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APPROXIMATE CONTROLLABILITY OF IMPULSIVE
RIEMANN-LIOUVILLE FRACTIONAL EQUATIONS

IN BANACH SPACES

ZHENHAI LIU AND MAOJUN BIN

ABSTRACT. In this paper, we study control systems
governed by impulsive Riemann-Liouville fractional differ-
ential equations in Banach spaces. Firstly, we introduce
PC1−α-mild solutions for impulsive Riemann-Liouville frac-
tional differential equations. Then, we make a set of as-
sumptions to guarantee the existence and uniqueness of mild
solutions. Finally, approximate controllability of the associ-
ated impulsive Riemann-Liouville fractional evolution control
systems is also formulated and proved.

1. Introduction. This paper is concerned with the approximate
controllability of the following impulsive Riemann-Liouville fractional
control systems:
(1.1)

Dα
t x(t) = Ax(t) +Bu(t)
+f(t, x(t)), t ∈ (0, b], t ̸= tk, k = 1, 2, . . . ,m,

∆I1−α
tk

x(tk) = Gk(t
−
k , x(t

−
k )), k = 1, 2, . . . ,m,

I1−α
t x(t)|t=0 = x0 ∈ X,

where Dα
t (0 < α ≤ 1) denotes the Riemann–Liouville fractional

derivative of order α with the lower limit zero. A : D(A) ⊆ X → X is
the infinitesimal generator of a C0-semigroup T (t)(t ≥ 0) on a Banach
space X. f, Gk : J × X → X are given functions to be specified
later, where J = [0, b]. 0 = t0 < t1 < · · · < tm < tm+1 = b,
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∆I1−α
tk

x(tk) = I1−α

t+k
x(t+k )−I

1−α

t−k
x(t−k ) = Γ(α)[limt→t+k

(t− tk)1−αx(t)−
limt→t−k

(t − tk)
1−αx(t)] ([14, Lemma 3.2, Chapter 3]). Furthermore,

since x(t−k ) is bounded (see the definition of PC1−α(J,X) below), we

can also write ∆I1−α
tk

x(tk) = Γ(α) limt→t+k
(t − tk)

1−αx(t). I1−α

t+k
x(t+k )

and I1−α

t−k
x(t−k ) denote the right and the left limits of I1−α

t x(t) at

t = tk, k = 1, 2, . . . ,m. The control function u takes its value in
V = Lp(J, U)(p > 1/α), and U is a Banach space. B is a linear
operator from V into Lp(J,X).

Since fractional differential equations provide an excellent instru-
ment for the description of memory and hereditary properties in a
model, they have drawn a great deal of applications in physics, aerody-
namics, electrodynamics of complex medium, heat conduction, electric-
ity mechanics and control theory. For more details on these topics, one
can see for instance, [2, 11, 14, 17, 28, 32] and the references therein.
The impulsive differential systems originate from the real world prob-
lems for describing the dynamic processes which are subjected to abrupt
changes so that discontinuous jumps occur. Impulsive differential equa-
tions have become more and more important in various applications,
such as control, physics, chemistry, population dynamics, aeronautics
and engineering. For example, see [7, 19, 20, 23, 25, 26, 27, 38].

The concept of controllability, when it was first introduced by
Kalman [13] in 1963, plays an important part in the analysis and
design of control systems, and more details can be found in papers
[1, 3, 6, 8, 18]. Some authors [4, 5, 9] have studied the exact control-
lability for nonlinear evolution systems by using fixed point theorems.
In these papers, in order to prove the controllability results for frac-
tional order semilinear systems, the authors made the assumption that
the corresponding linear operator associated with the C0−semigroup
T (t) and the operator B has a bounded inverse operator with val-
ues in the quotient space. But Triggiani [37] has pointed out that,
if C0−semigroup T (t) is compact or the operator B is compact, then
the controllability operator is also compact. Hence, the inverse of the
controllability operator would not exist if the state space V is infinite
dimensional. Thus, it is shown that the concept of exact controllabil-
ity is difficult to be satisfied in infinite dimensional space. Therefore,
it is important to study the weaker concept of controllability, namely,
approximate controllability for differential equations. Recently, many
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researchers (cf., [10, 15, 22, 27, 29, 33, 34, 35, 36, 40]) have studied
it for different control systems.

On the other hand, Riemann-Liouville fractional derivatives or in-
tegrals are strong tools for resolving some fractional differential prob-
lems in the real world. It is possible to attribute physical meaning
to initial conditions expressed in terms of Riemann-Liouville fractional
derivatives or integrals which have been verified by Heymans and Pod-
lubny [12], and such initial conditions are more appropriate than physi-
cally interpretable initial conditions. For another, they have considered
the impulse response with Riemann-Liouville fractional derivatives as
widely used in the fields of physics, such as viscoelasticity.

In recent years, many authors [16, 24, 25, 29, 33, 38, 41] have
investigated the existence and uniqueness of mild solutions and the
controllability to fractional evolution equations with Caputo fractional
derivative, and there have been a lot of interesting and excellent
results on this fields. However, there is still little literature on the
controllability of the fractional differential evolution with Riemann-
Liouville fractional derivatives. Very recently, Liu et al. [27] studied
the existence and uniqueness of mild solutions and the approximate
controllability for impulsive neutral evolution differential equations
involving Riemann-Liouville fractional derivatives in Banach spaces.
In order to prove the existence and uniqueness of mild solutions, the
authors assumed that the following condition holds:

Lag∥A−1∥+ LagMbα

Γ(α+ 1)
+

k∑
i=1

Mdi(t− ti)
α−1 +

LfMbα

Γ(1 + α)
< 1.

Unfortunately, this inequality is not true in general, by limt→t+i
(t −

ti)
α−1 = +∞ for t ∈ (ti, ti+1]. On the other hand, if Lag ̸= 0,

the operator A−1 may be unbounded (see [27, Theorem 3.2] for
more details). Thus, it is important and meaningful to remove this
hypothesis, and this fact is the motivation of the present work. On
another hand, Liu et al. [21] studied the existence and uniqueness
of mild solutions and the approximate controllability for impulsive
Riemann-Liouville fractional evolution differential inclusions. In order
to prove the existence of mild solutions, the authors assumed that the
following condition holds:
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H(4): there exist constants dk > 0, k = 1, 2, . . . ,m, with

M

Γ(α)

m∑
k=1

dk < 1

such that

∥Ik(x)− Ik(y)∥ ≤ dk(t− tk)
1−α∥x− y∥X , for all x, y ∈ X.

Unfortunately, this inequality has some mistakes, by ∆I1−α
tk

x(tk) =

I1−α

t+k
x(t+k ) − I1−α

t−k
x(t−k ) = Γ(α)[limt→t+k

(t − tk)
1−αx(t) − limt→t−k

(t −
tk)

1−αx(t)]. It is shown that ∆I1−α
tk

x(tk) does not include the variable
t. In our paper, by introducing an appropriate weighted norm on
the Banach space PC1−α(J,X), we can obtain the existence and
uniqueness of mild solutions for problems (1.1) which do not need
the above inequality under the case g(t, x(t)) ≡ 0. It is noted that
one can easily derive the main results for impulsive Riemann-Liouville
fractional evolution systems on the literature [21, 27] under much
weaker assumptions by the methods developed in this paper.

The rest of this paper is organized as follows. In Section 2, we
will present some preliminaries which will be used to prove our main
results. In Section 3, some sufficient conditions are established to
guarantee the existence and uniqueness of mild solutions of the system
(1.1). In Section 4, we will study the approximate controllability
for fractional impulsive evolution differential equations with Riemann-
Liouville fractional derivatives. Finally, we present an example to
illustrate our main results.

2. Preliminaries. In this section, we introduce some basic defini-
tions and preliminaries which are used throughout this paper. The
norm of a Banach space X will be denoted by ∥ · ∥X . For the uniformly
bounded C0−semigroup T (t)(t ≥ 0), we set M := supt∈[0,∞) ∥T (t)∥ <
∞. Let AC(J,X) be the space of functions f which are absolutely con-
tinuous on J , ACm(J,X) = {f : J → X and f (m−1)(x) ∈ AC(J,X)}.
Let C(J,X) denote the Banach space of all X-value continuous func-
tions from J = [0, b] into X with the norm ∥x∥C = supt∈J ∥x(t)∥X .
Let C1−α(J,X) = {x : t1−αx(t) ∈ C(J,X)} with the norm ∥x∥C1−α

=
sup{t1−α∥x(t)∥X : t ∈ J}. Obviously, the space C1−α(J,X) is a Ba-
nach space.
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In order to define the mild solutions of problems (1.1), we also
consider the Banach space PC1−α(J,X) = {x : (t − tk)

1−αx(t) ∈
C((tk, tk+1], X) and lim

t→tk+
(t − tk)

1−αx(t) exists, k = 0, 1, 2, . . . ,m},
with the norm

∥x∥PC1−α = max
{

sup
t∈(tk,tk+1]

(t− tk)
1−α∥x(t)∥X : k = 0, 1, 2, · · · ,m

}
.

Firstly, let us recall the following basic definitions from fractional
calculus (cf., [14, 32]):

Definition 2.1. The integral

(2.1) Iαt f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, α > 0,

is called the Riemann-Liouville fractional integral of order α, where Γ
is the gamma function.

Definition 2.2. For a function f(t) given in the interval [0,∞), the
expression

(2.2) Dα
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α and is
called the Riemann-Liouville fractional derivative of order α.

In order to study the PC1−α-mild solutions of problem (1.1), we
need:

Lemma 2.3. ([27]). Let 0 < α ≤ 1, and let x1−α(t) = I1−α
t x(t)

be the fractional integral of order 1 − α. If x ∈ PC1−α(J,X) and
x1−α ∈ AC(J,X), then we have the following equality

(2.3) Iαt D
α
t x(t)

=


x(t)− x1−α(t)|t=0

tα−1

Γ(α) , t ∈ [0, t1],

x(t)−
k∑

i=1

∆x1−α(ti)

Γ(α)
(t− ti)

α−1

−x1−α(t)|t=0
tα−1

Γ(α) , t ∈ (tk, tk+1],
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where ∆x1−α(tk) = x1−α(t
+
k )− x1−α(t

−
k ), k = 1, 2, . . . ,m.

Now, denote the Laplace transform formula of x as follows:

x̂(λ) =

∫ ∞

0

e−λtx(t) dt,

Reλ > ω, and |x(t)| ≤ ceωt, c is a constant.

Lemma 2.4. Let 0 < α ≤ 1 and h ∈ Lp(J,X)(p > 1/α). If
x ∈ PC1−α(J,X), x1−α ∈ PC(J,X) and x is a solution of the following
problem
(2.4)

Dα
t x(t) = Ax(t) + h(t), t ∈ (0, b], t ̸= tk, k = 1, 2, . . . ,m,

∆I1−α
tk

x(tk) = yk, k = 1, 2, . . . ,m,
I1−α
t x(t)|t=0 = x0 ∈ X,

then x satisfies the following equation
(2.5)

x(t) =


tα−1Tα(t)x0 +

∫ t

0
(t− s)α−1Tα(t− s)h(s) ds, t ∈ [0, t1],

tα−1Tα(t)x0 +

k∑
i=1

Tα(t− ti)(t− ti)
α−1yi

+
∫ t

0
(t−s)α−1Tα(t−s)h(s) ds, t∈(tk, tk+1], k = 1, . . .,m,

where

Tα(t) = α

∫ ∞

0

θξα(θ)T (t
αθ) dθ,

ξα(θ) =
1

α
θ−1−1/αϖα(θ

−1/α),

ϖα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα(θ) ≥ 0, θ ∈ (0,∞),

and ∫ ∞

0

ξα(θ) dθ = 1.
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Proof. It is clear that x(·) can be decomposed to Φ(·) +Ψ(·), where
Φ is the continuous mild solution for the differential equation

(2.6)

{
Dα

t Φ(t) = AΦ(t) + h(t), t ∈ (0, b],
I1−α
t Φ(t)|t=0 = x0 ∈ X,

and Ψ is the PC1−α-mild solution for the impulsive differential equation
(2.7)

Dα
t Ψ(t) = AΨ(t), t ∈ (0, b], t ̸= tk, k = 1, 2, . . . ,m,

∆I1−α
t Ψ(t)|t=tk = yk, k = 1, 2, . . . ,m,

I1−α
t Ψ(t)|t=0 = 0 ∈ X.

Indeed, since Φ is continuous, then Φ(t+k ) = Φ(t−k ), k = 1, 2, . . . ,m.
Clearly, by adding (2.6) together with (2.7), (2.4) follows. On the
other hand, any solution of (2.4) can be decomposed to (2.6) and (2.7).
Now, we shall show the lemma in the following.

Firstly, from Pan et al. [30, Lemma 4], we know the mild solution
of (2.6) is given by

Φ(t) = tα−1Tα(t)x0 +

∫ t

0

(t− s)α−1Tα(t− s)h(s) ds.

Now, we consider the PC1−α-mild solution of (2.7). For this,
applying Riemann-Liouville fractional integral operator on both sides
of the equation (2.7), by Lemma 2.3, we get

(2.8) Ψ(t) =



1/Γ(α)
∫ t

0
(t− s)α−1AΨ(s) ds, t ∈ [0, t1],

k∑
i=1

yi
Γ(α)

(t− ti)
α−1

+ 1
Γ(α)

∫ t

0
(t− s)α−1AΨ(s) ds, t ∈ (tk, tk+1],

k = 1, . . . ,m.

Obviously, equation (2.8) can be rewritten as
(2.9)

Ψ(t) =
m∑
i=1

yi
Γ(α)

(t− ti)α−1χi(t)+
1

Γ(α)

∫ t

0

(t− s)α−1AΨ(s) ds, t ∈ J,

where

χi(t) =

{
0, t ∈ [0, ti),
1, t ∈ [ti,+∞).
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Let λ > 0. Taking the Laplace transformation to the equation (2.9),
we obtain

Ψ̂(λ) =
k∑

i=1

yie
−λti

λα
+

1

λα
AΨ̂(λ),

i.e.,

Ψ̂(λ) =
k∑

i=1

(λαI −A)−1yie
−λti .

Notice that the Laplace transform of tα−1Tα(t)yi is (λ
αI−A)−1yi (cf.,

[30, Lemma 4]). Thus, one can obtain the mild solution of (2.7) as

Ψ(t) =
m∑
i=1

χi(t)(t− ti)
α−1Tα(t− ti)yi.

By the above arguments, the PC1−α-mild solution of (2.4) is given
by

x(t) = tα−1Tα(t)x0 +
m∑
i=1

χi(t)(t− ti)
α−1Tα(t− ti)yi

+

∫ t

0

(t− s)α−1Tα(t− s)h(s) ds.

This completes the proof of Lemma 2.4. �

According to Lemma 2.4, we give the following definition.

Definition 2.5. A function x ∈ PC1−α(J,X) is called a mild solution
of problem (1.1) if it satisfies the following fractional integral equation

x(t) =



tα−1Tα(t)x0 +
∫ t

0
(t− s)α−1Tα(t− s)

[Bu(s) + f(s, x(s))] ds, t ∈ [0, t1],

tα−1Tα(t)x0 +
k∑

i=1

Tα(t− ti)(t− ti)
α−1Gi(t

−
i , x(t

−
i ))

+
∫ t

0
(t− s)α−1Tα(t− s)[Bu(s) + f(s, x(s))] ds,
t ∈ (tk, tk+1], k = 1, . . . ,m.

Definition 2.6. Let x(·;u) be a mild solution of system (1.1) corre-
sponding to the control u(·) ∈ V and the initial value x0 ∈ X. The set
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Kb(f) = {x(b;u) : u(·) ∈ V } is called the reachable set of system (1.1)

at terminal time b. If Kb(f) = X, then system (1.1) is said to be
approximate controllable on J .

From the work of the paper [41], we have the following result:

Lemma 2.7. If the C0-semigroup T (t)(t ≥ 0) is uniformly bounded
(i.e., supt∈[0,∞) ∥T (t)∥ ≤ M < ∞), then the operator Tα(t) has the
following properties:

(i) For any fixed t ≥ 0, Tα(t) is a linear and bounded operator,
i.e., for any x ∈ X,

∥Tα(t)x∥ ≤ M

Γ(α)
∥x∥.

(ii) Tα(t)(t ≥ 0) is strongly continuous.

3. Existence of mild solutions. This section is devoted to the
study of existence and uniqueness results for a class of fractional
impulsive evolution differential equations involving Riemann-Liouville
fractional derivatives.

In the sequel, we will make the following hypotheses on the data of
our problems:

H(1): The function f(·, x) : J → X is measurable for all x ∈ X and
∥f(t, 0)∥ ∈ Lp(J,R+), p > 1/α for almost every t ∈ J . Moreover, there
exists a constant L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L(t− tk)
1−α∥x− y∥X ,

for a.e. t ∈ (tk, tk+1](k = 0, 1, . . . ,m) and any x, y ∈ X.

H(2): There exist constants 0 < dk < Γ(α)/[2M
∑k

i=1(ti−ti−1)
α−1]

(k = 1, 2, . . . ,m+ 1) (where M := supt∈[0,∞) ∥T (t)∥ <∞) such that

∥Gk(t
−
k , x)−Gk(t

−
k , y)∥ ≤ dk∥x− y∥X , for all x, y ∈ X.

Now, we are in a position to prove the main result of this section.
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Theorem 3.1. Assume that the hypotheses H(1)–H(2) are satisfied.
Then, for each given control function u(·) ∈ V , the initial problem (1.1)
has a unique mild solution on PC1−α(J,X).

Proof. Define the operator z : PC1−α(J,X) → PC1−α(J,X) by

(zx)(t) =



tα−1Tα(t)x0 +
∫ t

0
(t− s)α−1Tα(t− s)

[Bu(s) + f(s, x(s))] ds, t ∈ [0, t1],

tα−1Tα(t)x0 +
k∑

i=1

Tα(t− ti)(t− ti)
α−1Gi(t

−
i , x(t

−
i ))

+
∫ t

0
(t− s)α−1Tα(t− s)[Bu(s) + f(s, x(s))] ds,
t ∈ (tk, tk+1], k = 1, . . . ,m.

Then the problem of finding mild solutions for problem (1.1) is
reduced to finding the fixed point of z. To prove this, we consider
the operator z on the Banach space PC1−α(J,X) with a weighted
norm

∥x∥r = max
{

sup
t∈(tk,tk+1]

(t− tk)
1−α∥x(t)∥Xe−rt : k = 0, 1, . . . ,m

}
,

where r = max{(2Γ(α)MLb1−α/Γ(α)− 2M
∑k

i=1 di(ti − ti−1)
α−1)1/α :

k = 1, . . . ,m+ 1}. Now, set Br(R) = {x ∈ PC1−α(J,X) : ∥x∥r ≤ R},
where R = 2ω and

ω =
M

Γ(α)
∥x0∥+

M

Γ(α)

m∑
i=1

∥Gi(ti, 0)∥

+
Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p[
∥f(·, 0)∥Lp(J,R+) + ∥Bu∥Lp(J,X)

]
.

Next, for the sake of convenience, we subdivide the proof into two steps.

Step 1. We shall prove that the operator z maps Br(R) into itself.

Notice that∫ t

0

(t− s)α−1ersds = −r−α

∫ t

0

[r(t− s)]α−1e−r(t−s)ertd[r(t− s)]

= r−αert
∫ rt

0

zα−1e−zdz (r(t− s) = z)(3.1)

≤ r−αertΓ(α).
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If t ∈ [0, t1], then from formula (3.1), condition H(1) and the Hölder
inequality, we obtain

t1−α∥(zx)(t)∥X ≤ ∥Tα(t)x0∥+ t1−α

×
∫ t

0

(t− s)α−1∥Tα(t− s)[f(s, x(s)) +Bu(s)]∥ ds

≤ M

Γ(α)
∥x0∥+

Mt1−α

Γ(α)

∫ t

0

(t− s)α−1[∥f(s, 0)∥

+ Ls1−α∥x(s)∥X + ∥Bu(s)∥X ] ds

≤ M

Γ(α)
∥x0∥+

Mb1−α

Γ(α)

∫ t

0

(t− s)α−1[∥f(s, 0)∥

+ ∥Bu(s)∥X ] ds+
MLb1−α∥x∥r

Γ(α)

∫ t

0

(t− s)α−1ersds

≤ M

Γ(α)
∥x0∥+

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

×
[
∥f(·, 0)∥Lp(J,R+) + ∥Bu∥Lp(J,X)

]
+MLb1−αertr−α∥x∥r.

Thus, we have

sup
t∈[0,t1]

t1−α∥(zx)(t)∥Xe−rt ≤ ω +MLb1−αr−α∥x∥r ≤ R.

If t ∈ (tk, tk+1] (k = 1, . . . ,m), from formula (3.1), the assumptions
H(1), H(2) and the Hölder inequality, we have

(t− tk)
1−α∥(zx)(t)∥X ≤ (t− tk)

1−αtα−1∥Tα(t)x0∥+ (t− tk)
1−α

×
∥∥∥∥ k∑

i=1

Tα(t−ti)(t−ti)α−1Gi(t
−
i , x(t

−
i ))

∥∥∥∥
+(t−tk)1−α

×
∫ t

0

(t−s)α−1∥Tα(t−s)[f(s, x(s))+Bu(s)]∥ds

≤ M

Γ(α)
∥x0∥
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+
M

Γ(α)

k∑
i=1

di(ti−ti−1)
α−1(ti−ti−1)

1−α∥x(t−i )∥X

+
M

Γ(α)

k∑
i=1

∥Gi(ti, 0)∥+
M(t− tk)

1−α

Γ(α)

×
∫ t

0

(t−s)α−1[∥f(s, 0)∥+L(s−tk)1−α∥x(s)∥X

+ ∥Bu(s)∥X ] ds

≤ M

Γ(α)
∥x0∥+

M

Γ(α)

k∑
i=1

∥Gi(ti, 0)∥

+
Mb1−1/p

Γ(α)

(
p−1

pα−1

)1−1/p

×
[
∥f(·, 0)∥Lp(J,R+)∥Bu∥Lp(J,X)

]
+

(
M

∑k
i=1di(ti−ti−1)

α−1

Γ(α)
+MLb1−αr−α

)
ert∥x∥r.

Hence, we get

sup
t∈(tk,tk+1]

(t− tk)
1−α∥(zx)(t)∥Xe−rt

≤ ω +

(
Mdik(tk − tk−1)

α−1

Γ(α)
+MLb1−αr−α

)
∥x∥r ≤ R.

From the above arguments, we know

∥zx∥r = max
{

sup
t∈(tk,tk+1]

(t−tk)1−α∥(zx)(t)∥Xe−rt : k = 0, 1, . . . ,m
}
≤ R,

which means that z(Br(R)) ⊆ Br(R).

Step 2. We show that z is a contraction operator on Br(R).

For any x, y ∈ PC1−α(J,X), if t ∈ [0, t1], then, from formula (3.1),
we get

t1−α∥(zx)(t)− (zy)(t)∥X ≤ t1−α

∫ t

0

(t− s)α−1

× ∥Tα(t− s)[f(s, x(s))− f(s, y(s))]∥ ds
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≤ MLt1−α

Γ(α)
∥x− y∥r

∫ t

0

(t− s)α−1ersds ≤MLb1−αertr−α∥x− y∥r,

which implies

sup
t∈[0,t1]

t1−α∥(zx)(t)−(zy)(t)∥Xe−rt≤MLb1−αr−α∥x−y∥r≤
1

2
∥x−y∥r.

For any x, y ∈ PC1−α(J,X), if t ∈ (tk, tk+1] (k = 1, . . . ,m). From
H(1) and H(2), we get

(t− tk)
1−α∥(zx)(t)− (zy)(t)∥X

≤ (t− tk)
1−α

∥∥∥∥ k∑
i=1

Tα(t− ti)(t− ti)
α−1

× [Gi(t
−
i , x(t

−
i ))−Gi(t

−
i , y(t

−
i ))

∥∥∥∥+ (t− tk)
1−α

×
∫ t

0

(t− s)α−1∥Tα(t− s)[f(s, x(s))− f(s, y(s))]∥ ds

≤
(
M

∑k
i=1 di(ti − ti−1)

α−1

Γ(α)
+MLb1−αr−α

)
ert∥x− y∥r.

Then, one can get

sup
t∈(tk,tk+1]

(t− tk)
1−α∥(zx)(t)− (zy)(t)∥Xe−rt

≤
(
M

∑k
i=1 di(ti − ti−1)

α−1

Γ(α)
+MLb1−αr−α

)
∥x−y∥r ≤ 1

2
∥x−y∥r.

Therefore, we obtain

∥(zx)−(zy)∥r

= max
{

sup
t∈(tk,tk+1]

(t−tk)1−α∥(zx)(t)−(zy)(t)∥Xe−rt : k = 0, 1, . . . ,m
}

≤ 1

2
∥x− y∥r.

Therefore, z is a contradiction operator. According to Banach’s
fixed point theorem, we can deduce that problem (1.1) has a unique
solution on J . The proof is completed. �
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Remark 3.2. By a similar technique as applied in Theorem 3.1, we can
also derive the existence and uniqueness results for impulsive Riemann-
Liouville fractional neutral evolution equations in the literature [27]
under much weaker conditions.

4. Approximate controllability results. In this section, we re-
search the approximate controllability results of the impulsive fractional
evolution differential systems with Riemann-Liouville fractional deriva-
tives.

Let us denote the Nemytskil operator corresponding to the nonlinear
function f by:

Φf : PC1−α(J,X) −→ Lp(J,X), Φf (x)(t) = f(t, x(t)).

Define the bounded and linear operator G : Lp(J,X) → X as

Gh =

∫ b

0

(b− s)α−1Tα(b− s)h(s) ds, h(·) ∈ Lp(J,X).

By Definition 2.6, we easily know that if, for any x0 ∈ X and
u(·) ∈ V , Kb(f) = X, then system (1.1) is approximately controllable
on J . Equivalently, if for every desired final state ζ ∈ X and any ϵ > 0,
there exists a control function uϵ(·) ∈ V , such that the mild solution of
system (1.1) satisfies

∥∥∥∥ζ − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , xε(t

−
k ))− GΦf (xε)

(4.1)

−GBuε
∥∥∥∥
X

< ϵ,

where xϵ(t) = x(t;uε), t ∈ [0, b]. Then system (1.1) is approximately
controllable on J.

In order to discuss the approximate controllability of system (1.1),
we need:

Lemma 4.1. If the inequality D∗=max{[Mkdi(tk−tk−1)
α−1Eα(MLb)]/

Γ(α) : i = 1, . . . , k; k = 1, . . . ,m + 1} < 1 holds and the conditions
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H(1)–H(2) are satisfied, then any mild solutions of system (1.1) sat-
isfy the following inequalities:

∥x1 − x2∥PC1−α

≤
(
1−D∗)Eα(MLb)

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

∥Bu1 −Bu2∥Lp(J,X),

where xj (j = 1, 2) are mild solutions of system (1.1) corresponding to
uj ∈ V , and Eα is the Mittag-Leffler function defined by

Eα(z) =
∞∑
k=0

zk

Γ(kα+ 1)
.

Proof. Suppose that xj(j = 1, 2) are mild solutions of system (1.1)
with respect to uj ∈ V on PC1−α(J,X). Then

xj(t) = tα−1Tα(t)x0 +
m∑

k=1

(t− tk)
α−1Tα(t− tk)Gk(t

−
k , xj(t

−
k ))

+

∫ t

0

(t− s)α−1Tα(t− s)[Buj(s) + f(s, xj(s))] ds.

For any x1, x2 ∈ PC1−α(J,X), t ∈ (tk, tk+1], we obtain that

(t− tk)
1−α∥x2(t)− x1(t)∥X

≤ (t− tk)
1−α

k∑
i=1

(t− ti)
α−1∥Tα(t− ti)∥

× ∥Gi(t
−
i , x2(t

−
i ))−Gi(t

−
i , x1(t

−
i ))∥

+ (t−tk)1−α

∫ t

0

(t−s)α−1∥Tα(t−s)(Bu2(s)−Bu1(s))∥ ds

+ (t−tk)1−α

∫ t

0

(t−s)α−1∥Tα(t−s)(f(s, x2(s))(4.2)

−f(s, x1(s)))∥ ds

≤ M

Γ(α)

k∑
i=1

di(ti−ti−1)
α−1(ti−ti−1)

1−α∥x2(t−i )−x1(t
−
i )∥X
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+
Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

∥Bu2−Bu1∥Lp(J,X)

+
MLb1−α

Γ(α)

∫ t

0

(t− s)α−1(s−tk)1−α∥x2(s)−x1(s)∥X ds

≤
M

∑k
i=1 di(ti − ti−1)

α−1

Γ(α)
∥x2 − x1∥PC1−α

+
Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

∥Bu2 −Bu1∥Lp(J,X)

+
MLb1−α

Γ(α)

∫ t

0

(t− s)α−1(s− tk)
1−α∥x2(s)− x1(s)∥Xds.

From the above inequality (4.2), it follows from a corollary of Ye et
al. [39] that

(t− tk)
1−α∥x2(t)− x1(t)∥X

≤
[
M

∑k
i=1 di(ti − ti−1)

α−1

Γ(α)
∥x2 − x1∥PC1−α

+
Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

× ∥Bu2 −Bu1∥Lp(J,X)

]
Eα(MLb1−αtα).

Let D∗ = max{[M
∑k

i=1 di(ti − ti−1)
α−1Eα(MLb)]/Γ(α) : k =

0, 1, . . . ,m}. Therefore, we obtain

∥x2 − x1∥PC1−α

≤
(
1−D∗)Eα(MLb)

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

∥Bu2 −Bu1∥Lp(J,X).

This completes the proof for the Lemma. �

In what follows, to discuss the approximate controllability of system
(1.1), we assume:

H(3): For any ε > 0 and φ ∈ Lp(J,X), there exists a control
u ∈ Lp(J, U) such that

(4.3) ∥Gφ− GBu∥X < ε,
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(4.4) ∥Bu∥Lp(J,X) < N∥φ∥Lp(J,X),

where N is a constant which is independent of φ ∈ Lp(J,X), and

(4.5) N
(
1−D∗)Eα(MLb)

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

< 1.

Theorem 4.2. Suppose that the hypotheses of Lemma 4.1 and H(3)
hold. Then system (1.1) is approximately controllable on J , if the
C0−semigroup T (t) generated by A is differentiable on the Banach
space X.

Proof. Since the domain D(A) of operator A is dense in X, it is
sufficient to show that D(A) ⊂ Kb(f), i.e., for any ϵ > 0 and η ∈ D(A),
there exists a uϵ ∈ V , such that

(4.6)

∥∥∥∥η − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , xε(t

−
k ))

− GΦf (xε)− GBuε
∥∥∥∥
X

< ϵ,

where xϵ(t) = x(t;uε) and t ∈ [0, b].

Firstly, for any x0 ∈ X, due to the differentiability of the C0-
semigroup T (t)(t > 0), we know that bα−1Tα(b)x0 ∈ D(A). Therefore,
for any given η ∈ D(A), it can be seen that there exists a function
φ ∈ Lp(J,X) such that

Gφ = η − bα−1Tα(b)x0,

for example,

(4.7) φ(t) =
[Γ(α)]2(b− t)1−α

b

[
Tα(b− t)− 2t

d Tα(b− t)

dt

]
[η − bα−1Tα(b)x0], t ∈ (0, b).

Similarly, for every xi ∈ X, i = 1, 2, . . ., we can also get a function φi ∈
Lp(J,X), such that Gφi =

∑m
k=1(b− tk)

α−1Tα(b− tk)Gk(t
−
k , xi(t

−
k )).

Next, we show that one can get a control function uϵ ∈ V such that
the inequality (4.6) holds. In fact, for any given ϵ > 0 and u1 ∈ V ,
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from H(3), there exists a u2 ∈ V , such that∥∥∥∥η − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x1(t

−
k ))

− GΦf (x1)− GBu2
∥∥∥∥
X

<
ϵ

22
,

where x1(t) = x(t;u1), 0 ≤ t ≤ b. Denote x2(t) = x(t;u2), 0 ≤ t ≤ b.
By the hypotheses H(3) again, there exists w2 ∈ V such that

∥GBw2 − [GΦf (x2) +

m∑
k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x2(t

−
k ))

GΦf (x1)−
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x1(t

−
k ))]∥X ≤ ϵ

23
.

and

∥Bw2∥Lp(J,X) ≤ N∥Φf (x2)(·)− Φf (x1)(·)∥X
≤ NL(t− tk)

1−α∥x2(·)− x1(·)∥X

≤ N
(
1−D∗)Eα(MLb)

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

× ∥Bu1 −Bu2∥Lp(J,X).

Now, we define

u3(t) = u2(t)− w2(t) u3 ∈ V,

and it follows that∥∥∥∥η − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x2(t

−
k ))

− GΦf (x2)− GBu3
∥∥∥∥
X

≤
∥∥∥∥η − bα−1Tα(b)x0 −

m∑
k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x1(t

−
k ))

− GΦf (x1)− GBu2
∥∥∥∥
X
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+ ∥GBw2 − [GΦf (x2) +
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x2(t

−
k ))

− GΦf (x1)−
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , x1(t

−
k ))]∥X

≤
(

1

22
+

1

23

)
ϵ.

By inductions, we can get the sequence {un(·)} ⊂ V from which it
follows that

(4.8)

∥∥∥∥η − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , xn(t

−
k ))

− GΦf (xn)− GBun+1

∥∥∥∥
X

<

(
1

22
+ · · ·+ 1

2n

)
ϵ,

where xn(·) = x(·;un), 0 ≤ t ≤ b, and

∥Bun+1 −Bun∥Lp(J,X) ≤
(
1−D∗)Eα(MLb)

Mb1−1/p

Γ(α)

(
p− 1

pα− 1

)1−1/p

× ∥Bun −Bun−1∥Lp(J,X).

From (4.5), we know that the sequence {Bun : n = 1, 2, . . .} is
a Cauchy sequence on the Banach space Lp(J,X). Therefore, there
exists a sequence ψ(·) ∈ Lp(J,X), such that

lim
n→∞

Bun(·) = ψ(·) in Lp(J,X).

Then, for any ϵ > 0, there exists a positive integer number N , such
that

∥GBuN+1 − GBuN∥X <
ϵ

2
.

Therefore, we have∥∥∥∥η − bα−1Tα(b)x0 −
m∑

k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , xN (t−k ))

− GΦf (xN )− GBuN
∥∥∥∥
X
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≤
∥∥∥∥η − bα−1Tα(b)x0 −

m∑
k=1

(b− tk)
α−1Tα(b− tk)Gk(t

−
k , xN (t−k ))

− GΦf (xN )− GBuN+1

∥∥∥∥
X

+ ∥GBuN+1 − GBuN∥X ≤
(

1

22
+ · · ·+ 1

2n

)
ϵ+

ϵ

2
< ϵ.

This proves the approximate controllability of system (1.1). �

5. An example. Consider the following initial-boundary value prob-
lem of fractional parabolic control system with Riemann-Liouville frac-
tional derivatives:
(5.1)

D
4/5
t x(t, y)= ∂2

∂y2x(t, y)+f(t, x(t))+Bu(t), t∈J=[0,1]\{12},
y ∈ [0, π],

∆I
1/5
t x( 12 , y) =

|x(y)|
2+|x(y)| , y ∈ [0, π]

x(t, 0) = x(t, π) = 0, t ∈ J = [0, 1],

I
1/5
t x(t, y)|t=0 = x0(y), t ∈ [0, 1],

y ∈ [0, π].

Take X = U = L2([0, π]), and the operator A : D(A) ⊂ X → X is
defined by

Ax = x′′,

D(A) = {x ∈ X : x, x′ are absolutely continuous,

x′′ ∈ X, x(0) = x(π) = 0}.

Then, A can be written as

Ax = −
∞∑

n=1

n2(x, xn)xn, x ∈ D(A),

where xn(x) =
√
2/π sinny (n = 1, 2, . . .) is an orthonormal basis of X.

It is well known that A is the infinitesimal generator of a differentiable
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semigroup T (t)(t > 0) in X given by

T (t)x =
∞∑

n=1

exp−n2t(x, xn)xn, x ∈ X,

and
∥T (t)∥ ≤ e−1 < 1 =M.

For every u(·) ∈ V = L2(J, U), we have

u(t) =
∞∑

n=1

un(t)xn, un(t) = ⟨u(t), xn⟩.

Define the operator B as

Bu(t) =
∞∑

n=1

un(t)xn,

where

un(t) =

{
0, 0 ≤ t < 1− 1/n2,
un(t), 1− 1/n2 ≤ t ≤ 1,

n = 1, 2, . . . .

Then, one can easily obtain that ∥Bu(·)∥ ≤ ∥u(·)∥, which implies that
B ∈ L(V,L2(J,X)).

Firstly, by the definition of the operator B, the corresponding linear
system of (5.1) is presented as follows:

(5.2)


D

4/5
t xn(t) + n2xn(t) = ûn(t), 1− 1/n2 < t < 1,

∆I
1/5
t xn(1/2) =

|xn(y)|
2+|xn(y)|

I
1/5
t xn(t)|t=0 = x0 ∈ X.

Next, we will check that hypothesis H(4) is satisfied. To check this,
let us denote

h =

∫ 1

0

(1− s)−1/5T4/5(1− s)g(s) ds

=

∞∑
n=1

hnxn, hn = ⟨h, xn⟩, for every g(·) ∈ L2(J,X).
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In fact, we can choose ũn(t), which follows from

ũn(t) =
3n2

1− e−2
hne

−n2(1−t), 1− 1

n2
≤ t ≤ 1,

and

hn =

∫ 1

1−1/n2

∫ ∞

0

(1− t)−1/5θξ4/5(θ)e
−n2θ(1−t)4/5 ũn(t) dθ dt.

For this, we define

u(t) =
∞∑

n=1

un(t)xn,

where

un(t) =

{
0, 0 ≤ t < 1− 1/n2,
ũn(t), 1− 1/n2 ≤ t ≤ 1,

n = 1, 2, . . . .

Therefore, for any given function g(·) ∈ L2([0, 1], X), there exists
u(·) ∈ V such that∫ 1

0

(1− s)−1/5T4/5(1− s)Bu(s) ds =

∫ 1

0

(1− s)−1/5T4/5(1− s)g(s) ds,

which implies that condition (4.2) of H(4) is satisfied. Moreover, we
can get

∥Bu(·)∥2 =
∞∑

n=1

∫ 1

1−1/n2

|ũn(t)|2dt = (1− e−2)−1
∞∑

n=1

3n2h2n

= 3(1− e−2)−1
∞∑

n=1

(1− e−2n2

)

∫ 1

0

|gn(t)|2dt

≤ (1− e−2)−1|g(·)|2.

Hence, it can be seen that if condition H(4) is satisfied, then sys-
tem (5.1) is approximately controllable on J , if

3(1− E4/5(L)/2
αΓ(4/5))E4/5(L)

(1− e−2)Γ(4/5)
< 1,

is satisfied.
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