frequency selectivity, which
would be necessary for handling correctly this example. This is what
actually happens as the variational reconstruction f(x) (see the dashed



REGULARIZATION OF FREDHOLM INTEGRAL EQUATIONS 65

❢✷✭①✮

�✭①✮

✁

✂
✄
☎✆
✝

❢✷✭①✮

❜❇✖❣✭①✮

✁

✂
✄
☎✆
✝

✲✞✟✟

✲✠✟

✟

✠✟

✞✟✟

✟ ✟✥✡ ✟✥☛ ✟✥☞ ✟✥✌ ✞

✍✎✏ ✍✑✏

✲✞✟✟

✲✠✟

✟

✠✟

✞✟✟

✟ ✟✥✡ ✟✥☛ ✟✥☞ ✟✥✌ ✞

Figure 3. Regularized solutions. The input test function (solid line) is:
f2(x) = exp[−(x − x0)

2/(2σ2)](sin 2πx + 100 sin 30πx), x0 = 0.5, σ = 0.2,
ε = 3 × 10−4, SNR ≃ 80.9 dB, N = 512. (a) The dashed line represents
the variational solution f(x) (see (1.10)). The approximation f(x) has been
obtained by using ck = πk and α = 9.5×10−7 (see (1.8)); κ(ε) = 32. (b) The

dashed line represents the probabilistically regularized solution B̂g(x) (see
(2.15)), with the set I obtained from the analysis of the autocorrelation
function shown in Figure 2 (b).

line in Figure 3 (a)) differs evidently from the true function f2(x). The
amplitude of the wavy signal is reconstructed quite correctly but it is
manifestly phase-shifted as a consequence of the contribution of many
(though small) undue components with 6 . k . 22, which are added

to the final solution. Conversely, the statistical reconstruction (B̂g)(x)
(see (2.15)) is almost indistinguishable from the true function (see the
dashed line in Figure 3 (b)). The autocorrelation function shown in
Figure 2 (b), from which the statistical solution is constructed, clearly
exhibits two main groups of lags, whose correct identification leads to a
set L which yields the most (and only) significant Fourier components
of the input signal.

5. Concluding remarks. We can now draw the following conclu-
sions.

(1) Deterministic variational methods in the Hilbert space setting
could fail in those cases where the Fourier coefficients are sparse or
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whenever the significant contribution of the signals are brought by
those components which are smoothed by the action of the filter.
Probabilistic methods are in general more flexible than the variational
ones, and can be used more conveniently in those cases where the
Fourier coefficients gk which are relevant for recovering the solution
are actually sparse. Sparsity constraints can effectively be incorporated
even into regularization procedures developed in Banach spaces (see,
e.g., [15, 58]).

(2) When one adopts the truncated solutions derived by the methods
of variational regularization (like (1.10) and (1.11)), the point where
to stop the eigenfunction expansion is obtained by comparing the
eigenvalues λk with the ratio (εck)/E (or, simply, (ε/E)). In both
cases, this approach appears quite unnatural from the viewpoint of
the experimental or physical science, whose methodology would rather
suggest smoothing out those Fourier coefficients of the noiseless data
which are smaller or of the same order of magnitude of the noise. These
remarks lead us to implement probabilistic and statistical methods.

(3) In the probabilistic approach of Section 2, the evaluation at each
value of k of the amount of information on ξk contained in ηk suggests
to split the data set into two subsets: the set I associated with the
Fourier components ηk which contain information on ξk, and the set N
associated with the components ηk which are significantly corrupted by
the noise and from which no information can be reliably extracted. This
strategy aims at extracting the most information from data, keeping
at the minimum the use of a priori information on the solution (e.g.,
only for guiding the choice of functional spaces and norms). The

approximation B̂ g, which is indeed based on the set I, is then proved
to be a regularized solution to the Fredholm integral equation of the
first kind.

(4) The regularization of Fredholm integral equations of the first
kind can be approached by using a topological information theory,
regarding the inverse problem as a backward channel communication
problem. Then one can estimate the maximum number of messages
that can be conveyed back from the data for recovering the solution.
We find that, in general, this number decreases as the smoothness of the
kernel increases. A particularly relevant result obtained in this context
concerns the inverse imaging problem. In the standard formulation of
this inverse optical problem, we obtain an expression of the resolving
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power in terms of the maximum number of messages that can be
conveyed back for reconstructing the object. This estimate is given by:
Mε(E) ∼

ε→0
2S log(1/ε), where S is the Shannon number of the image.

(5) The results provided by topological information theory can be
related to those obtained by probabilistic information theory. Within
the (simplified) model of the inverse imaging problem of Section 3, we
find that the number of binary signals Cε(E) that can be transmitted
back from the image for recovering the object (i.e., the solution) is
(approximately) equal to the amount of information J(ξ, η) provided
by the w.r.v. η (representing the data) about the w.r.v. ξ (representing
the unknown solution).

APPENDIX

A. Weak random variables in Hilbert spaces. In this appen-
dix, we shall briefly recall the notions of random variable and weak
random variable in Hilbert spaces. For an extensive analysis of this
topic the reader is referred to the book by Balakrishnan [5].

Consider the triplet (Ω,B, P ), where Ω is an abstract point set (for
instance, the set of the outcomes ω of an experiment), B is a σ-algebra
of subsets of Ω and P is a countably additive probability measure on
B with P (Ω) = 1. This triplet is a probability space. Let H be a
separable Hilbert space. Then, a Hilbert-space random variable h is a
measurable (with respect to B) function of Ω on H, h : Ω → H, i.e.,
h(ω) is an element of H. Now, the critical point is that not all Hilbert-
space processes are Hilbert-space random variables, notably Gaussian
processes with covariances not of trace class (e.g., the white noise,
which is one of the more standard stochastic noise models considered
in statistics). Therefore, in order to describe these latter processes, we
have to consider a more general setting which embraces the notion of
weak random variable.

Let us introduce cylinder sets in Hilbert spaces and probability
measures thereon. Let Hm denote a finite-dimensional subspace of H.
By a cylinder set, we mean any set of the form B +H⊥

m, where B is a
Borel subset of Hm (the base of the cylinder) and H⊥

m is the orthogonal
complement of Hm. The class C of the cylinder sets in H forms a field
of sets, not a σ-algebra, since the countable unions of sets in C are not
necessarily in C. However, the crucial observation is that the class B
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of the Borel sets in H represents the smallest σ-algebra containing all
cylinder sets.

In order to have a probability space, we have to see how to induce
a probability measure on B starting from a measure on the field C of
cylinder sets. Let Z be a cylinder set with base in Hm. Then the
cylinder set measure µ (also called a weak distribution) is defined as

µ(Z)
.
= νm(B),

where νm is a countably additive probability measure on the σ-algebra
of Borel subsets of Hm. This basically means that a measure induced
on cylinder sets of H can be thought of as an ordinary probability
measure if one looks only at subspaces of Hm of finite dimension (i.e.,
Hm where the base B of the cylinder lives).

For our purposes (though primarily important in its own right) it
is sufficient to consider the cylinder measure µR induced by a self-
adjoint positive definite operator R : H → H. The cylinder measure
µR(Z) is defined as the Gaussian measure in Hm with covariance
matrix (Rψj , ψk), {ψk}mk=1 an orthonormal basis in Hm. The key fact
is that, in general, the R-induced cylinder measure µR(Z) cannot be
extended to be countably additive on the class of Borel sets B on H
(the dimension of H being not finite). Therefore, when dealing with
Gaussian distributions we have to deal, in general, with finitely additive
measures. Countably additivity of µR on B is guaranteed in only one
important case by the following theorem.

Theorem A.1 [5]. Let R be a nonnegative self-adjoint operator
mapping H into H. Then, in order that µR be countably additive, it is
necessary and sufficient that R be of trace class.

Therefore, in order to consider Gaussian processes not of trace class
such as, e.g., the white noise, we need to allow for finitely additive
measures µ on the field (not necessarily a σ-algebra) C of cylinder
subsets of Ω ≡ H and, correspondingly, introduce the notion of weak
random variable (w.r.v.). Then, given a cylinder-probability triple
(H, C, µ) on H, a function f(ω), mapping H into H, is a weak random
variable if, for any finite number m:

(i) the inverse image of any cylinder set of H with base in Hm is in C;
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(ii) the measure so induced on the Borel sets is countably additive for
each m.

Note that the inverse image of Borel sets of H, i.e., {ω : f(ω) ∈
Borel set in H}, need not be in C, and hence the probability of the
corresponding event is in general not defined. However, condition (ii)
informs us that if {ψk}∞k=1 is an orthonormal basis in H, then
(f(ω), ψk)Hm , k = 1, . . . ,m, defines, for each m, an ordinary random
variable.

The concept of w.r.v. is, however, similar to that of an ordinary
random variable. The main difference is that an ordinary random
variable has the property that the inverse image of a Borel set in H is
an event, whereas in the case of a w.r.v., it is only required that the
inverse image of any cylinder set in H be an event.

A w.r.v. ξ : H → H is Gaussian if, for any element h ∈ H, the
ordinary random variable fw = (ξ, h)H is Gaussian. A Gaussian
w.r.v. is uniquely defined by its mean element mξ and covariance
operator Rξξ. The mean element is the unique vector of H such that,
for any h ∈ H:

(A.1) (mξ, h)H = E{(ξ, h)H} =

∫
H
(ξ(ω), h)H dµ(ω), for all h ∈ H,

where the cylinder measure is the Gaussian measure µ. The covariance
operator Rξξ is the unique, bounded, linear, self-adjoint, non-negative
operator on H such that, for any h ∈ H:

(Rξξh, h) = E{|(ξ −mξ, h)H|2}(A.2)

=

∫
H
|(ξ(ω)−mξ, h)H|2 dµ(ω), for all h ∈ H.

Similarly, given another Gaussian w.r.v. η : H → H, the cross-
covariance operator Rξη is the unique linear continuous operator on
H defined for any h1, h2 ∈ H by:

(Rξηh1, h2) = E{(ξ −mξ, h2)H(η −mη, h1)H}(A.3)

=

∫
H
(ξ(ω)−mξ, h2)H(η(ω)−mη, h1)H dµ(ω).

A typical example of w.r.v. is the white noise, a Gaussian process,
which we denote by ζ, whose covariance operator Rζζ is given by
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Rζζ = ε2 I, where I is the identity operator in H. In this case the
Fourier components ζk(ω) = (ζ(ω), ψk)H are independent ordinary
Gaussian random variables with zero mean and ε2 variance. It is worth
noting that

∑∞
k=1[ζk(ω)]

2 = ∥ζ∥2H <∞ for every ω, differently from the
usual theory of random variables where the sum of squares of Gaussians
with equal variances diverges with probability one. In the latter case,
the sample space is the space of all sequences with the corresponding
measure countably additive on the Borel sets, whereas in the former
case we are dealing only with a finitely additive measure on the field C.
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