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ABSTRACT. In this paper, we use a global implicit
function theorem for the investigation of the existence and
uniqueness of a solution as well as the sensitivity of a
Cauchy problem for a general integro-differential system of
order α ∈ (0, 1) of Volterra type, involving two functional
parameters nonlinearly.

1. Introduction. Integro-differential systems have recently been
studied by Aghajani et al. [1], Ahmad and Nieto [2], Bushnaq et al. [6],
Gayathri et al. [8], Matar [19], Nazari and Shahmorad [20], Sudsutad
and Tariboon [22], Wang and Wei [23] and Yan [26]. These systems
are investigated in finite and infinite dimensional spaces, with Riemann-
Liouville and Caputo derivatives as well as with different types of initial
and boundary conditions: local, nonlocal, involving values of solutions
or their fractional integrals, delay. Tools used in studies of such systems
also are of different types: Banach, Brouwer, Schauder, Schaefer, Kras-
noselskii fixed point theorems, nonlinear alternative Leray-Schauder
type, fractional differential transform method, strongly continuous op-
erator semigroups, and the reproducing kernel Hilbert space method.

In [15], a global inverse function theorem obtained in [14] has been
applied to the Cauchy problem:
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(1.1)

{
Dα

a+x(t) +
∫ t

0
Φ(t, τ, x(τ)) dτ = v(t), t ∈ J := [a, b] a.e.

I1−α
a+ x(a) = 0,

where v ∈ L2
n = L2(J,Rn) is a functional parameter and x ∈ Iαa+(L

2
n)

is an unknown function. More precisely, sufficient conditions for the
existence, uniqueness and continuous differentiability of the mapping

L2
n ∋ v 7−→ xv ∈ Iαa+(L

2
n)

where xv is a unique solution to problem (1.1), corresponding to v,
have been formulated. The continuous differentiability of the above
mapping is often called sensitivity of the problem.

The aim of the present paper is to derive results of such a type for
a more general problem, namely,
(1.2){

Dα
a+x(t) +

∫ t

a
Φ(t, τ, x(τ), u(τ)) dτ = f(t, x(t), v(t)), t ∈ J a.e.,

I1−α
a+ x(a) = 0,

where u ∈ L∞
m = L∞(J,Rm) and v ∈ L∞

r = L∞(J,Rr) are functional
parameters, involved nonlinearly, and x ∈ Iαa+(L

2
n) is an unknown

function. Equation (1.2) can be the basic system for an integro-
differential fractional games theory.

It is worth noting (cf., [3]) that, if α ∈ (1/2, 1), then any function
x ∈ Iαa+(L

2
n) satisfies the condition x(a) = 0. Consequently, in such a

case, each solution of problem (1.2) satisfies the additional condition
x(a) = 0.

To study the existence, uniqueness and continuous differentiability
of the mapping

L∞
m × L∞

r ∋ (u, v) 7−→ xu,v ∈ Iαa+(L
2
n),

where xu,v is a unique solution to (1.2), corresponding to the pair
of functional parameters (u, v), we apply a new method, based on
a global implicit function theorem derived in [10]. Such a method
has been applied in [10] to an integro-differential equation of the first
order, involving parameter u nonlinearly and parameter v linearly, and
to the classical differential equation of the first order, containing one
parameter u nonlinearly.



A GLOBAL IMPLICIT FUNCTION THEOREM 523

In [11], we obtained some strengthening of the global implicit
function theorem derived in [10]. Shortly speaking, we replaced the
“bijectivity” condition by a “nonorthogonality” one. An open problem
is to formulate assumptions on Φ and f such that the strengthened
version of the global implicit function theorem is applicable to problem
(1.2) whereas the theorem from [10] is not.

An extension of the global inverse function theorem, obtained in
[14], to the case of the Banach range space, has been obtained in [7]
and applied to the problem{

x′(t) +
∫ t

a
Φ(t, τ, x(τ)) dτ = v(t), t ∈ J a.e.,

x(a) = 0.

To our best knowledge, global sensitivity of the fractional integro-
differential problem (1.2) is a new result, and it has not been studied
by other authors. Also, the global implicit function theorem was not
applied to fractional problems of such a type until now.

2. Preliminaries. Let α > 0 and h ∈ L1(J,Rn). By the left
Riemann-Liouville fractional integral of h on the interval J we mean
(cf., [21]) a function Iαa+h given by:

(2.1) (Iαa+h)(t) =
1

Γ(α)

∫ t

a

h(τ)

(t− τ)1−α
dτ, t ∈ J almost everywhere,

where Γ is the Euler function. One can show that the above integral
exists and is finite almost everywhere on J . Moreover, we also have:

Theorem 2.1. If α > 0 and 1 ≤ p < ∞, then Iαa+h ∈ Lp(J,Rn) for
any h ∈ Lp(J,Rn), and

(2.2)
∥∥Iαa+h∥∥Lp(J,Rn)

≤ γα ∥h∥Lp(J,Rn)

where γα = (b− a)α/Γ(α+ 1). If, additionally, 0 < α < 1 and
1 < p < 1/α, then Iαa+h ∈ Lq(J,Rn) for any h ∈ Lp(J,Rn), where
q = p/(1− αp), and∥∥Iαa+h∥∥Lq(J,Rn)

≤ γα,p,q ∥h∥Lp(J,Rn)

for some constant γα,p,q ≥ 0. If α > 0, 1 ≤ p < ∞ and p > 1/α, then
the function Iαa+h is continuous on J for any h ∈ Lp(J,Rn).
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Remark 2.2. The first part of the above theorem can be found in
[21]. For the second part see [9] and also [18], [21]. The last part can
be deduced from the results of [9] (cf. also [21]).

Now, let α ∈ (0, 1). We say that (cf., [21]) x ∈ L1(J,Rn) possesses
the left Riemann-Liouville derivative Dα

a+x of order α ∈ (0, 1) on the

interval J if the integral I1−α
a+ x is absolutely continuous on J (more

precisely, if there exists an absolutely continuous function g on J
such that g = I1−α

a+ x almost everywhere on J). In such a case, we

identify I1−α
a+ x with its absolutely continuous representant g and, by

the derivative Dα
a+x, we mean the classical derivative D1g, i.e., (after

identifying I1−α
a+ x with g)

(Dα
a+x)(t) =

1

Γ(1− α)
D1

(∫ t

a

x(τ)

(t− τ)α
dτ

)
,

t ∈ J almost everywhere,

(cf., [12] for the case of any α > 0). By the value I1−α
a+ x(a) of the

function I1−α
a+ x at the point a, we mean the value g(a).

In [4], it is proved that a function x ∈ L1(J,Rn) has the left
Riemann-Liouville derivative Dα

a+x of order α ∈ (0, 1) if and only if
there exist a constant c ∈ Rn and a function φ ∈ L1(J,Rn) such that:

(2.3) x(t) =
1

Γ(α)

c

(t− a)1−α
+

1

Γ(α)

∫ t

a

φ(τ)

(t− τ)1−α
dτ,

for t ∈ J almost everywhere. In such a case I1−α
a+ x(a) = c (after identi-

fying I1−α
a+ x with its absolutely continuous representant) andDα

a+x = φ
almost everywhere on J . The above formula is a generalization of the
well-known integral formula for absolutely continuous functions.

The set of all functions x possessing Riemann-Liouville derivative
Dα

a+x ∈ L2
n is denoted by ACα,2

a+ (J,Rn). It consists of all functions x
possessing the representation (2.3) with φ ∈ L2

n. So, if x ∈ Iαa+(L
2
n),

then x = Iαa+D
α
a+x. Of course, the range Iαa+(L

2
n) of the space L2

n

under the operator Iαa+ : L2
n → L2

n is contained in ACα,2
a+ (J,Rn). It is

easy to see that Iαa+(L
2
n) with the scalar product

⟨x, y⟩Iα
a+(L2

n)
=

⟨
Dα

a+x,D
α
a+y

⟩
L2

n
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is complete, i.e., it is the Hilbert space. The corresponding norm in
Iαa+(L

2
n) is given by:

∥x∥Iα
a+(L2

n)
=

∥∥Dα
a+x

∥∥
L2

n
.

3. A global implicit function theorem. Let X be a real Banach
space and φ : X → R a Frechet differentiable functional. We say that
φ satisfies the Palais-Smale (PS) condition if any sequence (xm) such
that

· |φ(xm)| ≤M for all m ∈ N and some M > 0,
· φ′(xm) −→ 0,

admits a convergent subsequence (φ′(xm) denotes the Frechet differen-
tial of φ at xm). A sequence (xm) satisfying the above conditions is
called the (PS) sequence.

In [10], the following global implicit function theorem has been
derived. It is a generalization of the global inverse function theorem
obtained in [14],

Theorem 3.1. Let X and Y be real Banach spaces, H a real Hilbert
space. If F : X × Y → H is continuous differentiable with respect to
(x, y) ∈ X × Y and

· for any y ∈ Y , the functional φy : X ∋ x 7−→ 1
2∥F (x, y)∥

2 ∈ R
satisfies the (PS) condition

· F ′
x(x, y) : X −→ H is bijective for any (x, y) ∈ X × Y ,

then there exists a unique function λ : Y → X such that F (λ(y), y) = 0
for any y ∈ Y , and this function is continuous differentiable with the
differential λ′(y) at y given by:

(3.1) λ′(y) = −[F ′
x(λ(y), y)]

−1 ◦ F ′
y(λ(y), y).

4. The integro-differential problem. Let us consider the control
system (1.2) with functions Φ : P∆ × Rn × Rm → Rn (P∆ = {(t, τ) ∈
J × J ; τ ≤ t}), f : J × Rn × Rr → Rn such that

(A1) Φ(·, ·, x, u) is measurable on P∆ for any x ∈ Rn, u ∈ Rm;
Φ(t, τ, ·, ·) is continuous differentiable on Rn × Rm for (t, τ) ∈
P∆ almost everywhere;
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(A2) there exist functions aΦ, bΦ ∈ L2(P∆,R+
0 ), ωΦ ∈ C(R+

0 ,R
+
0 )

and a constant CΦ > 0 such that:

|Φ(t, τ, x, u)| ≤ aΦ(t, τ) |x|+ bΦ(t, τ)ωΦ(|u|)
|Φx(t, τ, x, u)| ≤ CΦ |x|ωΦ(|u|),

|Φu(t, τ, x, u)| ≤ aΦ(t, τ) |x|+ bΦ(t, τ)ωΦ(|u|),

for (t, τ) ∈ P∆ almost everywhere, x ∈ Rn, u ∈ Rm;
(B1) f(·, x, u) is measurable on J for any x ∈ Rn, v ∈ Rr; f(t, ·, ·)

is continuous differentiable on Rn × Rr for t ∈ J almost
everywhere;

(B2) there exist functions bf ∈ L2(J,R+
0 ), ωf ∈ C(R+

0 ,R
+
0 ) and

constants af , df > 0 such that:

|f(t, x, v)| ≤ af |x|+ bf (t)ωf (|v|)
|fx(t, x, v)| ≤ dfωf (|v|)
|fv(t, x, v)| ≤ af |x|+ bf (t)ωf (|v|)

for t ∈ J almost everywhere, x ∈ Rn, v ∈ Rr;
(AB) the inequality

(4.1) γα(∥aΦ∥L2(P∆,Rn) + af ) <
1√
2

is satisfied.

We shall check that the mapping

F : Iαa+(L
2
n)× L∞

m × L∞
r −→ L2

n,

F (x, u, v) = Dα
a+x(t) +

∫ t

a

Φ(t, τ, x(τ), u(τ)) dτ

− f(t, x(t), v(t)),

satisfies assumptions of Theorem 3.1 with X = Iαa+(L
2
n), Y = L∞

m ×L∞
r

and H = L2
n.

The well-posedness of F can be checked in the same way as in [14,
Proof of Lemma 5]. More precisely, in the same way as in [14, Proof
of Lemma 5] one can check that the mapping

Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→

∫ ·

a

Φ(·, τ, x(τ), u(τ))dτ ∈ L2
n
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is well-posed; well-posedeness of the mapping

Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→ Dα

a+x(t)− f(t, x(t), v(t)) ∈ L2
n

is obvious.

Now, we shall prove:

Lemma 4.1. The operator F is continuous differentiable in the
Gateaux (equivalently, in the Frechet) sense on Iαa+(L

2
n) × L∞

m × L∞
r

and the mappings

F ′
x(x, u, v) : I

α
a+(L

2
n) −→ L2

n,

F ′
x(x, u, v)h = Dα

a+h(t) +

∫ t

a

Φx(t, τ, x(τ), u(τ))h(τ) dτ(4.2)

− fx(t, x(t), v(t))h(t)

F ′
u,v(x, u, v) : L

∞
m × L∞(J,Rn) → L2

n,

F ′
u,v(x, u, v)(f, g) =

∫ t

a

Φu(t, τ, x(τ), u(τ))f(τ) dτ

− fv(t, x(t), v(t))g(t)

are the differentials of F at (x, u, v) in x and (u, v), respectively.

Proof. Let us define the auxiliary operators

P : Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→ Dα

a+x(t) ∈ L2
n,

Q : Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→

∫ t

a

Φ(t, τ, x(τ), u(τ))dτ ∈ L2
n,

R : Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→ f(t, x(t), v(t)) ∈ L2

n.

Of course, F = P +Q+R.

Differentiability of P . Operator P is linear and continuous:

∥P (x, u, v)∥L2
n
=

∥∥Dα
a+x(t)

∥∥
L2

n
= ∥x∥Iα

a+(L2
n)

≤ ∥(x, u, v)∥Iα
a+(L2

n)×L∞
m×L∞

r
.

Thus, it is of class C1.
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Differentiability of Q with respect to x on Iαa+(L
2
n)×L∞

m ×L∞
r . Let

us fix a point (x, u, v) ∈ Iαa+(L
2
n)× L∞

m × L∞
r . We shall show that the

mapping

Q′
x(x, u, v) : I

α
a+(L

2
n) ∋ h 7−→

∫ ·

a

Φx(·, τ, x(τ), u(τ))h(τ)dτ ∈ L2
n

is a partial Frechet differential of Q with respect to x at (x, u, v) and
Q′

x is continuous on Iαa+(L
2
n) × L∞

m × L∞
r . We proceed in the same

way as in [15, Proof of Lemma 5]. We give here the reasoning for
the convenience of the reader and because of the change of the growth
condition on Φx. So, if h ∈ Iαa+(L

2
n) ⊂ L2

n, then the function

P∆ ∋ (t, τ) 7−→ Φx(t, τ, x(τ), u(τ))h(τ) ∈ Rn

is measurable and integrable by (A2). From the Fubini theorem, it
follows that the function

(4.3) J ∋ t 7−→
∫ t

a

Φx(t, τ, x(τ), u(τ))h(τ) dτ ∈ Rn

is integrable. In fact,

∣∣∣∣ ∫ t

a

Φx(t, τ, x(τ), u(τ))h(τ) dτ

∣∣∣∣2
≤

(∫ t

a

CΦ |x(τ)|ωΦ(|u(τ)|) |h(τ)| dτ
)2

≤ C2
Φ(max{ωΦ(|u(τ)|); τ ∈ J})2

(∫ t

a

|x(τ)| |h(τ)| dτ
)2

≤ C2
Φ(max{ωΦ(|u(τ)|); τ ∈ J})2

∫ b

a

|x(τ)|2 dτ
∫ b

a

|h(τ)|2 dτ.

So, function (4.3) belongs to L2
n. It means that the operator Q′

x(x, u, v)
is well-defined.

Clearly, Q′
x(x, u, v) is linear. Continuity of it follows from the

following estimation:

∥h∥L2
n
=

∥∥Iαa+Dα
a+h

∥∥
L2

n
≤ γα

∥∥Dα
a+h

∥∥
L2

n
= γα ∥h∥Iα

a+(L2
n)
.
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Now, we shall check that

lim
λ→0

Q(x+ λh, u, v)−Q(x, u, v)

λ
= Q′

x(x, u, v)h

in L2
n. So, let us fix a sequence (λn) converging to 0 in R, and consider

the limit

lim
k→∞

∫ b

a

∣∣∣∣ ∫ t

a

(
Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))h(τ)

)
dτ

∣∣∣∣2dt.
From the differentiability of Φ with respect to x we obtain, for t ∈ J
almost everywhere, the convergence of the sequence of functions

[a, t] ∋ τ 7−→ Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ))

λk
(4.4)

− Φx(t, τ, x(τ), u(τ))h(τ) ∈ Rn

almost everywhere on [a, t] to the zero function. Moreover, from the
mean value theorem applied to the coordinate functions

[0, 1] ∋ ϑ 7−→ Φj(t, τ, x(τ) + ϑλkh(τ)) ∈ R,

where j = 1, . . . , n, it follows that the absolute values of functions (4.4)
are commonly bounded by an integrable function. Indeed, since

Φj(t, τ, x(τ) + λkh(τ), u(τ))− Φj(t, τ, x(τ))

= (Φj)x(t, τ, x(τ) + ϑj(t, τ)λkh(τ)x(τ), u(τ))λkh(τ)

for some ϑj(t, τ) ∈ (0, 1); therefore,∣∣∣∣Φj(t, τ, x(τ) + λkh(τ), u(τ))− Φj(t, τ, x(τ), u(τ))

λk

∣∣∣∣
≤ |(Φj)x(t, τ, x(τ) + ϑj(t, τ)λkh(τ), u(τ))| |h(τ)|
≤ CΦ |x(τ) + ϑj(t, τ)λkh(τ)|ωΦ(|u(τ)|) |h(τ)|

≤ CΦ(|x(τ)|+ |h(τ)|)ωΦ(|u(τ)|) |h(τ)|

for sufficiently large k (such that |λk| < 1). Also,

|Φx(t, τ, x(τ), u(τ))h(τ)| ≤ CΦ |x(τ)|ωΦ(|u(τ)|) |h(τ)| .
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So, using the Lebesgue dominated convergence theorem (cf., [24]) we
state that the sequence of functions

J ∋ t 7−→
∫ t

a

(
Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))h(τ)

)
dτ ∈ Rn

converges almost everywhere on J to the zero function. Moreover,∣∣∣∣ ∫ t

a

(
Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))h(τ)

)
dτ

∣∣∣∣2
≤

(∫ t

a

∣∣∣∣Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))h(τ)

∣∣∣∣ dτ)2

≤
(
n

∫ t

a

CΦ(|x(τ)|+ |h(τ)|)ωΦ(|u(τ)|) |h(τ)| dτ

+

∫ t

a

CΦ |x(τ)|ωΦ(|u(τ)|) |h(τ)| dτ
)2

≤ (n+ 1)

∫ b

a

CΦ(|x(τ)|+ |h(τ)|)ωΦ(|u(τ)|) |h(τ)| dτ.

Consequently, using once again the Lebesgue dominated convergence
theorem we obtain

lim
k→∞

∫ b

a

∣∣∣∣ ∫ t

a

(
Φ(t, τ, x(τ) + λkh(τ), u(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))h(τ)

)
dτ

∣∣∣∣2dt = 0.

To finish this part of the proof we shall show that Q′
x is continuous

on the space Iαa+(L
2
n)×L∞

m ×L∞
r . Indeed, let (xj , uj , vj) be a sequence

converging in this space to a point (x0, u0, v0). We have:

∥(Q′
x(xj , uj , vj)−Q′

x(x0, u0, v0))h∥
2

L2
n
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≤
∫ b

a

(∫ t

a

|Φx(t, τ, xj(τ), uj(τ))

− Φx(t, τ, x0(τ), u0(τ))| |h(τ)| dτ
)2

dt

≤
∫ b

a

(∫ t

a

|Φx(t, τ, xj(τ), uj(τ))− Φx(t, τ, x0(τ), u0(τ))|2 dτ

×
∫ t

a

|h(τ)|2 dτ
)
dt

≤ ∥h∥2L2
n

∫ b

a

∫ t

a

|Φx(t, τ, xj(τ), uj(τ))− Φx(t, τ, x0(τ), u0(τ))|2 dτ dt

≤ (γα)
2 ∥h∥2Iα

a+(L2
n)

∫ b

a

×
∫ t

a

|Φx(t, τ, xj(τ), uj(τ))− Φx(t, τ, x0(τ), u0(τ))|2 dτ dt.

So,

∥(Q′
x(xj , uj , vj)−Q′

x(x0, u0, v0))∥L(L2
n,L

2
n)

≤ γα

(∫ b

a

∫ t

a

|Φx(t, τ, xj(τ), uj(τ))− Φx(t, τ, x0(τ), u0(τ))|2 dτ dt
)1/2

where L(L2
n, L

2
n) is the space of linear continuous operators acting

from L2
n to L2

n, considered with the classical operator norm. From
the generalized Krasnoselskii’s theorem (cf., [13] with Ω = P∆) and
the theorem on the majorized subsequence (cf., [5, Theoreme IV.9]) it
follows that the above integral converges to 0.

Differentiability of Q with respect to u on Iαa+(L
2
n)×L∞

m ×L∞
r . Let

us fix a point (x, u, v) ∈ Iαa+(L
2
n)×L∞

m ×L∞
r and consider the mapping

(4.5) Q′
u(x, u, v) : L

∞
m ∋ f 7−→

∫ ·

a

Φu(·, τ, x(τ), u(τ))f(τ) dτ ∈ L2
n.

The function

P∆ ∋ (t, τ) 7−→ Φu(t, τ, x(τ), u(τ))f(τ)

is measurable and integrable by (A2). So, the Fubini theorem implies
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integrability of the function

(4.6) J ∋ t 7−→
∫ t

a

Φu(t, τ, x(τ), u(τ))f(τ) dτ ∈ Rn.

Moreover,∣∣∣∣ ∫ t

a

Φu(t, τ, x(τ), u(τ))f(τ) dτ

∣∣∣∣2
≤ (∥f∥L∞

m

∫ t

a

(aΦ(t, τ) |x(τ)|+ bΦ(t, τ)ωΦ(|u(τ)|)) dτ)2

≤ 2 ∥f∥2L∞
m

(∫ t

a

a2Φ(t, τ) dτ

∫ t

a

|x(τ)|2 dτ +K2
1

(∫ t

a

bΦ(t, τ)dτ)
2

)
≤ 2 ∥f∥2L∞

m

(∫ t

a

a2Φ(t, τ) dτ ∥x∥L2
n
+K2

1 (b− a)

∫ t

a

b2Φ(t, τ) dτ

)
,

where K1 = max{ωΦ(|u(τ)|); τ ∈ J}. So, in fact, the function (4.6)
belongs to L2

n. This means that mapping (4.5) is well defined. Of
course, it is linear and continuous:(∫ b

a

∣∣∣∣ ∫ t

a

Φu(t, τ, x(τ), u(τ))f(τ) dτ

∣∣∣∣2dt)1/2

≤
√
2 ∥f∥L∞

m

(
∥x∥2L2

n

∫ b

a

∫ t

a

a2Φ(t, τ) dτdt+K2
1 (b−a)

∫ b

a

∫ t

a

b2Φ(t, τ) dτdt
)1/2

=
√
2 ∥f∥L∞

m
(∥x∥2L2

n
∥aΦ∥2L2(P∆,R) +K2

1 (b− a) ∥bΦ∥2L2(P∆,R))
1/2.

Similarly, as in the above,

lim
λ→0

Q(x, u+ λf, v)−Q(x, u, v)

λ
= Q′

u(x, u, v)h

in L2
n. Indeed, let us fix a sequence (λn) such that λn → 0, and consider

the limit

lim
k→∞

∫ b

a

∣∣∣∣ ∫ t

a

(
Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φu(t, τ, x(τ), u(τ))f(τ)

)
dτ

∣∣∣∣2dt.
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From the differentiability of Φ with respect to u we obtain the conver-
gence of the sequence of functions

[a, t] ∋ τ 7−→ Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk
(4.7)

− Φu(t, τ, x(τ), u(τ))f(τ) ∈ Rn

almost everywhere on [0, t] to the zero function, for t ∈ J almost
everywhere. Moreover, from the mean value theorem applied to the
coordinate functions

[0, 1] ∋ ϑ 7−→ Φj(t, τ, x(τ), u(τ) + ϑλkf(τ)) ∈ R,

it follows that the absolute values of functions (4.7) are commonly
bounded by an integrable function. Indeed,∣∣∣∣Φj(t, τ, x(τ), u(τ) + λkf(τ))− Φj(t, τ, x(τ), u(τ))

λk

∣∣∣∣
≤ |(Φj)u(t, τ, x(τ), u(τ) + ϑj(t, τ)λkf(τ))| |f(τ)|

≤ (aΦ(t, τ) |x(τ)|+ bΦ(t, τ)ωΦ(|u(τ) + ϑj(t, τ)λkf(τ)|)) |f(τ)|
≤ (aΦ(t, τ) |x(τ)|+ bΦ(t, τ)K2) |f(τ)|

for some ϑj(t, τ) ∈ (0, 1) and sufficiently large k (such that |λk| < 1),
where K2 = max{ωΦ(η); 0 ≤ η ≤ ∥u∥L∞

m
+ ∥f∥L∞

m
}. Also,

|Φu(t, τ, x(τ), u(τ))f(τ)| ≤ (aΦ(t, τ) |x(τ)|+ bΦ(t, τ)ωΦ(|u(τ)|)) |f(τ)|
≤ (aΦ(t, τ) |x(τ)|+ bΦ(t, τ)K2) |f(τ)| .

So, from the Lebesgue dominated convergence theorem, it follows that,
for t ∈ [a, b] almost everywhere, the integral

∫ t

a

(
Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φu(t, τ, x(τ), u(τ))f(τ)

)
dτ

converges to 0, i.e., the sequence of functions
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J ∋ t 7−→
∫ t

a

(
Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φu(t, τ, x(τ), u(τ))f(τ)

)
dτ ∈ Rn

converges almost everywhere on J to the zero function. Moreover,∣∣∣∣ ∫ t

a

(
Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φu(t, τ, x(τ), u(τ))f(τ)

)
dτ

∣∣∣∣2
≤

(∫ t

a

∣∣∣∣Φ(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φu(t, τ, x(τ), u(τ))f(τ)

∣∣∣∣ dτ)2

≤
(
(n+ 1)

∫ t

a

(aΦ(t, τ) |x(τ)|+ bΦ(t, τ)K2) |f(τ)| dτ
)2

≤ (n+ 1)2 ∥f∥2L∞
m

× 2

(∫ t

a

a2Φ(t, τ) dτ

∫ b

a

|x(τ)|2 dτ +K2
2 (b− a)

∫ t

a

b2Φ(t, τ) dτ

)
.

Consequently, from the Lebesgue dominated convergence theorem, we
obtain

lim
k→∞

∫ b

a

∣∣∣∣ ∫ t

a

(
Φj(t, τ, x(τ), u(τ) + λkf(τ))− Φ(t, τ, x(τ), u(τ))

λk

− Φx(t, τ, x(τ), u(τ))f(τ)

)
dτ

∣∣∣∣2dt = 0.

Now, we shall show that Q′
u is continuous on the space

Iαa+(L
2
n)× L∞

m × L∞
r .

Indeed, let (xj , uj , vj) be a sequence converging in this space to a point
(x0, u0, v0). We have:

∥(Q′
u(xj , uj , vj)−Q′

u(x0, u0, v0))f∥
2

L2
n
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≤
∫ b

a

(∫ t

a

|Φu(t, τ, xj(τ), uj(τ))−Φu(t, τ, x0(τ), u0(τ))| |f(τ)| dτ
)2

dt

≤ ∥f∥2L∞
m

∫ b

a

(∫ t

a

|Φu(t, τ, xj(τ), uj(τ))− Φu(t, τ, x0(τ), u0(τ))| dτ
)2

dt.

Thus,

∥Q′
u(xj , uj , vj)−Q′

u(x0, u0, v0)∥L(L∞
m ,L2

n)

≤
(∫ b

a

(∫ t

a

|Φu(t, τ, xj(τ), uj(τ))− Φu(t, τ, x0(τ), u0(τ))| dτ
)2

dt

)1/2

.

Of course, there exists a subsequence (xji , uji , vji) such that xji → x0
and uji → u0 pointwise almost everywhere on J . So, for t ∈ J almost
everywhere, the sequence of functions

[a, t] ∋ τ 7−→ |Φu(t, τ, xji(τ), uj(τ))− Φu(t, τ, x0(τ), u0(τ))| ∈ R

is pointwise converging to zero function and majorized by an integrable
function:

|Φu(t, τ, xji(τ), uji(τ))− Φu(t, τ, x0(τ), u0(τ))|
≤ aΦ(t, τ) |xji(τ)|+ bΦ(t, τ)ωΦ(|uji(τ)|)
+ aΦ(t, τ) |x0(τ)|+ bΦ(t, τ)ωΦ(|u0(τ)|)

≤ aΦ(t, τ) |xji(τ)|+ 2bΦ(t, τ)K3 + aΦ(t, τ) |x0(τ)| ,

where K3 = max{ωΦ(|uj(τ)|); τ ∈ J, j = 0, 1, . . .}. So, the sequence
of functions

J ∋ t 7−→
∫ t

a

|Φu(t, τ, xji(τ), uji(τ))− Φu(t, τ, x0(τ), u0(τ))| dτ ∈ R

converges pointwise to the zero function. Moreover,(∫ t

a

|Φu(t, τ, xji(τ), uj(τ))− Φu(t, τ, x0(τ), u0(τ))| dτ
)2

≤
(∫ t

a

(|Φu(t, τ, xji(τ), uj(τ))|+ |Φu(t, τ, x0(τ), u0(τ))|) dτ
)2

≤
(∫ t

a

(aΦ(t, τ) |xji(τ)|+ bΦ(t, τ)ωΦ(|uji(τ)|)
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+ aΦ(t, τ) |x0(τ)|+ bΦ(t, τ)ωΦ(|u0(τ)|)) dτ
)2

≤
((∫ t

a

a2Φ(t, τ) dτ

)1/2(∫ t

a

|xji(τ)|
2
dτ

)1/2

+ 2K3

∫ t

a

bΦ(t, τ) dτ

+

(∫ t

a

a2Φ(t, τ) dτ

)1/2(∫ t

a

|x0(τ)|2 dτ
)1/2)2

≤
((

2

∫ t

a

a2Φ(t, τ) dτ

)1/2

γαM + 2K3

√
b− a

(∫ t

a

b2Φ(t, τ) dτ

)1/2)2

,

where M > 0 is such that ∥xj∥Iα
a+(L2

n)
≤M for j = 0, 1, . . . . From the

classical Lebesgue theorem on the dominated convergence it follows
that

∥Q′
u(xji , uji , vji)−Q′

u(x0, u0, v0)∥L(L∞
m ,L2

n)
−→ 0.

In fact this means that

∥Q′
u(xj , uj , vj)−Q′

u(x0, u0, v0)∥L(L∞
m ,L2

n)
−→ 0.

Indeed, in the opposite case, we could choose a subsequence such that

(4.8) 0 < ε < ∥Q′
u(xjk , ujk , vjk)−Q′

u(x0, u0, v0)∥L(L∞
m ,L2

n)

for k ∈ N and some ε > 0. Repeating the above reasoning we could
choose a subsequence (xjki

, ujki
, vjki

) such that∥∥∥Q′
u(xjki

, ujki
, vjki

)−Q′
u(x0, u0, v0)

∥∥∥
L(L∞

m ,L2
n)

−→ 0,

in contrast to (4.8).

Differentiability of R with respect to x on Iαa+(L
2
n)×L∞

m ×L∞
r . Let

us fix a point (x, u, v) ∈ Iαa+(L
2
n)×L∞

m ×L∞
r . It is easy to see that the

mapping

R′
x(x, u, v) : I

α
a+(L

2
n) ∋ h 7−→ fx(·, x(·), v(·))h(·) ∈ L2

n

is well-defined, linear and continuous:∫ b

a

|fx(t, x(t), v(t))h(t)|2 dt ≤
∫ b

a

|fx(t, x(t), v(t))|2 |h(t)|2 dt

≤
∫ b

a

(d2f (ωf (|v(t)|))2 |h(t)|2 dt
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≤ d2fK
2
4 ∥h∥

2
L2

n
≤ d2fK

2
4 (γα)

2 ∥h∥2Iα
a+(L2

n)
,

where K4 = max{ωf (|v(t)|; t ∈ J}. In the same way as in the previous
cases we check that R′

x(x, u, v) is the differential of R at (x, u, v) with
respect to x. First we check that

lim
k→∞

∫ b

a

∣∣∣∣f(t, x(t) + λkh(t), v(t))− f(t, x(t), v(t))

λk

− fx(t, x(t), v(t))h(t))

∣∣∣∣2dt = 0.

Indeed, it is clear that the sequence of the above integrands converges
pointwise to the zero function. Basing this on the mean value theorem
we assert that this sequence is majorized by an integrable function,
namely, (n + 1)2d2fK

2
4 |h(·)|2. So, it is sufficient to use the Lebesgue

dominated convergence theorem.

To finish this part of the proof we shall demonstrate that the
mapping

R′ : Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→ R′

x(x, u, v) ∈ L(Iαa+(L2
n), L

2
n)

is continuous. So, let (xj , uj , vj) be a sequence converging in Iαa+(L
2
n)×

L∞
m × L∞

r to a point (x0, u0, v0). Similarly, as in the previous case, we
may assume that xj → x0 and vj → v0 pointwise almost everywhere
on J . We have:

∥(R′
x(xj , uj , vj)−R′

x(x0, u0, v0))h∥
2

L2
n

(4.9)

=

∫ b

a

|(fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t)))h(t)|2 dt

≤
∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 |h(t)|2 dt.

Now, we shall consider three cases. The reasoning that we present
below is due to Kamocki, and it is contained in [17].

Case 10. Assume that 1/2 < α. Then

|h(t)| =
∣∣Iαa+(Dα

a+h)(t)
∣∣ ≤ 1

Γ(α)

∫ t

a

∣∣Dα
a+h(τ)

∣∣
(t− τ)1−α

dτ
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≤ 1

Γ(α)

∥∥Dα
a+h

∥∥
L2

n

∫ t

a

dτ

(t− τ)(1−α)2

=
1

Γ(α)

∥∥Dα
a+h

∥∥
L2

n

1

2α− 1
(t− a)2α−1

≤ 1

Γ(α)

∥∥Dα
a+h

∥∥
L2

n

1

2α− 1
(b− a)2α−1

=
1

Γ(α)

1

2α− 1
(b− a)2α−1 ∥h∥Iα

a+(L2
n)

for t ∈ J almost everywhere. So, continuing (4.9), we obtain∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 |h(t)|2 dt

≤
(

1

Γ(α)

1

2α− 1
(b− a)2α−1

)2

∥h∥2Iα
a+(L2

n)

×
∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 dt.

Thus, in this case,

∥R′
x(xj , uj , vj)−R′

x(x0, u0, v0)∥L(Iα
a+(L2

n),L
2
n)

≤ 1

Γ(α)

1

2α− 1
(b− a)2α−1

×
(∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 dt
)1/2

.

Convergence of the integral
∫ b

a
|fx(t, xj(t), vj(t))−fx(t, x0(t), v0(t))|2dt

to 0 follows from the Lebesgue dominated convergence theorem (the
integrands are bounded almost everywhere on [a, b] by a constant (cf.,
(B2))).

Case 20. Assume that 0 < α < 1/2. Then, from the second part

of Theorem 2.1, it follows that if h ∈ Iαa+(L
2
n), then h ∈ L

2/(1−2α)
n

and, consequently, |h|2 ∈ Lq
1 with q = 1/(1− 2α) (of course, 1 <

1/(1− 2α) <∞). Function |fx(·, xj(·), vj(·))−fx(·, x0(·), v0(·))|2 being

essentially bounded belongs to Lq′

1 with q′ = q/(q − 1). Consequently,∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 |h(t)|2 dt
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≤
(∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2q
′
dt

)1/q′

×
(∫ b

a

|h(t)|2q dt
)1/q

= ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

∥h∥2L2q
n

= ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

∥∥Iαa+Dα
a+h

∥∥2
L2q

n

≤ ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

γ2α,2,2q
∥∥Dα

a+h
∥∥2
L2

n

= ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

γ2α,2,2q ∥h∥
2
Iα
a+(L2

n)
.

So,

∥R′
x(xj , uj , vj)−R′

x(x0, u0, v0)∥L(Iα
a+(L2

n),L
2
n)

≤ ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥L2q′
1

γα,2,2q.

In the same way as in case 10, convergence∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2q
′
dt −→ 0

follows from the Lebesgue dominated convergence theorem.

Case 30. Assume that α = 1/2. Let us observe that, if z ∈ L2
n, then

z ∈ Lp(J,Rn) for any p ∈ (1, 2) and (cf., the second part of Theorem
2.1) Iαa+z ∈ Lq(J,Rn) where

q =
p

1− αp
=

2p

2− p
> 2

as well as∥∥Iαa+z∥∥Lq(J,Rn)
≤ cα,p,q ∥z∥Lp(J,Rn)

≤ γα,p,q

((∫ b

a

1 dt

)1−p/2(∫ b

a

(|z(t)|p)2/pdt
)p/2)1/p

= γα,p,q(b− a)(2−p)/2p ∥z∥L2
n
.

So, for arbitrary fixed p ∈ (1, 2),

q =
p

1− αp
, q′ =

q

q − 2
,



540 DARIUSZ IDCZAK AND STANISLAW WALCZAK

we obtain∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2 |h(t)|2 dt

=

∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2
∣∣Iαa+Dα

a+h(t)
∣∣2 dt

≤
(∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2q
′
dt)1/q

′

×
(∫ b

a

(
∣∣Iαa+Dα

a+h(t)
∣∣2)q/2dt)2/q

= ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

∥∥Iαa+Dα
a+h

∥∥2
Lq

n

≤ ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

× γ2α,p,q(b− a)(2−p)/p
∥∥Dα

a+h
∥∥2
L2

n

= ∥|fx(·, xj(·), vj(·))− fx(·, x0(·), v0(·))|∥2L2q′
1

× γ2α,p,q(b− a)(2−p)/p ∥h∥2Iα
a+(L2

n)
.

Similarly, as in the previous cases, convergence∫ b

a

|fx(t, xj(t), vj(t))− fx(t, x0(t), v0(t))|2q
′
dt −→ 0

follows from the Lebesgue dominated convergence theorem.

Differentiability of R with respect to v on Iαa+(L
2
n)×L∞

m ×L∞
r . Let

us fix a point (x, u, v) ∈ Iαa+(L
2
n)× L∞

m × L∞
r . Clearly, the mapping

R′
v(x, u, v) : L

∞
r ∋ g 7−→ fv(·, x(·), v(·))g(·) ∈ L2

n

is well defined, linear and continuous:∫ b

a

|fv(t, x(t), v(t))g(t)|2 dt

≤
∫ b

a

|fv(t, x(t), v(t))|2 |g(t)|2 dt

≤
∫ b

a

(af |x(t)|+ bf (t)ωf (|v(t)|))2 |g(t)|2 dt
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≤ ∥g∥2L∞
r

∫ b

a

(af |x(t)|+ bf (t)ωf (|v(t)|))2dt.

In the same way as in the previous cases, using the Lebesgue dominated
convergence theorem, we check that

lim
k→∞

∫ b

a

∣∣∣∣f(t, x(t), v(t) + λkg(t))− f(t, x(t), v(t))

λk

− fv(t, x(t), v(t))g(t))

∣∣∣∣2dt = 0.

Moreover, the mapping

R′ : Iαa+(L
2
n)× L∞

m × L∞
r ∋ (x, u, v) 7−→ R′

x(x, u, v) ∈ L(L∞
r , L

2
n)

is continuous. Indeed, let (xj , uj , vj) be a sequence converging in
Iαa+(L

2
n)×L∞

m ×L∞
r to a point (x0, u0, v0). As in the previous cases, we

may assume that xj → x0 and vj → v0 pointwise almost everywhere
on J . We have

∥(R′
v(xj , uj , vj)−R′

v(x0, u0, v0))∥
2

L2
n

=

∫ b

a

|(fv(t, xj(t), vj(t))− fv(t, x0(t), v0(t)))g(t)|2 dt

≤
∫ b

a

|fv(t, xj(t), vj(t))− fv(t, x0(t), v0(t))|2 |g(t)|2 dt

≤ ∥g∥2L∞
r

∫ b

a

|fv(t, xj(t), vj(t))− fv(t, x0(t), v0(t))|2 dt.

So,

∥(R′
v(xj , uj , vj)−R′

v(x0, u0, v0))g∥L(L∞
r ,L2

n)

≤
(∫ b

a

|fv(t, xj(t), vj(t))− fv(t, x0(t), v0(t))|2 dt
)1/2

.

Using once again the Lebesgue dominated convergence theorem, we
assert that∫ b

a

|fv(t, xj(t), vj(t))− fv(t, x0(t), v0(t))|2 dt −→ 0.

The proof is completed. �
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Lemma 4.2. For any fixed (x, u, v) ∈ Iαa+(L
2
n)×L∞

m×L∞
r , the operator

F ′
x(x, u, v) : I

α
a+(L

2
n) → L2

n given by (4.2) is “one to one” and “onto.”

Proof. Let us fix a function z ∈ L2
n and consider in Iαa+(L

2
n) the

equation
(4.10)

Dα
a+h(t) +

∫ t

a

Φx(t, τ, x(τ), u(τ))h(τ) dτ − fx(t, x(t), v(t))h(t) = z(t).

Putting

Ψ(t, τ, h) = Φx(t, τ, x(τ), u(τ))h,

g(t, h) = fx(t, x(t), v(t))h+ z(t),

we see that Ψ and g satisfy assumptions from the Appendix with

d(t, τ) = CΦ|x(τ)|ωΦ(|u(τ)|)

and
L = df max{ωf (|v(τ)|); τ ∈ J}.

So, from Lemma 6.1 and the observation formulated before this lemma
it follows that equation (4.10) has a unique solution in Iαa+(L

2
n). The

proof is completed. �

Now, let us fix a function (u, v) ∈ L∞
m × L∞

r and consider the
functional

φ : Iαa+(L
2
n) ∋ x 7−→ 1

2
∥F (x, u, v)∥2

=
1

2

∫ b

a

∣∣∣∣Dα
a+x(t)+

∫ t

a

Φ(t, τ, x(τ), u(τ)) dτ−f(t, x(t), v(t))
∣∣∣∣2dt ∈ R.

It is easy to see that, for any x ∈ Iαa+(L
2
n),

|φ(x)|1/2 ≥ 1√
2

(
∥x∥Iα

a+(L2
n)

−
∥∥∥∥∫ ·

a

Φ(·, τ, x(τ), u(τ)) dτ
∥∥∥∥
L2

n

− ∥f(·, x(·), u(·))∥L2
n

)
.
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Moreover,(∫ b

a

∣∣∣∣ ∫ t

a

Φ(t, τ, x(τ), u(τ)) dτ

∣∣∣∣2dt)1/2

≤
(∫ b

a

(∫ t

a

(aΦ(t, τ) |x(τ)|+ bΦ(t, τ)ωΦ(|u(τ)|) )dτ
)2

dt

)1/2

≤
(∫ b

a

((∫ t

a

a2Φ(t, τ) dτ

)1/2(∫ t

a

|x(τ)|2 dτ
)1/2

+K1

√
b− a

(∫ t

a

b2Φ(t, τ) dτ

)1/2)2

dt

)1/2

≤
√
2

(∫ b

a

((∫ t

a

a2Φ(t, τ) dτ

)(∫ t

a

|x(τ)|2 dτ
)
+K2

1 (b− a)

×
(∫ t

a

b2Φ(t, τ) dτ

))
dt

)1/2

≤
√
2(∥x∥2L2

n
∥aΦ∥2L2(P∆,R) +K2

1 (b− a) ∥bΦ∥2L2(P∆,R))
1/2

≤
√
2(∥x∥L2

n
∥aΦ∥L2(P∆,R) +K1

√
b− a ∥bΦ∥L2(P∆,R))

≤
√
2(γα ∥x∥Iα

a+(L2
n)

∥aΦ∥L2(P∆,R) +K1

√
b− a ∥bΦ∥L2(P∆,R))

where
K1 = max{ωΦ(|u(t)|); t ∈ [a, b]},

and (∫ b

a

|f(t, x(t), v(t))|2 dt
)1/2

≤
(∫ b

a

(af |x(t)|+ bf (t)ωf (|v(t)|))2 dt
)1/2

≤
√
2

(∫ b

a

(
a2f |x(t)|

2
+ (bf (t))

2(ωf (|v(t)|))2
)
dt

)1/2

≤
√
2(a2f (γα)

2 ∥x∥2Iα
a+(L2

n)
+K2

4 ∥bf∥
2
L2

1
)1/2

≤
√
2(afγα ∥x∥Iα

a+(L2
n)

+K4 ∥bf∥L2
1
),

where
K4 = max{ωf (|v(t)|); t ∈ [a, b]}.
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So,

|φ(x)|1/2 ≥ 1√
2
(∥x∥Iα

a+(L2
n)

−
√
2γα ∥x∥Iα

a+(L2
n)

∥aΦ∥L2(P∆,R)

−
√
2K1

√
b− a ∥bΦ∥L2(P∆,R)

−
√
2afγα ∥x∥Iα

a+(L2
n)

−
√
2K4 ∥bf∥L2

1
)

=

(
1√
2
− ∥aΦ∥L2(P∆,R) γα − afγα

)
∥x∥Iα

a+(L2
n)

−K1

√
b− a ∥bΦ∥L2(P∆,R) −K4 ∥bf∥L2

1

for x ∈ Iαa+(L
2
n). It means that φ is coercive (cf., (4.1)).

In a standard way, we check that the differential φ′(x) of φ at x is
given by

φ′(x)h =

∫ b

a

(
Dα

a+x(t) +

∫ t

a

Φ(t, τ, x(τ), u(τ)) dτ − f(t, x(t), v(t))
)

×
(
Dα

a+h(t) +

∫ t

a

Φx(t, τ, x(τ), u(τ))h(τ) dτ

− fx(t, x(t), v(t))h(t)
)
dt

for h ∈ Iαa+(L
2). Consequently, for any xm, x0 ∈ Iαa+(L

2
n), we have

φ′(xm)(xm − x0) =

∫ b

a

(
Dα

a+xm(t) +

∫ t

a

Φ(t, τ, xm(τ), u(τ)) dτ

− f(t, xm(t), v(t))
)

×
(
(Dα

a+xm(t)−Dα
a+x0(t))

+

∫ t

a

Φx(t, τ, xm(τ), u(τ))(xm(τ)− x0(τ)) dτ

− fx(t, xm(t), v(t))(xm(t)− x0(t))
)
dt,

φ′(x0)(xm − x0) =

∫ b

a

(
Dα

a+x0(t)

+

∫ t

a

Φ(t, τ, x0(τ), u(τ)) dτ − f(t, x0(t), v(t))
)
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×
(
(Dα

a+xm(t)−Dα
a+x0(t))

+

∫ t

a

Φx(t, τ, x0(τ), u(τ))(xm(τ)− x0(τ)) dτ

− fx(t, x0(t), v(t))(xm(t)− x0(t))
)
dt

and

φ′(xm)(xm − x0)− φ′(x0)(xm − x0) = ∥xm − x0∥2Iα
a+(L2

n)

+

14∑
i=1

ψi(xm),

where

ψ1(xm) =

∫ b

a

(∫ t

a

Φ(t, τ, xm(τ), u(τ)) dτ

−
∫ t

a

Φ(t, τ, x0(τ), u(τ)) dτ

)
(Dα

a+xm(t)−Dα
a+x0(t)) dt,

ψ2(xm) =

∫ b

a

(f(t, x0(t), v(t))− f(t, xm(t), v(t)))

× (Dα
a+xm(t)−Dα

a+x0(t)) dt,

ψ3(xm) =

∫ b

a

Dα
a+xm(t)

∫ t

a

Φx(t, τ, xm(τ), u(τ))(xm(τ)− x0(τ)) dτ dt,

ψ4(xm) = −
∫ b

a

Dα
a+x0(t)

×
∫ t

a

Φx(t, τ, x0(τ), u(τ))(xm(τ)− x0(τ)) dτ dt,

ψ5(xm) =

∫ b

a

(∫ t

a

Φ(t, τ, xm(τ), u(τ)) dτ

×
∫ t

a

Φx(t, τ, xm(τ), u(τ))(xm(τ)− x0(τ)) dτ

)
dt,

ψ6(xm) = −
∫ b

a

(∫ t

a

Φ(t, τ, x0(τ), u(τ)) dτ

×
∫ t

a

Φx(t, τ, x0(τ), u(τ))(xm(τ)− x0(τ)) dτ

)
dt,
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ψ7(xm) = −
∫ b

a

(
f(t, xm(t), v(t))

×
∫ t

a

Φx(t, τ, xm(τ), u(τ))(xm(τ)− x0(τ)) dτ
)
dt,

ψ8(xm) =

∫ b

a

(
f(t, x0(t), v(t))

×
∫ t

a

Φx(t, τ, x0(τ), u(τ))(xm(τ)− x0(τ)) dτ
)
dt,

ψ9(xm) = −
∫ b

a

Dα
a+xm(t)fx(t, xm(t), v(t))(xm(t)− x0(t)) dt,

ψ10(xm) =

∫ b

a

Dα
a+x0(t)fx(t, x0(t), v(t))(xm(t)− x0(t)) dt,

ψ11(xm) = −
∫ b

a

∫ t

a

Φ(t, τ, xm(τ), u(τ)) dτ

× fx(t, xm(t), v(t))(xm(t)− x0(t)) dt,

ψ12(xm) =

∫ b

a

∫ t

a

Φ(t, τ, x0(τ), u(τ)) dτ

× fx(t, x0(t), v(t))(xm(t)− x0(t)) dt,

ψ13(xm) =

∫ b

a

f(t, xm(t), v(t))

× fx(t, xm(t), v(t))(xm(t)− x0(t)) dt,

ψ14(xm) = −
∫ b

a

f(t, x0(t), v(t))

× fx(t, x0(t), v(t))(xm(t)− x0(t)) dt.

We shall show that φ satisfies the (PS) condition. Indeed, if (xm) is
a (PS) sequence for φ, then the coercivity of φ implies its bounded-
ness. Consequently, there exists a subsequence (xmk

) which is weakly
convergent in Iαa+(L

2
n) to some x0. Since (cf., [15, Lemma 3]) for any

sequence (xn) weakly convergent in Iαa+(L
2
n) to x0, (xn) is strongly con-

vergent to x0 in L2
n and the sequence of derivatives (Dα

a+xn) is weakly
convergent to Dα

a+x0 in L2
n, therefore xmk

→ x0 in L2
n with respect to

the norm and Dα
a+xmk

⇀ Dα
a+x0 weakly in L2

n.

First, we shall show that ψi(xmk
) →
k→∞

0 for i = 1, . . . , 14.



A GLOBAL IMPLICIT FUNCTION THEOREM 547

Let us consider the first term ψ1(xmk
). In the same way as in the

proof of Lemma 4.1, we check that∫ ·

a

(Φ(·, τ, xmk
(τ))− Φ(·, τ, x0(τ))) dτ −→

m→∞
0

in L2
n. Consequently, ψ1(xmk

) as a scalar product in L2
n of the functions

Dα
a+xm(·)−Dα

a+x0(·) and
∫ ·
a
(Φ(·, τ, xmk

(τ), u(τ))−Φ(·, τ, x0(τ), u(τ))) dτ
tends to 0 as k → ∞. Similarly, using the growth condition on f , we
assert that ψ2(xmk

) → 0. Convergence of ψi(xmk
) to 0 for i = 3, . . . , 14

follows from the convergence of xmk
(·) to x0(·) in L2.

Since φ′(x0) is linear and continuous functional on Iαa+(L
2
n), conver-

gence of φ′(x0)(xmk
− x0) to 0 follows directly from the weak conver-

gence xmk
⇀ x0 in Iαa+(L

2
n).

Convergence of φ′(xmk
)(xmk

− x0) to 0 follows from the estimation

|φ′(xmk
)(xmk

− x0)| ≤ ∥φ′(xmk
)∥L(Iα

a+(L2
n),R)

∥xmk
− x0∥Iα

a+(L2
n)
,

boundedness of the sequence (xmk
) in Iαa+(L

2
n) and convergence of

φ′(xmk
) to 0.

Thus, xmk
→ x0 in Iαa+(L

2
n) with respect to the norm.

So, all assumptions of the global implicit function theorem are
satisfied. Consequently, for any (u, v) ∈ L∞

m×L∞
r , there exists a unique

solution xu,v ∈ Iαa+(L
2
n) of the problem (1.2), the mapping

λ : L∞
m × L∞

r ∋ (u, v) 7−→ xu,v ∈ Iαa+(L
2
n)

is continuous differentiable in the Frechet sense on L∞
m × L∞

r and the
differential λ′(u, v) at a point (u, v) ∈ L∞

m × L∞
r is the following

λ′(u, v) : L∞
m × L∞

r ∋ (f, g) 7−→ zf,g ∈ Iαa+(L
2
n),

where zf,g is such that

Dα
a+zf,g(t) +

∫ t

a

Φx(t, τ, xu,v(τ), u(τ))zf,g(τ) dτ

− fx(t, xu,v(t), v(t))zf,g(t)

= −
∫ t

a

Φu(t, τ, xu,v(τ), u(τ))f(τ) dτ + fv(t, xu,v(t), v(t))g(t)

almost everywhere on J .
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Remark 4.3. Let us point out that, if we replace the growth condition
on Φx from (A2) with the following one

|Φx(t, τ, x, u)| ≤ cΦ(t, τ)ωΦ(|u|)

for (t, τ) ∈ P∆ almost everywhere, x ∈ Rn, u ∈ Rm, where cΦ ∈
L2(P∆,R+

0 ), ωΦ ∈ C(R+
0 ,R

+
0 ), assuming additionally that∫ t

a

c2Φ(t, τ) dτ ≤ C

for t ∈ J almost everywhere and some C > 0, then the existence of a
unique solution xu,v of (1.2), for any fixed (u, v), can be deduced from
the results contained in the Appendix (with the aid of the mean value
theorem and without a condition of type (4.1)). Applying, additionally,
the local implicit function theorem, one can obtain continuous differ-
entiability in Frechet sense of the mapping L∞

m ×L∞
r ∋ (u, v) 7→ xu,v ∈

Iαa+(L
2
n).

5. Example. Let us fix α ∈ (0, 1), C > 0, E > 0, and consider the
following problem
(5.1) Dα

a+x(t) +
∫ t

a
C
√
t− τ ln(

√
(x(τ))2 + 1 + (u(τ))2) dτ

= E 3
√
t sin(x(t) + 1 + v(t)), t ∈ [0, 1] almost everywhere,

I1−α
a+ x(a) = 0,

where x ∈ Iαa+(L
2([0, 1],R)), u ∈ L∞([0, 1],R) and v ∈ L∞([0, 1],R).

So, it is a particular case of problem (1.2) with the functions

Φ : P∆ × R× R → R,

Φ(t, τ, x, u) = C
√
t− τ ln(

√
x2 + 1 + u2)

where P∆ = {(t, τ) ∈ [0, 1]× 0, 1]; τ ≤ t} and

f : [0, 1]× R× R → R,

f(t, x, v) = E
3
√
t sin(x+ 1 + v).

Of course, these functions are measurable in (t, τ) ∈ P∆, t ∈ [0, 1],
respectively, and continuous differentiable with respect to (x, u) ∈
R× R, (x, v) ∈ R× R, respectively. Moreover, using the inequalities
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ln s ≤
√
s and

√
a+ b ≤

√
a+

√
b, we obtain

|Φ(t, τ, x, u)| =
∣∣∣C√t− τ ln(

√
x2 + 1 + u2)

∣∣∣
≤ C

√
t− τ ln(

√
x2 + 1 + u2)

≤ C
√
t− τ

√√
x2 + 1 + u2

≤ C
√
t− τ(

√√
x2 +

√
1 + u2)

≤ C
√
t− τ(

√
|x|+

√
1 + u2)

≤ C
√
t− τ(|x|+ 1 +

√
1 + u2)

= C
√
t− τ |x|+ C

√
t− τ(

√
1 + |u|2 + 1)

≤ C
√
t− τ |x|+ C

√
t− τ max{(

√
1 + |u|2 + 1), 2 |u|}

and

|Φx(t, τ, x, u)| = C
√
t− τ

|x|
(
√
x2 + 1 + u2)

√
x2 + 1

≤ C |x| 1

(
√
x2 + 1 + u2)

√
x2 + 1

≤ C |x| ≤ C |x|max{(
√
1 + |u|2 + 1), 2 |u|} |Φu(t, τ, x, u)|

= C
√
t− τ

2 |u|√
x2 + 1 + u2

≤ C
√
t− τ2 |u|

≤ C
√
t− τ max{(

√
1 + |u|2 + 1), 2 |u|}

≤ C
√
t− τ |x|

+ C
√
t− τ max{(

√
1 + |u|2 + 1), 2 |u|}

for (t, τ) ∈ P∆, (x, u) ∈ R× R. So, the growth conditions concerning
Φ are satisfied with

aΦ(t, τ) = bΦ(t, τ) = C
√
t− τ , CΦ = C,

ωΦ(r) = max{
√
1 + r2 + 1, 2r}.
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Let us observe that

∥aΦ∥L2(P∆,R) =
C√
6
.

Similarly,

|f(t, x, v)| = E
3
√
t |sin(x+ 1 + v)|

≤ E
3
√
t |x+ 1 + v)|

≤ E
3
√
t |x|+ E

3
√
t(|v|+ 1)

≤ E |x|+ E
3
√
t(|v|+ 1)

and

|fx(t, x, v)| = E
3
√
t |cos(x+ 1 + v)|

≤ E ≤ E(|v|+ 1),

|fv(t, x, v)| = E
3
√
t |cos(x+ 1 + v)|

≤ E
3
√
t ≤ E

3
√
t(|v|+ 1)

≤ E |x|+ E
3
√
t(|v|+ 1)

for t ∈ [0, 1], (x, u) ∈ R× R. Thus, the growth conditions concerning
f are satisfied with

af = df = E, bf (t) = E
3
√
t,

ωf (r) = r + 1.

Choosing the constants C and E such that

1

Γ(α+ 1)

(
C√
6
+ E

)
<

1√
2

we see that (4.1) is satisfied (using MAPLE one can check that, for
example, constants α = 1/2 and C = E = 1/3 satisfy the above
inequality).

Consequently, for any pair of functional parameters u ∈ L∞([0, 1],R),
v ∈ L∞([0, 1],R), there exists a unique solution xu,v to problem (5.1),
in the space Iαa+(L

2
n), and the mapping

L∞([0, 1],R)× L∞([0, 1],R) ∋ (u, v) −→ xu,v ∈ Iαa+(L
2
n)

is continuous differentiable.
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6. Appendix. Let us consider the following system:

(6.1) Dα
a+x(t) +

∫ t

a

Ψ(t, τ, x(τ)) dτ = g(t, x(t)), t ∈ J a.e.,

where Ψ : P∆ × Rn → Rn, g : J × Rn → Rn and x ∈ Iαa+(L
2
n). On the

functions Ψ and g we assume that

· Ψ(·, ·, x) is measurable on P∆ for any x ∈ Rn, and

|Ψ(t, τ, x1)−Ψ(t, τ, x2)| ≤ d(t, τ) |x1 − x2|

for (t, τ) ∈ P∆ almost everywhere, x1, x2 ∈ Rn, where d ∈
L2(P∆,Rn) and ∫ t

a

d2(t, s) ds ≤ D

for t ∈ J almost everywhere and some D > 0;
· Ψ(·, ·, 0) ∈ L2(P∆,Rn);
· g(·, x) is measurable on J for any x ∈ Rn, and

|g(t, x1)− g(t, x2)| ≤ L |x1 − x2|

for t ∈ J almost everywhere, x1, x2 ∈ Rn, where L > 0 is some
constant;

· g(·, 0) ∈ L2
n.

It is easy to see that the existence of a unique solution x to system
(6.1) in the space Iαa+(L

2
n) is equivalent to the existence of a unique

solution l to system

(6.2) l(t) +

∫ t

a

Ψ(t, τ, Iαa+l(τ)) dτ = g(t, Iαa+l(t)), t ∈ J a.e.,

in the space L2
n; in such a case, Dα

a+x = l. We have:

Lemma 6.1. There exists a unique fixed point of the operator

(6.3) T : L2
n ∋ l 7−→ g(t, Iαa+l(t))−

∫ t

a

Ψ(t, τ, Iαa+l(τ)) dτ ∈ L2
n.

Proof. Operator T is well-posed. Indeed, the squared integrability
of the first term follows from the Lipschitz condition posed on g. The
fact that the second term belongs to L2

n can be checked as in the proof
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of Lemma 4.1. We shall show that there exists a positive integer k such
that the operators

Tg : L2
n ∋ l 7−→ g(t, Iαa+l(t)) ∈ L2

n

TΨ : L2
n ∋ l 7−→

∫ t

a

Ψ(t, τ, Iαa+l(τ)) dτ ∈ L2
n

are contracting with constants ξ1, ξ2 ∈ (0, 1/2), respectively, provided
that L2

n is considered with the Bielecki norm

∥l∥k =

(∫ 1

a

e−kt |l(t)|2 dt
)1/2

, l ∈ L2
n.

Indeed, let us fix k ∈ N. In [17], it is shown that

∥Tg(l1)− Tg(l2)∥2k =

∫ b

a

e−kt
∣∣g(t, Iαa+l1(t))− g(t, Iαa+l2(t))

∣∣2 dt
≤ γα(L

2/(2k)α) ∥l1 − l2∥2k

for l1, l2 ∈ L2
n. In [15, Proof of Lemma 7], it is shown that

∥TΨ(l1)− TΨ(l2)∥2k ≤ (γα)
2(D/k) ∥l1 − l2∥2k

for l1, l2 ∈ L2
n. So, it is sufficient to choose k such that

max{L
√
γα/(2k)α, γα

√
(D/k)} < 1

2
,

and the proof is completed. �
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