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ABSTRACT. This paper is concerned with existence re-
sults for a quite general nonlinear functional integral equa-
tion in L1 spaces. For this purpose, making use of the De
Blasi measure of weak noncompactness, we first establish a
new fixed point theorem of the nonautonomous superposi-
tion operators. After that, our theorem is applied to prove
the solvability of the mentioned nonlinear functional integral
equation.

1. Introduction. In the present paper, we are concerned with the
solvability of the following quite general nonlinear functional integral
equation

(1.1) x(t) = f
(
t, x(t),

∫
Ω

k(t, s)u(s, x(s)) ds
)
, t ∈ Ω,

in L1(Ω, X), the space of Lebesgue integrable functions on a measurable
subset Ω of Rn with values in X. Here, f : Ω × X × X → X and
u : Ω ×X → Y are given nonlinear functions, while X and Y are two
finite dimensional Banach spaces. The kernel k is measurable on Ω×Ω
such that, for each t ∈ Ω, the function s 7→ k(t, s) belongs to L∞, and
the Hammerstein integral operator K, generated by k, is continuous
from L1(Ω, Y ) into L1(Ω, X).

Note that equation (1.1) may be written in the form

(1.2) x = F (x,Ax),
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where F : L1(Ω, X)× L1(Ω, X) → L1(Ω, X) and A : D ⊆ L1(Ω, X) →
L1(Ω, X) are two given operators. Our goals in this paper are to
establish a new fixed point theorem for the solvability of equation (1.2),
and to study under what conditions equation (1.1) is solvable in
L1(Ω, X) by applying our new theorem.

The organization of this paper is as follows. In Section 2, we gather
some notions and preliminary facts, which will be needed in our cur-
rent study, including the concepts and properties of the measure of
weak noncompactness. In Section 3, we establish a fixed point theorem
for equation (1.2) by means of the measure of weak noncompactness.
In Section 4, we prove the existence of integrable solutions for equa-
tion (1.1) by applying our new theorem.

2. Preliminaries. Let E be a Banach space. From now on, we
denote by B(E) the collection of all nonempty bounded subsets of E,
and W(E) is the subset of B(E) consisting of all relatively weakly
compact subsets of E. Denote by Ur the closed ball in E centered at 0
with radius r. In what follows, we accept the following definition [3].

Definition 2.1. LetM,M1 andM2 be in B(E). A function µ : B(E) →
R+ is said to be a measure of weak noncompactness if it satisfies the
following conditions:

(i) The family ker (µ) := {M ∈ B(E) : µ(M) = 0} is nonempty and
ker (µ) ⊆ W(E);

(ii) M1 ⊆M2 ⇒ µ(M1) ≤ µ(M2);

(iii) µ(co (M)) = µ(M), where co (M) refers to the closed convex
hull of M ;

(iv) µ(λM1 + (1− λ)M2) ≤ λµ(M1) + (1− λ)µ(M2), for λ ∈ [0, 1];

(v) if (Mn)
∞
n=1 is a decreasing sequence of nonempty, bounded and

weakly closed subsets of X with limn→∞ µ(Mn) = 0, then M∞ :=∩∞
n=1Mn is nonempty.

The family ker(µ) described in (i) is called the kernel of the measure
of weak noncompactness µ. Note that the intersection set M∞ from
(v) belongs to ker(µ) since µ(M∞) ≤ µ(Mn) for every n ∈ N and
limn→∞ µ(Mn) = 0.
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Definition 2.2. Let E1 and E2 be two Banach spaces, and let D be
a subset of E1. An operator T : D → E2 is said to be ws-compact if
it is continuous and, for any sequence (xn)n∈N in D which is weakly
convergent in E1, the sequence (Txn)n∈N has a strongly convergent
subsequence; in addition, T is said to be ww-compact if it is continuous
and, for any sequence (xn)n∈N in D which is weakly convergent in E1,
the sequence (Txn)n∈N has a weakly convergent subsequence.

Remark 2.3. A continuous operator is ws-compact if and only if it
maps relatively weakly compact sets into relatively strongly compact
ones; and it is ww-compact if and only if it maps relatively weakly
compact sets into relatively weakly compact ones, since the weak
compactness of the sets in a Banach space is equivalent with their
weakly sequential compactness by the Eberlein-S̆mulian theorem (see
[10, V.6.1, Theorem, page 430]).

The first important example of a measure of weak noncompactness
has been defined by De Blasi [7] as follows:

ω(M) = inf{r > 0 : ∃W ∈ W(E) such that M ⊆W + Ur}.

The De Blasi measure of weak noncompactness has some interesting
properties. It plays a significant role in nonlinear analysis and has
some applications.

Nevertheless, it is rather difficult to express the De Blasi measure
of weak noncompactness with the help of a convenient formula in a
concrete Banach space. Such a formula is known in the case of the
space of L1. In [1], Appell and De Pascale give to ω the following
simple form
(2.1)

ω(M) = lim sup
ε→0

{
sup
x∈M

[ ∫
D

∥x(t)∥Xdt : D ⊆ Ω,meas (D) ≤ ε

]}
,

for all bounded subsetsM of L1(Ω, X), where X is a finite dimensional
Banach space, Ω ⊆ Rn and meas (·) denotes the Lebesgue measure.
Throughout the sequel, we shall use the De Blasi measure of weak
noncompactness ω.

Now, let us assume that Ω ⊆ Rn is a bounded domain. Consider a
function f : Ω × X → Y , where X and Y are two separable Banach
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spaces. We say that f is a Caratheódory function if: (i) for any fixed
x ∈ X, the map f(·, x) is measurable from Ω to Y; (ii) for almost every
t ∈ Ω, the map f(t, ·) is continuous from X to Y .

Let m(Ω, X) be the set of all measurable functions ψ : Ω → X.
If f is a Carathéodory function, then f defines a mapping Nf :
m(Ω, X) → m(Ω, Y ) by Nfψ(t) = f(t, ψ(t)). This mapping is said
to be the superposition operator (or Nemytskii operator) associated
to f . For the theory concerning superposition operators the reader
may consult Appell and Zabrejko [2]. The following result due to
Lucchetti and Patrone [12] is an extension to separable Banach spaces
of the remarkable theorem due to Krasnosel’skii about superposition
operators for scalar valued functions [13] (see also [14]).

Lemma 2.4. Let X,Y be two separable Banach spaces, and let Ω be a
domain in Rn. If f is a Carathéodory function, then the superposition
operator Nf maps L1(Ω, X) into L1(Ω, Y ), if and only if there exist a
function a ∈ L1

+(Ω) and a constant b > 0 such that

∥f(t, x)∥Y ≤ a(t) + b∥x∥X ,

where L1
+(Ω) denotes the positive cone of the space a ∈ L1(Ω).

In this case, the operator Nf is continuous and bounded, in the
sense that bounded sets in L1(Ω, X) are mapped into bounded sets of
L1(Ω, Y ). For a given operator A : D ⊆ L1(Ω, X) → L1(Ω, X), the
composite operator Nf ◦A : D → L1(Ω, Y ), defined by

ψ(t) 7→ f(t, Aψ(t)), for all ψ ∈ L1(Ω, X),

is called the nonautonomous type superposition operator. Now we see
that the solutions of equation (1.2) are just the fixed points of the
nonautonomous type superposition operator NF ◦A on D.

3. The family of φ-contractions and the fixed point theorem.

Definition 3.1. Let D be a nonempty subset of a Banach space E,
and let F : E × E → E be an operator. The family of operators
{F (·, y) : y ∈ D} is said to be φ-contractive (or nonlinear contractive),
if there exists a continuous and nondecreasing function φ : R+ → R+
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such that the inequality

∥F (x1, y)− F (x2, y)∥ ≤ φ(∥x1 − x2∥), for all x1, x2 ∈ X,

holds for all y ∈ D, where φ satisfies φ(r) < r for r > 0.

The φ-contractiveness of a family of operators plays an important
role in the following results.

Lemma 3.2. Let D be a nonempty subset of a Banach space E. If
F : E × E → E is continuous, and the family {F (·, y) : y ∈ D} is
φ-contractive, then there exists a continuous map J : D → E such that
Jy = F (Jy, y) for any y ∈ D.

Proof. For an arbitrary fixed y ∈ D, the mapping F (·, y) defined by
x 7→ F (x, y) is a nonlinear contraction and maps E into itself, so it has
a unique fixed point by [6, Theorem 1]. Let us denote by J : D → E
the map which assigns to each y ∈ D the unique point Jy in E such
that Jy = F (Jy, y). Thus, the map J is well defined.

Consider a sequence (yn)n∈N in D converging to some y0 ∈ D, we
have

∥Jyn − Jy0∥ = ∥F (Jyn, yn)− F (Jy0, y0)∥
≤ ∥F (Jyn, yn)− F (Jy0, yn)∥+ ∥F (Jy0, yn)− F (Jy0, y0)∥
≤ φ(∥Jyn − Jy0∥) + ∥F (Jy0, yn)− F (Jy0, y0)∥,

which implies

∥Jyn − Jy0∥ − φ(∥Jyn − Jy0∥) ≤ ∥F (Jy0, yn)− F (Jy0, y0)∥.

Let rn := ∥Jyn − Jy0∥. From the continuity of F , we obtain that
rn −φ(rn) → 0 as n→ ∞. The property of φ shows that rn → 0, that
is, Jyn → Jy0. Thus, the map J is continuous on D. �

Theorem 3.3. Let E be a Banach space, and let M be a nonempty
subset of E. Suppose that the two continuous operators A : M → E
and F : E × E → E satisfy :

(i) A is ws-compact ;

(ii) the family {F (·, y) : y ∈ A(M)} is φ-contractive;
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(iii) there exists a nonempty, weakly compact and convex subset P of
M such that

x = F (x,Az) =⇒ x ∈ P, for all z ∈ P.

Then there is a point x in M such that x = F (x,Ax).

Proof. Let us denote by J : A(M) → E the map which assigns to

each y ∈ A(M) the unique point Jy in E such that Jy = F (Jy, y).

From Lemma 3.2, the map J is well defined and continuous on A(M).

For any z ∈ P, by assumption (iii) we infer that there is x =
(J ◦A)z ∈ P such that x = F (x,Az). This shows that (J ◦A)(P) ⊆ P.

Moreover, (J ◦ A)(P) is relatively strongly compact since (P) is
weakly compact, A is ws-compact and J is continuous on A(P). Now,
applying the Schauder fixed point theorem, we conclude that J ◦A has
at least one fixed point x ∈ P ⊆ M such that (J ◦ A)x = x, which
implies that

F (x,Ax) = F ((J ◦A)x,Ax) = (J ◦A)x = x.

This completes the proof. �

Remark 3.4. The above result includes a general form of some fixed
point theorems involving several operators, such as F1x := Ax+Bx in
Banach space (see [15]), or F2x := AxBx+Cx in Banach algebras etc.

Dhage [8] gives F2 a version of strong topology; Ben Amar et al. [5]
gives it a version of sequentially weak continuity. However, as far as
the author knows, there is still not a version of ws-compactness about
F2 in the previous literature.

4. A general nonlinear integral equation in L1 space. In this
section we mainly consider equation (1.1). Solutions to it will be sought
in L1(Ω, X), endowed with the standard norm ∥ · ∥ :=

∫
Ω
∥x(t)∥Xdt.

We will assume that the functions involved in equation (1.1) satisfy
the following conditions:

(H1) u : Ω × X → Y is a Carathéodory function, and there exist
a function a ∈ L1

+(Ω) and a constant b > 0 such that ∥u(t, x)∥Y ≤
a(t) + b∥x∥X .
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(H2) The function k : Ω×Ω → L(Y,X) is strongly measurable where
L(Y,X) refers to the space of linear operators from Y to X.

(H3) For each t ∈ Ω, the function

ρ(t) : Ω −→ L(Y,X), s 7−→ ρ(t)(s) := k(t, s)

belongs to L∞(Ω,L(Y,X)); and the function

ρ : Ω −→ L(Y,X), t 7−→ ρ(t)

belongs to L1(Ω, L∞(Ω,L(Y,X))) which is denoted by L1(Ω, L∞) for
short.

(H4) f : Ω × X × X is a Carathéodory function, and there exist a
function g ∈ L1

+(Ω) and two positive numbers α, β such that

∥f(t, x(t), y(t))∥X ≤ g(t) + α∥x(t)∥X + β∥y(t)∥X ,

for any x, y ∈ L1(Ω, X).

(H5) α + bβ∥K∥ + ∥g∥ ≤ 1 if g ̸= 0; otherwise, a + bβ∥K∥ < 1,
where ∥K∥ denotes the norm of the linear operator K generated by the
function k.

(H6) There exists a continuous and nondecreasing function φ : R+ →
R+ with φ(r) < r for r > 0 such that∫

Ω

∥f(t, x1(t), y(t))− f(t, x2(t), y(t))∥Xdt ≤ φ(∥x1 − x2∥),

for any x1, x2 ∈ L1(Ω, X) whenever y(t) =
∫
Ω
k(t, s)u(s, z(s)) ds with

z ∈ Ur0 , where r0 satisfies

r0 ≥ ∥g∥+ β∥K∥∥a∥
1− α− bβ∥K∥

.

First notice that equation (1.1) may be written in the abstract form

x = F (x,Ax),

where F is the superposition operator associated to f (i.e., F = Nf ):

F : L1(Ω, X)× L1(Ω, X) −→ L1(Ω, X)),

(x, y) 7−→ F (x, y) : Ω −→ X; F (x, y)(t) = f(t, x(t), y(t));



280 FULI WANG

and A := K ◦ Nu appears as the composition of the superposition
operator associated to u with the linear operator defined by

K : L1(Ω, Y ) −→ L1(Ω, X),

ψ 7−→ Kψ : Ω −→ X; Kψ(t) =

∫
Ω

k(t, s)ψ(s) ds.

Our aim is now to prove that the nonautonomous type superposition
operator Nf ◦A has a fixed point in L1(Ω, X). Before starting to prove
the solvability of equation (1.1), we give some remarks.

Remark 4.1. (i) It should be noted that assumptions (H2) and (H3)
lead to the estimate∥∥∥∥∫

Ω

k(t, s)ϕ(s) ds

∥∥∥∥
X

≤ ∥ρ(t)∥L1(Ω,L(Y,X)) · ∥ϕ∥L1(Ω,Y ),

and so

∥Kϕ∥L1(Ω,X) =

∫
Ω

∥∥∥∥∫
Ω

k(t, s)ϕ(s) ds

∥∥∥∥
X

dt ≤ ∥ρ∥L1(Ω,L∞) · ∥ϕ∥L1(Ω,Y ),

for any ϕ ∈ L1(Ω, Y ). This shows that the linear operator K is
continuous, hence weakly continuous, from L1(Ω, Y ) into L1(Ω, X) and
that ∥K∥ ≤ ∥ρ∥L1(Ω,L∞).

(ii) Assumption (H1) shows that the superposition operator Nu is
continuous and maps bounded sets of L1(Ω, X) into bounded sets of
L1(Ω, Y ) by Lemma 2.4.

(iii) Considering in the spaceX×X the norm α∥x∥X+β∥y∥X for the
product topology and using Lemma 2.4, we can see that the assumption
(H4) implies that the superposition operatorNf is continuous and maps
bounded sets of L1(Ω, X)× L1(Ω, X) into bounded sets of L1(Ω, X).

Now we are in a position to state our main result.

Theorem 4.2. Let X and Y be two finite dimensional Banach spaces,
and let Ω be a bounded domain of Rn. Assume that the assumptions
(H1)–(H6) are satisfied, then the equation

x(t) = f

(
t, x(t),

∫
Ω

k(t, s)u(s, x(s) ds

)
, t ∈ Ω,
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i.e., equation (1.1) has at least a solution x ∈ L1(Ω, X).

Proof. Define the operators A and F as follows:

(Az)(t) :=

∫
Ω

k(t, s)u(s, z(s)) ds, F (x, y)(t) := f(t, x(t), y(t)).

Thus, the solutions of equation x = F (x,Ax) satisfy equation (1.1). We
shall point out that the assumptions of Theorem 3.3 are all fulfilled.
The proof is divided into several steps.

(i) By Remark 4.1, the operators A : L1(Ω, X) → L1(Ω, X) and
F : L1(Ω, X)× L1(Ω, X) → L1(Ω, X) are well defined and continuous.

Let S be a bounded subset of L1(Ω, X), and let M > 0 be such that
∥ψ∥L1(Ω,X) ≤M for all ψ ∈ S. We have:

∥Aψ(t)∥X ≤ ∥ρ(t)∥L∞(Ω,L(X,Y ))∥Nuψ∥L1(Ω,Y )(4.1)

≤ ∥ρ(t)∥L∞(Ω,L(X,Y ))(∥a∥+ b∥ψ∥L1(Ω,X))

≤ ∥ρ(t)∥L∞(Ω,L(X,Y ))(∥a∥+ bM).

Now we check that A is ws-compact. To this end, let (ψn)n∈N be
a weakly convergent sequence of L1(Ω, X). Since Nu is ww-compact
by [11, Lemma 3.2], the sequence (Nuψn)n∈N has a weakly convergent
subsequence in L1(Ω, Y ), say (Nuψnk

)k∈N. Let η be the weak limit
of (Nuψnk

)k∈N. Accordingly, bearing in mind the boundedness of the
function k(t, ·) = ρ(t), we get

(4.2) (Aψnk
)(t) =

∫
Ω

k(t, s)u(s, ψnk
(s)) ds −→

∫
Ω

k(t, s)η(s)) ds.

Thus, (4.1) along with (4.2) allow us to apply the dominated conver-
gence theorem to conclude that the sequence (Aψnk

)k∈N converges in
L1(Ω, X). So, the operator A is ws-compact, and assumption (i) of
Theorem 3.3 is fulfilled.

(ii) For any y ∈ A(Ur0), there exists a sequence (zn)n∈N ⊆ Ur0 such
that limn→∞Azn = y. Thus, by the continuity of F and (H6), we
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obtain that:

∥F (x1, y)− F (x2, y)∥
= lim

n→∞
∥F (x1, Azn)− F (x2, Azn)∥

= lim
n→∞

∫
Ω

∥f(t, x1(t), Azn(t))− f(t, x2(t), Azn(t))∥Xdt

≤ φ(∥x1 − x2∥), for all x1, x2 ∈ L1(Ω, X).

This shows that assumption (ii) of Theorem 3.3 is fulfilled.

(iii) If there exists x ∈ L1(Ω, X) such that x(t) = f(t, x(t), Az(t))
for z ∈ Ur0 , then by (H4) we have:

∥f(t, x(t), Az(t))∥X ≤ g(t) + α∥x(t)∥X + β∥Az(t)∥X
≤ g(t) + α∥x(t)∥X + β∥K∥∥Nuz(t)∥Y
≤ g(t) + α∥x(t)∥X + β∥K∥ (a(t) + b∥z(t)∥X) .

It follows that

∥x(t)∥ =

∫
Ω

∥f(t, x(t), Az(t))∥X

≤ ∥g∥+ α∥x∥+ β∥K∥(∥a∥+ b∥z∥),

which implies

∥x∥ ≤ (1− α)−1 (∥g∥+ β∥K∥(∥a∥+ b∥z∥))
≤ (1− α)−1 (∥g∥+ β∥K∥∥a∥+ bβ∥K∥r0)
≤ r0,

since ∥g∥ + β∥K∥∥a∥ ≤ r0(1 − α − bβ∥K∥) by (H6). Thus, we obtain
that x ∈ Ur0 .

(iv) Let P0 := Ur0 , and let

Pn := co
{
x ∈ L1(Ω, X) : x(t)

= f

(
t, x(t),

∫
Ω

k(t, s)u(s, z(s)) ds

)
, z ∈ Pn−1

}
.

Then, Pn (n = 0, 1, 2, . . .) are all nonempty closed convex sets, and
therefore they are weakly closed. Moreover, we have P1 ⊆ Ur0 = P0
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from step (iii), and by the induction, we may infer that Pn ⊆ Pn−1 for
all n ∈ N.

On the other hand, for each ε > 0 and a nonempty measurable
subset D ⊆ Ω such that meas (D) ≤ ε, we know that for any z ∈ Pn−1

and x ∈ Pn, if

x(t) = f

(
t, x(t),

∫
Ω

k(t, s)u(s, z(s)) ds

)
,

then ∫
D

∥x(t)∥ dt =
∫
D

∥∥∥∥f(t, x(t), ∫
Ω

k(t, s)u(s, z(s)) ds

)∥∥∥∥
X

dt

≤
∫
D

∥g(t)∥ dt+ α

∫
D

∥x(t)∥ dt

+ β∥K∥
(∫

D

a(t) dt+ b

∫
D

∥z(t)∥ dt
)
,

which implies that∫
D

∥x(t)∥ dt ≤
∫
D
∥g(t)∥ dt+ β∥K∥

(∫
D
a(t) dt+ b

∫
D
∥z(t)∥ dt

)
(1− α)

.

Taking into account the fact that the set consisting of one element is
weakly compact, formula (2.1) leads to

lim sup
ε→0

{∫
D

∥g(t)∥Xdt : meas (D) ≤ ε

}
= 0,

and

lim sup
ε→0

{∫
D

∥a(t)∥Xdt : meas (D) ≤ ε

}
= 0.

As a result,

lim sup
ε→0

{∫
D

∥x(t)∥Xdt : meas (D) ≤ ε

}
≤ (1− α)−1bβ∥K∥ lim sup

ε→0

{
sup

z∈Pn−1

∫
D

∥z(t)∥Xdt : meas (D) ≤ ε
}
,

which implies that ω(Pn) ≤ λω(Pn−1) from (2.1), where λ := (1 −
α)−1bβ∥K∥ < 1 by (H6).
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Further, from ω(Pn) ≤ λω(Pn−1) ≤ · · · ≤ λnω(P0) for n ∈
N, we obtain that limn→∞ ω(Pn) = 0. Setting P =

∩∞
n=0 Pn−1,

by Definition 2.1, we see that P is nonempty and weakly compact.
Moreover, we infer that, for any z ∈ P if x = F (x,Az) holds, then
x ∈ P. Now assumption (iii) of Theorem 3.3 is fulfilled, and we
accomplish the proof. �

On the L1 space, there are some Hammerstein type nonlinear inte-
gral equations such as the following:

(4.3) x(t) = g(t, x(t)) + λ

∫
Ω

k(t, s)u(s, x(s)) ds, t ∈ Ω,

(4.4) x(t) = f1(t, x(t)) + f2(t, x(t))

∫
Ω

k(t, s)u(s, x(s)) ds, t ∈ Ω.

Their solvability has been discussed respectively in the previous litera-
ture under different assumptions (see, for instance, [4, 5, 8, 9, 11, 15]).
Now, it should be seen that we may investigate such equations by means
of Theorem 4.2.

Example 4.3. Consider the following nonlinear integral equation:

ψ(t) = t3 − arctanψ(t)

4 + t

(4.5)

+
t2

2 + |ψ(t)|
sin

(∫ 1

0

(t− s)
√
t2 + ψ2(s) ds

)
, t ∈ [0, 1].

In order to show that such an equation admits a solution in L1([0, 1],R),
we are going to check that the conditions of Theorem 4.2 are satisfied.
In this case, Ω := [0, 1] and X = Y := R.

Define the functions as the following:

u : [0, 1]× R → R, u(t, x) =
√
t2 + x2;

k : [0, 1]× [0, 1] → R, k(t, s) = t− s;

f : [0, 1]× R2 → R, f(t, x, y) = t3 − arctanx

4 + t
+

t2

2 + |x|
sin y.
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It is obvious that u and f are all Carathéodory functions, and we
easily check that (H2) and (H3) are satisfied. By simple reasoning, we
obtain that ∥K∥ = 1/2.

Taking a(t) = t and b = 1, we have

|u(t, x)| =
√
t2 + x2 ≤ t+ |x| = a(t) + b|x|.

So, u satisfies (H1).

We have

|f(t, x, y)| =
∣∣∣∣t3 − arctanx

4 + t
+

t2

2 + |x|
sin y

∣∣∣∣
≤ t3 +

1

4
|x|+ 1

2
|y|.

Taking g(t) = t3, α = 1/4 and β = 1/2, it follows that f satisfies (H4).

Now, we obtain that

α+ bβ∥K∥+ ∥g∥ =
1

4
+

1

4
+

1

4
=

3

4
< 1,

which shows that (H5) is satisfied.

From the inequality,

|f(t, x1(t), y(t))− f(t, x2(t), y(t))|

≤ 1

4 + t
| arctanx1(t)− arctanx2(t)|+

∣∣∣∣ t2 sin y(t)2 + |x1(t)|
− t2 sin y(t)

2 + |x2(t)|

∣∣∣∣,
≤ 1

4 + t
|x1(t)− x2(t)|+

|x1(t)− x2(t)|
4 + 2|x1(t)|+ 2|x2(t)|+ |x1(t)x2(t)|

≤ 1

2
|x1(t)− x2(t)|,

it follows that∫ 1

0

|f(t, x1(t), y(t))− f(t, x2(t), y(t))| dt ≤
1

2
∥x1 − x2∥,

for all x1, x2 ∈ R,

for all y ∈ R. So (H6) holds for φ(r) :=
1
2r.

Since the assumptions (H1)–(H6) are all satisfied, we apply Theo-
rem 4.2 to derive the existence of a solution to equation (4.5).
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Remark 4.4. Equation (4.5) is a particular case of the model integral
equation (1.1). It is not included in equations (4.3) and (4.4), which
implies that equation (1.1) is a new model integral equation.
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