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ABSTRACT. We discuss a multiple nonlinear Abel type
integral equation. The basic results provide criteria for the
existence of nontrivial everywhere positive solutions. They
are expressed in terms of the generalized Osgood condition.
The global behavior of the solution, especially the conditions
when it experiences blow-up, is also considered.

1. Introduction. In this paper, we examine the multiple Abel type
nonlinear integral equation of the following form:

(1.1) u(t) =

∫ t

0

(t− s)α1−1g1(u(s)) ds+

∫ t

0

(t− s)α2−1g2(u(s)) ds

+ · · ·+
∫ t

0

(t− s)αn−1gn(u(s)) ds (t > 0),

where

0 < αi, i = 1, 2, . . . , n,(1.2)

gi : [0,∞) → [0,∞) are continuous and nondecreasing(1.3)

functions such that gi(0) = 0 and gi(z) > 0 for z > 0,

i = 1, 2, . . . , n.

We are interested in the nonnegative continuous solutions. It is clear
that u ≡ 0 is a solution to equation (1.1). It is called a trivial solu-
tion. However, only nontrivial nonnegative solutions are interesting.
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We focus on the problem of the existence of such solutions, and we
investigate their properties.

Some integral equations of this type arise in one-dimensional models
of the ignition and explosive behavior in diffusive media. In applica-
tions, the solution can describe a variety of processes including ones
such as solid fuel combustion processes. Then the ignition in the me-
dia appears, if there exists a nontrivial continuous solution u such that
u(t) > 0 for t > 0. There are some papers related to this topic, e.g.,
[5, 9, 11].

In the particular case where n = 1, i.e., a single equation

(1.4) u(t) =

∫ t

0

(t− s)α−1g(u(s)) ds (t > 0, 0 < α),

the problems of the existence and uniqueness of the solution were
exhaustively investigated, see [1, 3, 4, 7]. It was shown [3, 7] that the
following generalized Osgood condition

(1.5)

∫ δ

0

[
s

g(s)

]1/α
ds

s
< ∞,

for any δ > 0 is necessary and sufficient for the existence of nontrivial
solutions to equation (1.4).

The single equations of the type (1.4) each one determined by the
exponent αi and the function gi, i = 1, 2, . . . , n are in a natural way
connected with equation (1.1). Namely, using standard comparison
methods for the integral Volterra type equations [2, 4] it can be shown
that, if at least one of these equations has a nontrivial solution, then
equation (1.1) has a nontrivial solution too. However, it turns out
that the converse implication is not true. We discuss this problem
and formulate a new integral criterion for the existence of nontrivial
solutions. To present our results, we denote

ϕ(z) = min

{(
z

g1(z)

)1/α1

,

(
z

g2(z)

)1/α2

, . . . ,

(
z

gn(z)

)1/αn
}

for z > 0, and we show that the necessary and sufficient condition for
the existence of nontrivial solutions to equation (1.1) can be expressed



A NONLINEAR ABEL TYPE EQUATION 557

in a form of the integral condition:

(1.6)

∫ δ

0

ϕ(z)
dz

z
< ∞,

for δ > 0.

Another problem of our interest concerns the explosive character of
the solutions. We say that the solution blows up at some finite moment
of time 0 < t̂ < ∞, if u(t) → ∞, as t → t̂−. For equation (1.4), this
problem was widely investigated [5, 6, 8, 9, 10] and the appropriate
necessary and sufficient condition was stated in the form

(1.7)

∫ ∞

0

[
s

g(s)

]1/α
ds

s
< ∞.

In the case of equation (1.1) we provide a new integral criterion which
states that the blowing-up solutions appear if and only if

(1.8)

∫ ∞

0

ϕ(z)
dz

z
< ∞.

In our considerations, we do not assume any Lipschitz regularity of the
functions gi, i = 1, 2, . . . , n and our arguments are based mainly on an
application of monotonical and comparison methods.

2. Notation and auxiliary facts. For the reader’s convenience, we
collect some basic properties of the solution to the integral equations
with monotone nonlinearity of the following type:

(2.1) u(t) =

∫ t

0

k(t− s, u(s)) ds,

where the kernel k satisfies the conditions

(α) k(t, u) is a nonnegative continuous function defined for t ∈
(0,∞), u ∈ [0,∞),

(β) k(t, 0) = 0 and k(t, u) > 0 for any t > 0 and u > 0,
(γ) k(t, u1) ≤ k(t, u2) for any t ∈ (0,∞) and 0 ≤ u1 ≤ u2,

(δ)
∫ δ

0
k(t, u)dt < ∞ for any δ > 0 and u ≥ 0.
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Our interest in this class of equations is motivated by the observa-
tions that if we take

(2.2) k(t, u) =
n∑

i=0

ki(t)gi(u),

then we can see that our original equation is the equation of such a
type.

Let us denote

T w(t) =

∫ t

0

k(t− s, w(s)) ds,

defined for any continuous nonnegative function w(t), t ∈ [0,∞).
Unless it clearly stated otherwise, the functions w(t) are assumed to
satisfy w(0) = 0.

The integral operator T has nice monotonical properties. Those
basic ones are collected in the following

Proposition 2.1.

(i) if v(t) ≤ w(t) for t ≥ 0, then T v(t) ≤ T w(t) for t ≥ 0,
(ii) if v(t) is a nondecreasing function, then T v(t) is also nondecreas-

ing.

Proof. Part (i) follows from the monotonicity of the kernel k(t, u) in
the variable u immediately.

To prove (ii), we see that

(2.3)

∫ t

0

k(t− s, v(s)) ds =

∫ t

0

k(s, v(t− s)) ds,

for t > 0. Since the integral on the right hand side is a nondecreasing
function of the argument t, we get our assertion. �

The convolution form of the operator T implies its invariance with
respect to the shifts in the following sense: if wc(t) = w((t−c)+), where
(t− c)+ = 0 for t ∈ (0, c) and (t− c)+ = t− c for t ≥ c, then

(2.4) T wc(t) = (T w)c(t)
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for t > 0. Moreover, the shift invariance of the operator T affects the
nonuniqueness of the solution to equation (2.1). Namely, if u(t) is a
nontrivial solution to equation (2.1), then, for any c > 0, the shifted
function uc(t) is another nontrivial solution. Looking more deeply at
the structure of nontrivial solutions we obtain

Proposition 2.2. Let u(t) be a nontrivial solution to equation (2.1).
Then there exists c ≥ 0 such that u(t) = 0 for 0 ≤ t ≤ c and u(t) > 0
for t > c.

Proof. First, we note that, if u(t) is positive at some t0, then it is
positive for t > t0. This is easily seen if we look at the integrand in
(2.1) which is then positive in a vicinity of s = t0. Finally, it suffices
to take c = sup{t : u(s) = 0, 0 ≤ s ≤ t} to get our assertion. �

Since, in view of Proposition 2.2, to each nontrivial solution u(t)
there corresponds a nontrivial solution u(t) = u(t + c) positive for
t > 0, we further focus only on nontrivial solutions, which are positive
for t > 0. In fact, we are going to show that equation (2.1) has at most
one such nontrivial solution.

We continue the discussion of the uniqueness solution problem for
equation (2.1) beginning with a comparison its solution u(t) positive for
t > 0 with nonnegative continuous solutions to the integral inequality

(2.5) v(t) ≤
∫ t

0

k(t− s, v(s)) ds

for t > 0.

Proposition 2.3. Let u(t), t ∈ (0, t̂) be a nonnegative continuous

solution to equation (2.1) positive for t > 0, and let v(t), t ∈ (0, t̂)
be any solution to the integral inequality (2.5). Then

(2.6) v(t) ≤ u(t)

for t ∈ (0, t̂).

Proof. Let us take c > 0, and let us compare the shift vc(t) of
v(t) with the solution u(t). We observe that 0 = vc(t) < u(t) for
t ∈ (0, c). Furthermore, we note that, by Proposition 2.1, the following
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implication holds: if t0 > 0 is such that vc(t) ≤ u(t) for 0 < t < t0,
then

u(t0)− vc(t0) ≥
∫ t0

0

(k(t0 − s, u(s))− k(t0 − s, vc(s))) ds

≥
∫ c

0

(k(t0 − s, u(s))− k(t0 − s, vc(s))) ds > 0.

Hence, we conclude that vc(t) ≤ u(t) for t ∈ [0, t̂). Now, letting c → 0,
we get our assertion. �

As an immediate corollary, we obtain the following result concerning
the uniqueness of the solution to equation (2.1).

Corollary 2.4. Equation (2.1) has at most one continuous solution
u(t) positive for t > 0.

We show below that the nontrivial solution is nondecreasing.

Corollary 2.5. If u(t) ≥ 0 is a continuous solution to equation (2.1)
positive for t > 0, then it is a nondecreasing function.

Proof. Let us define an auxiliary, nondecreasing function

(2.7) ū(t) = sup{u(s) : 0 ≤ s ≤ t}

for t > 0. Since it follows from Proposition 2.1 that

(2.8) u(s) = T u(s) ≤ T ū(s) ≤ T u(t)

for 0 ≤ s ≤ t, we get

(2.9) u(t) ≤ T u(t)

for t > 0. Now, by Proposition 2.3, we have u(t) ≤ u(t) for t > 0,
which is only possible if u(t) = u(t) for t > 0. Consequently, u(t) is a
nondecreasing function. �

It follows from the discussion above that the solution u(t) to equation
(2.1) positive for t > 0 is a maximal solution, which means that, for
any other solution v(t) to (2.1), the inequality v(t) ≤ u(t) is satisfied

on their common interval of the existence [0, t̂). We also note that, if
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equation (2.1) has only the trivial solution, then it is simultaneously
the maximal solution.

For the maximal solution to equation (1.1) we obtain the following
regularity result:

Proposition 2.6. The maximal solution to equation (1.1) is locally
absolutely continuous.

Proof. We can assume that the maximal solution u(t) is positive for
t > 0. Since it is a nondecreasing function, we can integrate by parts all
the integrals in (1.1), which gives the following representation formula
for the solution u(t):

(2.10) u(t) =
n∑

i=1

1

αi

∫ t

0

(t− s)αidgi(u(s))

for t > 0. Since all the summands are locally absolutely continuous, we
get our assertion. �

In the following two propositions we give some remarks concerning
the construction of the maximal solution to equation (2.1).

Proposition 2.7. Let a > 0 be chosen in such a way that the function
v(t) ≡ 1 satisfies the inequality

(2.11) T v(t) ≤ v(t),

for t ∈ (0, a). Then the limit function

(2.12) u(t) = lim
n→∞

T nv(t)

for t ∈ (0, a) is the maximal solution to equation (2.1) on the interval
(0, a).

Proof. We first observe that the choice of appropriate a is possi-
ble because the function T v(t) is continuous and T v(0) = 0. Since
the iterative function sequence v0(t) = v(t), vn+1(t) = T vn(t), n =
0, 1, 2, . . . , t ∈ (0, a) is nonincreasing, there exists its pointwise limit
u(t) = limn→∞ vn(t). By the Lebesgue monotone convergence theorem
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we see that this limit function is a solution to equation (2.1). Further-
more, if u(t) is any nontrivial solution, then

(2.13) u(t) ≤ v(t) ≡ 1,

at least on some interval (0, a1) with 0 < a1 ≤ a. Since then

(2.14) u(t) = T nu(t) ≤ T nv(t)

for t ∈ (0, a1) and n = 1, 2, . . ., we conclude that u(t) ≤ u(t) for
t ∈ (0, a1). Moreover, by Proposition 2.3, we have u(t) ≤ u(t) on their
common interval of the existence, which ends the proof. �

In Proposition 2.7, the maximal solution is obtained as the limit of
the iterative function sequence {T nv(t)} convergent to it from above.
In a similar way, we can get it as a limit of the iterative function
sequence convergent to it from below.

Proposition 2.8. If the nonnegative continuous function w(t), such
that w(0) = 0 and w(t) > 0 for t > 0, satisfies the inequality

(2.15) w(t) ≤ T w(t)

on some interval (0, a), then the nondecreasing function sequence
{T nw(t)} is pointwise convergent to the maximal solution to equation
(2.1)

(2.16) u(t) = lim
n→∞

T nw(t),

at least on some interval (0, a1) with a1 ≤ a.

Proof. Let us define v(t) ≡ 1 for t ≥ 0, and let us take a1 > 0 such
that

(2.17) T v(t) ≤ v(t) ≡ 1 and w(t) ≤ v(t)

for t ∈ (0, a1). Then we have

(2.18) w(t) ≤ T w(t) ≤ T v(t) ≤ v(t),

for t ∈ (0, a1). Hence, we conclude that the function sequence {T nw(t)}
is bounded and nondecreasing. Its pointwise limit u(t) is a nontrivial
solution to equation (2.1) positive for t > 0. By uniqueness, it is a
maximal solution to equation (2.1). �
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3. Main results. Now we pass to the discussion of the existence so-
lution problem for equation (1.1). We begin with stating the necessary
and sufficient condition for the existence of nontrivial solutions.

Theorem 3.1. Equation (1.1) has a nontrivial solution if and only if
condition (1.6) holds.

The necessity part. Let us consider a nontrivial solution u(t) defined

on some interval (0, t̂). By Corollary 2.5, it is a nondecreasing function,
and we can assume that it is positive for t > 0. Let us introduce an
auxiliary function

L(t) =
1

u(t)

∫ t

0

u(s) ds.

Using the representation formula (2.10) we get

(3.1) L(t) =
1

u(t)

n∑
i=1

1

(αi + 1)αi

∫ t

0

(t− s)αi+1dgi(u(s)).

Since, by Proposition 2.6, the solution u(t) is locally absolutely contin-
uous, we see that L(t) is locally absolutely continuous too, and we note
that

L′(t) = 1− u′(t)

u(t)
L(t).

We estimate each term of the sum in (3.1) using Jensen’s inequality as
follows

1/gi(u(t))

∫ t

0

(t− s)αi+1dgi(u(s)) ≥
[∫ t

0
(t− s)αidgi(u(s))

gi(u(t))

]αi+1/αi

.

As a result, we get

L(t) ≥
n∑

i=1

1

(αi + 1)αi

[
ui(t)

u(t)

]αi+1/αi
[

u(t)

gi(u(t))

]1/αi

,

where

ui(t) =

∫ t

0

(t− s)αidgi(u(s)), i = 1, 2, . . . , n.
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Hence, we obtain the estimate

(3.2) 1− L′(t) =
u′(t)

u(t)
L(t)

≥ u′(t)

u(t)

n∑
i=1

1

(αi + 1)αi

[
ui(t)

u(t)

]αi+1/αi
[

u(t)

gi(u(t))

]1/αi

≥ u′(t)

u(t)
min

1≤i≤n

[
u(t)

gi(u(t))

]1/αi n∑
i=1

1

(αi + 1)αi

[
ui(t)

u(t)

]αi+1/αi

.

Since

u(t) =
1

α1
u1(t) +

1

α2
u2(t) + · · ·+ 1

αn
un(t),

we see that, for each t ∈ (0, t̂), we can find an index 1 ≤ i0 ≤ n such
that

ui0(t)

u(t)
≥ 1

n
αi0 ≥ 1

n
min

1≤i≤n
αi.

Hence, it follows that there exists a constant c1 > 0 such that

(3.3)
n∑

i=1

1

(αi + 1)αi

[
ui(t)

u(t)

]αi+1/αi

≥ c1,

for t ∈ (0, t̂). Combining (3.3) and (3.2), we obtain

1− L′(t) ≥ c1
u′(t)

u(t)
ϕ(u(t)),

for t ∈ (0, t̂). Integrating the expressions on both sides of the inequality
above we get

(3.4) c1

∫ t

0

ϕ(u(s))
u′(s)

u(s)
ds =

∫ u(t)

0

ϕ(z)
dz

z
≤ (t− L(t)).

Hence, our assertion follows.

The sufficiency part. Our plan is to find a nondecreasing function
v(t) positive for t > 0 such that

(3.5) v(t) ≤ T v(t),

for t > 0. Then, due to Proposition 2.8, we can conclude that
equation (1.1) has a nontrivial solution.



A NONLINEAR ABEL TYPE EQUATION 565

To facilitate the verification of relationship (3.5) we transform it to
its equivalent form expressed in terms of the inverse function v−1(t).
To this aim, we integrate by parts all the integrals constituting T v(t)
obtaining the formula

T v(t) =

n∑
i=1

1

αi

∫ t

0

(t− s)αidgi(v(s)).

Next, we substitute z = v(s), and, as a result, we obtain

T v(t) =
n∑

i=1

1

αi

∫ v(t)

0

(t− v−1(z))αidgi(z).

Hence, it follows that condition (3.5) is equivalent to the following
expressed in terms of the inverse function v−1(t)

(3.6) t ≤
n∑

i=1

1

αi

∫ t

0

(v−1(t)− v−1(z))αidgi(z)

for t > 0.

Now, for any nondecreasing continuous function w(t) with w(0) = 0
we define

Sw(t) =
n∑

i=1

1

αi

∫ t

0

(w(t)− w(z))αidgi(z),

for t > 0. We see that

(3.7) Sw(t) ≥
n∑

i=1

1

αi

∫ t/2

0

(w(t)− w(z))αidgi(z)

≥
n∑

i=1

1

αi
(w(t)− w(t/2))αigi(t/2),

for t > 0. In the sequel, we take

(3.8) w(t) =

∫ t/2

0

ϕ(z)
dz

z
.

Since, for any t > 0 and any z ∈ (t/2, t),

z

gi(z)
≥ 1

2

t

gi(t)
, i = 1, 2, . . . , n,
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we have
ϕ(z) > c2ϕ(t),

where the constant c2 = min{2−1/αi : i = 1, 2, . . . , n}. Using the above
estimate, we get

(3.9) w(t)− w(t/2) =

∫ t/2

t/4

ϕ(z)
dz

z
≥ c3ϕ(t/2),

for any t > 0, where the constant c3 = c2 ln 2.

Let us fix t > 0 for a moment. Then there exists an index 1 ≤ i0 ≤ n
such that

ϕ(t/2) =

[
t/2

gi0(t/2)

]1/αi0

.

Hence, using (3.9), it follows that

(w(t)− w(t/2))αi0 gi0(t/2) ≥ c4 t,

where the constant c4 = 1/2 min{cαi
3 : i = 1, 2, . . . , n}. Consequently,

by (3.7), we have
Sw(t) ≥ c5 t

for any t > 0, where the constant c5 = c4 min{1/αi : i = 1, 2, 3, . . . , n}.
Finally, we observe that, if we take a constant c6 such that

c5 min{cαi
6 : i = 1, 2, . . . , n} ≥ 1,

then we get

(3.10) S(c6w)(t) ≥ t,

for t > 0. Therefore, if we define a function v(t) by its inverse

(3.11) v−1(t) = c6w(t),

then, due to (3.10), inequality (3.6) is satisfied for t > 0, which means
that

v(t) ≤ T v(t)

for t > 0, and our assertion follows. �

To illustrate the results obtained above we discuss the following
integral equation.
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Example 3.2. We construct two functions g1(z) and g2(z) satisfying
condition (1.3) for which the integral equation

(3.12) u(t) =

∫ t

0

(t− s)−2/3g1(u(s)) ds+

∫ t

0

(t− s)−1/2g2(u(s)) ds

has a nontrivial solution, but neither of the two single equations

u(t) =

∫ t

0

(t− s)−2/3g1(u(s)) ds(3.13a)

and

u(t) =

∫ t

0

(t− s)−1/2g2(u(s)) ds(3.13b)

has any nontrivial solutions.

We first define a decreasing sequence a0 = 1, ai+1 = [
√
ai + 1 − 1]2

for i = 0, 1, 2, . . . convergent to zero, as i → ∞. It is easily seen that

(3.14)
ai − ai+1√

ai+1
= 2, i = 1, 2, . . . .

Let us consider a function

h(z) = 1/
√
z

for z > 0 and its piecewise linear interpolant at the knots ai

f(z) = h(ai)
z − ai+1

ai − ai+1
+ h(ai+1)

ai − z

ai − ai+1
,

for z ∈ [ai+1, ai), i = 0, 1, 2, . . . . Since h(z) is convex and f(ai) = h(ai),
i = 1, 2, . . ., we easily check that the function f(z) is nonincreasing and

h(z) ≤ f(z)

for z ∈ (0, 1). Finally, we define:

g1(z) =

{
z2/3h(z)−1/3, if z ∈ (a2i+1, a2i),

z2/3f(z)−1/3, if z ∈ (a2i+2, a2i+1)

and

g2(z) =

{
z1/2f(z)−1/2, if z ∈ (a2i+1, a2i),

z1/2h(z)−1/2, if z ∈ (a2i+2, a2i+1),
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i = 0, 1, 2, 3, . . . . We observe that the function ϕ(z) for equation (3.12)
has a form

ϕ(z) = min

{(
z

g1(z)

)3

,

(
z

g2(z)

)2}
= zh(z) =

√
z,

for z ∈ (0, 1). Thus, ∫ δ

0

ϕ(z)
dz

z
< ∞,

and consequently, equation (3.12) has a nontrivial solution by Theo-
rem 3.1.

However, it follows from (3.14) that∫ ai

ai+1

f(z) dz =
h(ai) + h(ai+1)

2
(ai − ai+1)(3.15)

≥ ai − ai+1

2
√
ai+1

= 1

i = 1, 2, . . . .

Since (
z

g1(z)

)3
1

z
= f(z) for z ∈ (a2i+2, a2i+1)

and (
z

g2(z)

)2
1

z
= f(z) for z ∈ (a2i+1, a2i),

i = 0, 1, 2, 3, . . ., it follows from (3.15) that∫ δ

0

(
z

g1(z)

)3
1

z
dz = ∞

and ∫ δ

0

(
z

g2(z)

)2
dz

z
= ∞

for δ > 0 and, consequently, each integral equation (3.13a) and (3.13b)
has only trivial solutions by (1.5).
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Our proof of the above theorem is based on some a priori estimates of
the maximal solution to equation (1.1), which can be stated explicitly
as follows:

Corollary 3.3. Let u(t) be a maximal solution to equation (1.1)
positive for t > 0. Then there exist constants cm and cM > 0 such
that

cm

∫ t

0

ϕ(z)
dz

z
≤ u−1(t) ≤ cM

∫ t/2

0

ϕ(z)
dz

z
.

for t > 0.

Proof. The left-hand inequality follows from (3.4) immediately.

To prove the right-hand inequality we come back to the function v(t)
constructed in the proof of the sufficiency part of Theorem 3.1. Since
it satisfies the inequality v(t) ≤ T v(t) for t > 0, by Proposition 2.3, we
get

v(t) ≤ u(t)

for t > 0. Passing to the inverse functions, this inequality can be
rewritten in the form

u−1(z) ≤ v−1(z)

for z > 0. Thus, our assertion follows from the definition of v−1(t)
given in (3.8) and (3.11). �

As an immediate consequence of the a priori estimates above we
obtain the following results concerning the blowing up behavior of the
maximal nontrivial solution.

Corollary 3.4. The maximal nontrivial solution u(t) to equation (1.1)
blows up if and only if the condition (1.8) holds.

Proof. Let us consider the inverse function u−1(t). We note that
u(t) has a blowing up behavior if and only if there exists a finite limit

lim
t→∞

u−1(t) < ∞.

Hence, our assertion follows from the a priori estimates given in Corol-
lary 3.3. �
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The result obtained concerning the blow up behavior of the maximal
solution is discussed in the following example.

Example 3.5. We construct two functions g1(z) and g2(z) satisfying
(1.3) for which the integral equation

(3.16) u(t) =

∫ t

0

(t− s)−1/3g1(u(s)) ds+

∫ t

0

(t− s)−1/2g2(u(s)) ds

has a blowing up nontrivial solution, while each of the two single
equations

u(t) =

∫ t

0

(t− s)−1/3g1(u(s))ds(3.17a)

and

u(t) =

∫ t

0

(t− s)−1/2g2(u(s))ds(3.17b)

has nontrivial solutions, but none of them blows up.

We first define an increasing sequence b0 = 1, bi+1 = 2b2i + bi, which
is divergent, as i → ∞. It is easily seen that

(3.18)
bi+1 − bi

b2i
= 2, i = 1, 2, . . . .

Let us consider a function

h(z) = 1/z2

for z > 1 and its piecewise linear interpolant at the knots bi

f(z) = h(bi+1)
z − bi

bi+1 − bi
+ h(bi)

bi+1 − z

bi+1 − bi

for z ∈ [bi, bi+1), i = 0, 1, 2, . . . . Since h(z) is convex and f(bi) = h(bi),
i = 1, 2, . . ., we easily check that the function f(z) is nonincreasing and

h(z) ≤ f(z)

for z > 1. Finally, we define the following two functions:

g1(z) =

{
z1/3h−2/3(z), if z ∈ (b2i, b2i+1),

z1/3f−2/3(z), if z ∈ (b2i+1, b2i+2)
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and

g2(z) =

{
z1/2f−1/2(z), if z ∈ (b2i, b2i+1),

z1/2h−1/2(z), if z ∈ (b2i+1, b2i+2),

i = 0, 1, 2, 3, . . . . We observe that the function ϕ(z) for equation (3.16)
has a form

ϕ(z) = min

{(
z

g1(z)

)3/2

,

(
z

g2(z)

)2}
= zh(z) = 1/z,

for z > 1.

To complete the construction, we define the parts of the functions
g1 and g2 on the interval [0, 1] similarly as in Example 3.2. Thus,∫ ∞

0

ϕ(z)
dz

z
< ∞,

and consequently, equation (3.16) has a blowing up solution.

However, it follows from (3.18) that

(3.19)

∫ bi+1

bi

f(z) dz =
h(bi) + h(bi+1)

2
(bi+1 − bi) ≥

bi+1 − bi
2b2i

= 1,

for i = 1, 2, . . . .

Since (
z

g1(z)

)3/2
1

z
= f(z) if z ∈ (b2i+1, b2i+2)

and (
z

g2(z)

)2
1

z
= f(z) if z ∈ (b2i, b2i+1),

for i = 0, 1, 2, 3, . . ., it follows from (3.19) that∫ ∞

0

(
z

g1(z)

)3/2
dz

z
= ∞

and ∫ ∞

0

(
z

g2(z)

)2
dz

z
= ∞
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for δ > 0 and, consequently, by (1.7), the nontrivial solutions of each
integral equation (3.17a) and (3.17b) do not blow up.
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