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GLOBAL AND BLOW-UP SOLUTIONS FOR THE
NONLOCAL p-LAPLACIAN EVOLUTION EQUATION

WITH WEIGHTED NONLINEAR NONLOCAL
BOUNDARY CONDITION

ZHONG BO FANG AND JIANYUN ZHANG

Communicated by Stig-Olof Londen

ABSTRACT. In this paper, we investigate global exis-
tence and blow-up properties of nonnegative solutions to a
nonlocal p-Laplacian evolution equation with weighted non-
linear nonlocal boundary condition. By using the method of
upper and lower solutions, we consider some effects of weight
function and nonlinear exponent on the global and blow-up
solutions. In addition, we show the blow-up rate estimate,
blow-up profile and blow-up set for linear diffusion case.

1. Introduction. In this paper, we consider a p-Laplacian evolution
equation with a nonlocal source term

(1.1) ut − div (|∇u|p−2∇u) = um
∫
Ω

un(y, t) dy, (x, t) ∈ Ω× (0, T ),

subject to weighted nonlinear nonlocal boundary and initial conditions

u(x, t) =

∫
Ω

φ(x, y)ul(y, t) dy, (x, t) ∈ ∂Ω× (0, T ),(1.2)

u(x, 0) = u0(x), x ∈ Ω,(1.3)

where p > 1, m ≥ 0, n > 0, l > 0 and Ω ⊂ RN (N ≥ 1) is a bounded
domain with smooth boundary. Here, φ(x, y) ̸≡ 0 is a nonnegative
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continuous function on ∂Ω × Ω and
∫
Ω
φ(x, y) dy > 0 on ∂Ω, and the

initial data u0(x) ∈ C(Ω)∩W 1,p
0 (Ω) is a nonnegative function satisfying

the compatibility condition.

A nonlinear parabolic equation like (1.1) appears to describe some
physical phenomena such as the diffusion of temperature of some com-
bustible substance or the concentration of non-Newton flow in porous
medium, see [1, 2]. In the latter case, the quantity p characterizes the
medium, i.e., media with p > 2 and p < 2 are called dilatant fluids and
pseudoplastics, respectively, and if p = 2, it is said to be Newtonian
fluids. In particular, equation (1.1) is a possible model for the diffusion
system of some biological species with human-controlled distribution
in which case the function u(x, t) represents the density of the species
at position x and time t, div (|∇u|p−2∇u) portrays the mutation which
can be viewed as an extension of the characteristics, and um

∫
Ω
undx

denotes the human-controlled distribution. The nonlocal term indi-
cates that evolution of species at a point of space does not depend only
on nearby density but also on the total amount of species due to the
effects of spatial inhomogeneity, see [1, 3, 10].

In the last few decades, there have been many researchers dealing
with blow-up solutions to the initial boundary value problems with
nonlocal terms or without nonlocal terms in boundary conditions, refer
to [7, 16, 21] and the references therein. Recently, great attention
has been paid to the study of the initial boundary value problem with
weighted linear nonlocal boundary conditions. Friedman [9] and Pao
[18] considered a initial boundary value problem of linear and semi-
linear parabolic equation, respectively. They studied the asymptotic
behavior of the solutions and found some effects of weight function on
the global and blow-up solutions. For other studies on such problems,
one can refer to [14, 19, 20]. For the initial boundary value problem
with nonlocal terms and weighted linear nonlocal terms in the boundary
condition, i.e., l = 1 in (1.2), Liu et al. [15] studied the competitive
relationship between nonlocal source and absorption terms in a semi-
linear parabolic equation and found some effects of weight function on
the solutions by using Green’s function. Wang et al. [22] studied an
initial boundary value problem of a porous medium equation with terms
of power form. They obtained global existence and blow-up properties
of the solutions and blow-up rate estimates by virtue of the method of
upper and lower solutions. Cui et al. [4] discussed global existence and
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blow-up properties of the solutions to a slow diffusion porous medium
equation with nonlocal source term and linear nonlocal boundary
condition. For the coupled system and initial boundary problem of the
nonlocal p-Laplacian evolution equation with homogeneous Dirichlet
boundary condition, refer to [12, 25] and the references therein for
details.

Recently, Gladkov et al. [11] considered a semi-linear parabolic equa-
tion with weighted local source term and weighted nonlinear nonlocal
Dirichlet boundary condition

u(x, t) =

∫
Ω

φ(x, y, t)ul(y, t) dy, (x, t) ∈ ∂Ω× (0,∞),

where l > 0 and φ(x, y, t) is nonnegative. They found effects of weight
function and nonlinear exponent on the global and blow-up solutions
by the comparison principle and suitable upper and lower solutions.
Wang et al. [23] studied a semi-linear parabolic equation with nonlocal
source and interior absorption terms and weighted nonlinear nonlocal
boundary condition (1.2). They found effects of weight function on
the solutions by using Green’s function and the technique of upper
and lower solutions. Indeed, there are some important phenomena
which can be formulated as parabolic equations coupled with weighted
nonlocal boundary conditions in the mathematical model, such as
thermoelasticity theory. In this case, the solution u(x, t) describes
entropy per volume of the materia1 (cf. [5, 6]).

Motivated by the above-mentioned works, we investigate global ex-
istence and the blow-up behavior of solutions to a nonlocal quasi-linear
parabolic equation (1.1) with weighted nonlinear nonlocal boundary
condition and reveal some influence of weight function and nonlinear
exponent on the solutions. We could obtain some results from the
investigation on equation (1.1) with p > 1 by establishing a modi-
fied comparison principle and constructing some suitable upper and
lower solutions including a self-similar lower solution, as well as the
techniques of the eigenfunction argument and the ordinary differential
equation. Specifically, in this paper we treat the nonlocal nonlinear
Hölder (non-Lipschitz) cases (m or n ∈ (0, 1)), as well as the Lipschitz
cases (m,n ≥ 1). In fact, obvious differences exist among the situations
of slow diffusion (p > 2), fast diffusion (1 < p < 2) and linear diffu-
sion (p = 2). For example, there is a finite propagation speed in the
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slow diffusion situation, whereas an infinite propagation speed exists
in the fast diffusion situation. We also consider blow-up rate estimate,
blow-up profile and blow-up set when p = 2, in which one can see that
our blow-up rate is similar to the one of the equation with local source
term. The detailed results are stated below.

Theorem 1.1. Assume that
∫
Ω
φ(x, y) dy ≥ 1 for x ∈ ∂Ω and l ≥ 1.

If p > 1 and m+n > 1, then the solution of problems (1.1)–(1.3) blows
up in finite time for sufficiently large initial data.

Theorem 1.2. Assume that
∫
Ω
φ(x, y) dy ≤ 1 for x ∈ ∂Ω and l ≤ 1. If

p > 1 and m+n ≤ 1, then the solution of problems (1.1)–(1.3) globally
exists for small initial data.

Theorem 1.3. Assume that
∫
Ω
φ(x, y) dy ≤ ρ < 1 for x ∈ ∂Ω and

l ≤ 1.

(1) If p > m + n + 1, then the solution of problems (1.1)–(1.3)
globally exists for arbitrary initial data.

(2) If p = m + n + 1, then the solution of problems (1.1)–(1.3)
globally exists for small |Ω|.

(3) If 1 < p < m+ n+ 1, then the solution of problems (1.1)–(1.3)
globally exists for small initial data.

Remark 1.4. The results of Theorem 1.3 hold for all p > 1, and we
have the following optimal results:

(1) Let n = p− 1 and m = 0. If u0 satisfies the inequality

div (|∇u0|p−2∇u0) + um0

∫
Ω

un0dy > 0, x ∈ Ω,

and Ω contains a sufficiently large ball BR(0), then the solution
of problems (1.1)–(1.3) blows up in finite time.

(2) If m = p and n = 0, then the solution of problems (1.1)–(1.3)
blows up in finite time for sufficiently large initial data.

Theorem 1.5. Assume that
∫
Ω
φ(x, y) dy ≤ 1 for x ∈ ∂Ω and l ≥ 1.

If 1 < p ≤ 2, m + n > 1, m ≥ 1 and Ω is sufficient small, then the
solution of problems (1.1)–(1.3) globally exists for small initial data.
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Theorem 1.6. Assume that
∫
Ω
φ(x, y) dy ≤ 1 for x ∈ ∂Ω and l ≥ 1.

If 1 < p < m + n + 1 and u0(x) ≤ σϕ(x), where ϕ(x) is a function
defined in (3.1)–(3.2), then the solution of problems (1.1)–(1.3) globally
exists.

Theorem 1.7. Assume that the weight function φ(x, y) > 0 and l > 0.
If 2 < p < m + n + 1 and m + n > 1, then the solution of problems
(1.1)–(1.3) blows up in finite time for sufficiently large initial data.

Remark 1.8. The result of Theorem 1.7 is still true for p = 2 and
l > 1 (cf. [11]).

Remark 1.9. The above results still hold for the fast diffusion case
(1 < p < 2). To the best of our knowledge, no researcher has
investigated global and blow-up solutions to nonlocal equations with
weighted nonlinear nonlocal boundary condition.

In order to find a blow-up rate estimate for the linear diffusion case
(p = 2), we assume that the initial data satisfies the following two
conditions:

(C1) ∆u0(x) + um0
∫
Ω
un0dy > 0, x ∈ Ω,

(C2) There exists a constant δ > 0 such that ∆u0(x)+u
m
0

∫
Ω
un0dy−

δum+n
0 ≥ 0.

Theorem 1.10. Assume that
∫
Ω
φ(x, y) dy ≤ 1 for x ∈ ∂Ω, l ≤ 1,

p = 2 and m + n > 1. If the conditions (C1)–(C2) hold, then the
blow-up solution of problems (1.1)–(1.3) satisfies

c(T − t)−1/(m+n−1) ≤ u(x, t) ≤ C(T − t)−1/(m+n−1),

where c = [|Ω|(m+n−1)]−1/(m+n−1) and C = [δ(m+n−1)]−1/(m+n−1).

Finally, we obtain the blow-up profile for the linear diffusion case.

Theorem 1.11. Assume that
∫
Ω
φ(x, y) dy < 1 for x ∈ ∂Ω, l ≤ 1,

p = 2, m < 1 and m+ n > 1. If ∆u0 ≤ 0 in Ω, we then have

lim
t→T

(T − t)−1/(m+n−1)u(x, t) =M1,
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where

M1 = (|Ω|m+ n− 1

1−m
)−1/(m+n−1)(1−m)−1/(m+n−1).

The rest of our paper is organized as follows. In Section 2, with
the definition of weak upper and lower solutions, we give a modified
comparison principle of problems (1.1)–(1.3), which is an important
tool for our research. The proofs of results on the global existence and
blow-up properties of solutions are given in Section 3. In Section 4, we
give the blow-up rate estimate, the blow-up profile and the blow-up set
for p = 2.

2. Comparison principle. Since equation (1.1) is degenerate when
p > 2 and singular when 1 < p < 2, there is no classical solution for
p > 1 in general. Hence, it is reasonable to find a weak solution of
problem (1.1)–(1.3). To this end, we first give the following definition
of nonnegative weak solution of problems (1.1)–(1.3).

Definition 2.1. If a nonnegative function u(x, t) satisfies the following
conditions:

(i) u ∈ C(0, T ;L∞(Ω))
∩
Lp(0, T ;W 1,p

0 (Ω)),(2.1)

ut ∈ L2(0, T ;L2(Ω)), u(x, 0) = u0(x),

(ii)

∫ ∫
QT

utϕdx dt+

∫ ∫
QT

|∇u|p−2∇u · ∇ϕdx dt

=

∫ ∫
QT

ϕ(um
∫
Ω

un(y, t) dy) dx dt,

where ϕ ∈ L1(0, T ;W 1,2(Ω))
∩
L2(QT ), ϕ(x, t) = 0 on ∂Ω and QT =

Ω× (0, T )

(iii) u(x, t) =

∫
Ω

φ(x, y)ul(y, t) dy, x ∈ ∂Ω,

then u(x, t) is called a weak solution of problems (1.1)–(1.3).
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A lower solution u(x, t) and an upper solution u(x, t) of problems
(1.1)–(1.3) can be similarly defined by replacing the equality sign in
(2.1) with inequality signs ≤ and ≥, respectively.

Lemma 2.2. Let ξ, ξ ∈ RN . There exists a positive constant c =
c(N, p) such that

(i) if p > 2, then (|ξ|p−2ξ − |ξ|p−2ξ) · (ξ − ξ) ≥ c|ξ − ξ|p,
(ii) if 1 < p ≤ 2, then (|ξ|p−2ξ − |ξ|p−2ξ) · (ξ − ξ) ≥ c |ξ−ξ|2

(|ξ|+|ξ|)2 ,

(|ξ|+ |ξ| ̸= 0).

Remark 2.3. Lemma 2.2 can be shown in a similar manner as the one
used in [8, Lemma 4.10].

We prove the following modified comparison principle by establish-
ing the suitable test function and using Lemma 2.2 and Gronwall’s
inequality.

Proposition 2.4. (Comparison principle). Suppose that u(x, t) and
u(x, t) is a lower solution and upper solution of problems (1.1)–(1.3),
respectively, with u(x, 0) ≥ 0, u(x, 0) ≥ ε > 0, and u(x, 0) ≤ u(x, 0),
where ε is any positive constant. We then have u(x, t) ≤ u(x, t) in
Ω× (0, T ).

Proof. For x ∈ Ω, we have the inequality∫ ∫
QT

(ut − ut)ϕdx dt+

∫ ∫
QT

(|∇u|p−2∇u− |∇u|p−2∇u) · ∇ϕdx dt

≤
∫ ∫

QT

ϕ

[
um

∫
Ω

un(y, t) dy − um
∫
Ω

un(y, t) dy

]
dx dt,

since u and u are lower and upper solutions of problems (1.1)–(1.3),
respectively. Choosing a test function ϕ = (u − u)+ = max{u − u, 0},
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we get∫ ∫
QT

(u− u)t(u− u)+ dx dt

+

∫ ∫
QT

(|∇u|p−2∇u− |∇u|p−2∇u) · ∇(u− u)+ dx dt

≤
∫ ∫

QT

(u− u)+

[
um

∫
Ω

un(y, t)dy − um
∫
Ω

un(y, t) dy

]
dx dt.

By Lemma 2.2, we deduce that (|∇u|p−2∇u− |∇u|p−2∇u) · ∇(u− u)+
≥ 0 for all p > 1, and so∫ ∫

QT

(u− u)t(u− u)+ dx dt

≤
∫ ∫

QT

(u− u)+

[
um

∫
Ω

un(y, t) dy − um
∫
Ω

un(y, t) dy

]
dx dt

=

∫ ∫
QT

[
(um − um)

∫
Ω

un(y, t) dy

]
(u− u)+ dx dt

+

∫ ∫
QT

(u− u)+u
m

∫
Ω

(un − un)(y, t) dy dx dt

≤
∫ ∫

QT

Φ1(x, t)(u− u)2+

(∫
Ω

un(y, t) dy

)
dx dt

+ |Ω|
∫ ∫

QT

Φ2(x, t)(u− u)2+u
m dx dt,

where

Φ1(x, t) = m

∫ 1

0

(θu+ (1− θ)u)m−1dθ,

Φ2(x, t) = n

∫ 1

0

(θu+ (1− θ)u)n−1dθ.

For m,n ≥ 1, the functions Φi (i = 1, 2) are bounded and, if
0 ≤ m < 1 or 0 < n < 1, we have Φ1 ≤ εm−1 and Φ2 ≤ εn−1,
since u(x, 0) ≥ 0 and u(x, 0) ≥ ε > 0. Furthermore, u(x, t) and u(x, t)
are bounded functions, and hence, we have the inequality∫ ∫

QT

(u− u)t(u− u)+ dx dt ≤ C

∫ ∫
QT

(u− u)2+ dx dt
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for some constant C > 0.

On the other hand, it follows from u(x, 0) ≤ u(x, 0) that∫
Ω

(u− u)2+ dx ≤
∫
Ω

(u− u)2+ −
∫
Ω

(u(x, 0)− u(x, 0))+(u− u)+dx

≤ C

∫ ∫
QT

(u− u)2+dx dt.

By Gronwall’s inequality, we can deduce (u − u)+ = 0, and hence, we
get u(x, t) ≤ u(x, t) in Ω× (0, T ).

For x ∈ ∂Ω, we have

u(x, t)− u(x, t) ≤
∫
Ω

φ(x, y)(ul(y, t)− ul(y, t)) dy.

Since∫
Ω

φ(x, y)(ul(y, t)− ul(y, t)) dy =

∫
Ω1

φ(x, y)(ul(y, t)− ul(y, t)) dy

+

∫
Ω2

φ(x, y)(ul(y, t)− ul(y, t)) dy,

where

Ω1 = {y ∈ Ω : u(y, t) ≤ u(y, t)}, Ω2 = {y ∈ Ω : u(y, t) > u(y, t)},

φ(x, y) is continuous, u(x, 0) ≥ 0 and u(x, 0) ≥ ε > 0, we can arrive at∫
Ω

φ(x, y)(ul(y, t)− ul(y, t)) dy =

∫
Ω

φ(x, y)Φ3(y, t)(u− u)+dy

≤ C

∫
Ω

(u− u)+dy,

where

Φ3(x, t) = l

∫ 1

0

(θu+ (1− θ)u)l−1dθ.

In the case of
∫
Ω
(u− u)+) dy = 0 in Ω, it can easily be seen that

u− u ≤
∫
Ω

φ(x, y)(ul(y, t)− ul(y, t)) dy ≤ 0,

and so u(x, t) ≤ u(x, t) on ∂Ω× (0, T ). Therefore, we obtain u(x, t) ≤
u(x, t) in Ω× (0, T ). �
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Remark 2.5. The existence of local nonnegative solutions in time to
problems (1.1)–(1.3) can be obtained by using a fixed point theorem
(cf. [24]) or a parabolic regular theory to get a suitable estimate in
a standard limiting process, see [12, 27]. By Proposition 2.4, we get
the uniqueness of solution to the problem. The proof is more or less
standard, and so it is omitted here.

3. Global existence and blow-up of solutions. Comparing
problems (1.1)–(1.3) with initial boundary problems subject to gen-
eral homogeneous Dirichlet boundary condition, one can see that the
existence of the weight function and the nonlinear exponent in the
boundary condition has a great influence on the existence of global and
non-global solutions.

Proof of Theorem 1.1. Consider the following initial value problem
of an ordinary differential equation:

V ′(t) = |Ω|V m+n,

V (0) = V0.

It is easy to see that solutions of the above problem blow up in finite
time for arbitrary initial data, provided that m+ n > 1.

For 1 < V0 < minΩ u0(x), we obtain

V (t) ≤ V l(t)

≤
∫
Ω

φ(x, y) dyV l(t)

=

∫
Ω

V l(t)φ(x, y) dy for x ∈ ∂Ω,

since
∫
Ω
φ(x, y) dy ≥ 1 and l ≥ 1. It is obvious that V (t) is a lower

solution of problems (1.1)–(1.3), and hence, the solution u(x, t) of
problems (1)–(3) blows up in finite time.

Proof of Theorem 1.2. Let u(x, t) = αeβt, where α ≥ 1 and β > 0
are constants that will be determined later. We then have

ut − div(|∇u|p−2∇u)− um
∫
Ω

undy = αβeβt − αm+nemβt

∫
Ω

enβtdy

≥ αβeβt − αm+neβ(m+n)t|Ω|.
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Because of m+ n ≤ 1, we get

ut − div(|∇u|p−2∇u)− um
∫
Ω

undy ≥ 0

by taking α = maxΩ{u0, 1} and β = |Ω|αm+n−1 in the above inequality.

For x ∈ ∂Ω,

u(x, t) = αeβt ≥ αeβt
∫
Ω

φ(x, y) dy

≥
∫
Ω

φ(x, y)αleβltdy

=

∫
Ω

φ(x, y)ul(y, t) dy,

since
∫
Ω
φ(x, y) dy ≤ 1 , α ≥ 1 and l ≤ 1, which implies that u(x, t) is

an upper solution of problems (1.1)–(1.3). By Proposition 2.4, one can
see that a global solution of problems (1.1)–(1.3) exists.

Proof of Theorem 1.3. Assume that ψ(x) solves the following
problem:

−div(|∇ψ|p−2∇ψ) = 1, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω.

It has been shown that ψ(x) > 0 in Ω and ∂ψ/∂n < 0, where n is an
outward unit normal vector to ∂Ω, see [5]. LetM = maxx∈Ω ψ(x) <∞,
and let ω(x, t) = k((ρ/1− ρ) + (ψ(x)/M)). Here, k ≥ 1 is a constant
that will be determined later.

It can easily be seen that ωt = 0 and

−div(|∇ω|p−2∇ω) =
(
k

M

)p−1

[−div(|∇ψ|p−2∇ψ)] =
(
k

M

)p−1

.

Because of ρ/(1− ρ)+ (ψ(x)/M) ≤ ρ/(1− ρ)+ 1 = 1/(1− ρ), we have

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy

≥
(
k

M

)p−1

− km+n

(
1

1− ρ

)m+n

|Ω|.
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(1) If p > m+ n+ 1, we get

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy ≥ 0

by taking k = max{max |u0(x)|, [|Ω|Mp−11/(1−ρ)m+n]1/(p−1−m−n), 1},
(2) If p = m+ n+ 1,

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy

≥
(
k

M

)p−1

− kp−1

(
1

1− ρ

)p−1

|Ω|.

Hence,

ωt−]div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy ≥ 0

provided that |Ω| ≤ (1− ρ/M)p−1.
(3) If 1 < p < m+ n+ 1, we can have

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy ≥ 0

by taking k such that

max
Ω

{max |u0(x)|, 1} ≤ k ≤ (M1−p(1− ρ)m+n|Ω|−1)1/(m+n+1−p).

For x ∈ ∂Ω, we consider the following two cases.

Case 1. 1/2 <
∫
Ω
φ(x, y) dy ≤ ρ < 1. Since ρ/(1− ρ) > 1, k ≥ 1,

and l ≤ 1, we obtain

ω(x, t) = k

(
ρ

1− ρ

)
= k

(
ρ

1− ρ
+ 1

)
ρ ≥ k

(
ρ

1− ρ
+
ψ(x)

M

)∫
Ω

φ(x, y) dy

≥
∫
Ω

kl
(

ρ

1− ρ
+
ψ(x)

M

)l

φ(x, y) dy

=

∫
Ω

ωlφ(x, y) dy.
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Case 2.
∫
Ω
φ(x, y) dy ≤ 1/2 (in this case, set ρ = 1/2). We then

have

ω(x, t) = k ≥ 2k

∫
Ω

φ(x, y) dy

≥
∫
Ω

kφ(x, y)

(
1 +

ψ(x)

M

)
dy

≥
∫
Ω

φ(x, y)ωldy,

provided that k ≥ 1 and l ≤ 1. The proof is completed. �
Proof of Theorem 1.5. Assume that ψ(x) solves the following

problem:

−div(|∇ψ|p−2∇ψ) = λψp−1, x ∈ Ω,

ψ(x) =

∫
Ω

φ(x, y) dy, x ∈ ∂Ω,

where λ > 0 is a constant. It is known that 0 < ψ(x) ≤ 1 in Ω, see [6],
so maxΩ ψ(x) = 1. Setting ω(x, t) = (A + t)−σψ(x), where A > 0 is a
constant, we obtain

ωt = −σ(A+ t)−σ−1ψ(x), ∇ω = (A+ t)−σ∇ψ(x),

and

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy

= −σ(A+ t)−σ−1ψ(x) + (A+ t)−σ(p−1)λψp−1

− (A+ t)−σ(m+n)ψm

∫
Ω

ψndy

= (A+ t)−σ(p−1)ψp−1(x)[−σ(A+ t)σ(p−2)−1ψ2−p

+ λ− (A+ t)σ(p−1−m−n)ψm−p+1

∫
Ω

ψndy]

≥ (A+ t)−σ(p−1)ψp−1(x)[−σ(A+ t)σ(p−2)−1ψ2−p

+ λ− (A+ t)σ(p−1−m−n)+1|Ω|],

provided that m+ n > 1, m ≥ 1 and 1 < p ≤ 2.
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If A is sufficiently large and |Ω| is small enough, we have

ωt − div(|∇ω|p−2∇ω)− ωm

∫
Ω

ωn(y, t) dy ≥ 0

by taking σ > 1/(m+ n+ 1− p).

For x ∈ ∂Ω, set ω(x, t) = (A+t)−σ
∫
Ω
φ(x, y) dy. Since 0 < ψ(x) ≤ 1

and l ≥ 1, we get

ω(x, t) ≥ (A+ t)−σ

∫
Ω

ψ(y)φ(x, y) dy

≥
∫
Ω

ψl(y)(A+ t)−σlφ(x, y) dy

=

∫
Ω

ωlφ(x, y) dy

for large enough A. Then ω(x, t) is an upper solution of problems
(1.1)–(1.3) if u0 ≤ A−σψ(x), which completes the proof. �

Proof of Theorem 1.6. Assume that ϕ(x) is a solution of the following
problem.

−div(|∇ϕ|p−2∇ϕ) = λ, x ∈ Ω,(3.1)

ϕ(x) =

∫
Ω

φ(x, y) dy, x ∈ ∂Ω.(3.2)

Choosing a proper λ such that 0 < ϕ(x) < 1 and setting

v(x, t) = σϕ(x),

where

0 < σ < min

{
1,

(
ϕm

∫
Ω
ϕndy

λ

)−1/(m+n+1−p)}
,

we have

vt − div(|∇v|p−2∇v) = σp−1(−div(|∇ϕ|p−2∇ϕ)

= σp−1λ > σm+nϕm
∫
Ω

ϕndy.
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On the other hand, since l ≥ 1, we get

v(x) = σ

∫
Ω

φ(x, y) dy ≥
∫
Ω

σϕ(y)φ(x, y) dy

≥
∫
Ω

σlϕl(y)φ(x, y) dy =

∫
Ω

vlφ(x, y) dy.

Hence, v(x, t) is an upper solution of problems (1.1)–(1.3) provided that
u0(x) ≤ σϕ(x), which means that the solution of problems (1.1)–(1.3)
globally exist for sufficiently small initial data.

Proof of Theorem 1.7. In order to prove the blow-up result, we
need to establish a self-similar blow-up solution. We first assume that
φ ∈ C1(Ω), φ(x) ≥ 0, φ(x) is not identically zero, and φ(x)|∂Ω = 0.
Without loss of generality, we assume that 0 ∈ Ω and φ(0) > 0.

Let u(x, t) = (T − t)−γV (ξ), where V (ξ) = (1 + (A/2)− (ξ2/2A))+,
ξ = |x|(T − t)−µ, A > 1, 0 < T < 1 and γ, µ > 0. It is easy to see that

(3.3) suppu+(·, t) = B(0, R(T − t)µ) ⊂ B(0, RTµ) ⊂ Ω

for sufficiently small T > 0 and R =
√
A(A+ 2). Calculating the

derivative of u with respect to the variable t, we obtain

ut =
γV (ξ)

(T − t)γ+1
+

µV ′(ξ)|x|
(T − t)γ(T − t)µ+1

=
γV (ξ) + µξV ′(ξ)

(T − t)γ+1
,

∇u = ∇
[
(T − t)−γ

(
1 +

A

2

)]
= (T − t)−γ

(
− ξ

A

)
∇ξ

= (T − t)−γ−µ

(
− |x|(T − t)−µ

A

)
∇(|x|),

△u =
N

A(T − t)γ+2µ
,

div(|∇u|p−2∇u) = |∇u|p−2△u+ (p− 2)|∇u|p−4(∇u)′(Hx(u)) · ∇u

= |∇u|p−2△u+ (p− 2)|∇u|p−4
N∑
j=1

N∑
i=1

∂u

∂xi

∂u

∂xi∂xj

∂u

∂xj
,

where H(x)(u) is the Hessian matrix of u. Let d(Ω) = diam (Ω). We
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then have

|div(|∇u|p−2∇u)| ≤ N(p− 1)(d(Ω))p−2

A(T − t)(γ+2µ)(p−1)
,

∫
Ω

un(y, t) dy =
1

(T − t)nγ

∫
B(0,R(T−t)µ)

V n

(
|x|

(T − t)µ

)
dx

=
M

(T − t)nγ−Nµ
,

where M =
∫
B(0,R)

V n(|ξ|) dξ > 0.

If 0 ≤ ξ ≤ A, then V ′(ξ) ≤ 0. It can easily be seen that

M ≥
∫
B(0,A)

V n(|ξ|) dξ ≥ ∥B(0, A)∥ for R > A,

and

ut − div(|∇u|p−2∇u)− u

∫
Ω

un(y, t) dy

≤ γV (ξ) + µξV ′(ξ)

(T − t)γ+1
+
N(p− 1)(d(Ω))p−2

A(T − t)(γ+2µ)(p−1)
(3.4)

− V (ξ)

(T − t)mγ+nγ

∫
Ω

un(x, t) dx

≤ γ(1 + 2A)

(T − t)γ+1
+
N(p− 1)(d(Ω))p−2

A(T − t)(γ+2µ)(p−1)
− ∥B(0, A)∥

(T − t)mγ+nγ−Nµ
.(3.5)

If ξ ≥ A, we have V ′(ξ) = −ξ/A ≤ −1 and V (ξ) ≤ 1. It follows
from (3.2) and M > 0 that

(3.6) ut − div(|∇u|p−2∇u)− u

∫
Ω

un(x, t) dx

≤ γ − µA

(T − t)γ+1
+
N(p− 1)(d(Ω))p−2

A(T − t)(γ+2µ)(p−1)
.
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Since 1 < p < m+n+1, we can choose constants γ, µ and A such that

1 +Nµ

m+ n− 1
< γ <

1− 2µ(p− 1)

p− 2
,

0 < µ <
m+ n+ 1− p

N(p− 2) + 2(p− 1)(m+ n− 1)
,

A >

{
1,
γ

µ
,
N(p− 1)(d(Ω))p−2

µ

}
.

We then obtain

ut − div(|∇u|p−2∇u)− u

∫
Ω

un(y, t) dy ≤ 0 in QT

for sufficiently small T > 0 by (3.5) and (3.6).

For x ∈ ∂Ω, since φ(0) > 0 and φ is continuous, it is known that
positive constants ε and ρ exist such that φ ≥ ε for x ∈ B(0, ρ).
Furthermore, we have B(0, RT σ) ⊂ B(0, ρ) ⊂ Ω, if T is small enough,
and so u ≤

∫
Ω
φ(x, y)uldy on ∂Ω × (0, T ). It follows from (3.3) that

u(x, 0) ≤ K0φ(x) for sufficiently large K0. Therefore, one can see that
the solutions to problems (1.1)–(1.3) exist no later than t = T , provided
that u0 ≥ K0φ(x). This implies that the solution blows up in finite
time for large enough initial data.

4. Blow-up rate estimate and blow-up profile. In this section,
we give blow-up rate, blow-up profile and blow-up set of the solution
to problems (1.1)–(1.3) for the linear diffusion case (p = 2).

4.1. Blow-up rate estimate. Let u(x, t) be a blow-up solution of
problems (1.1)–(1.3) for the linear diffusion case, and let

U(t) = max
x∈Ω

u(x, t).

Lemma 4.1. If u0 satisfies conditions (C1)–(C2), then a positive
constant c = [(m+ n− 1)|Ω|]−1/(m+n−1) exists such that

U(t) ≥ c(T − t)−1/(m+n−1).
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Proof. It is obvious that U(t) is Lipschitz continuous and differen-
tiable almost everywhere. It follows from △U(t) ≤ 0 that

U ′(t) ≤ Um

∫
Ω

Undy ≤ |Ω|Um+n.

We then have
−(U1−m−n(t))′ ≤ |Ω|(m+ n− 1).

Integrating the inequality above over (t, T ), the desired result follows.
�

Proof of Theorem 1.10. Let J = ut − δum+n. We then have

Jt = utt − δ(m+ n)um+n−1ut

= △ut +mum−1ut

∫
Ω

undx+ num
∫
Ω

un−1utdx

− δ(m+ n)um+n−1ut,

△J = △(ut − δum+n)

= △ut − δ(m+ n)um+n−1ut + δ(m+ n)u2m+n−1

∫
Ω

undy

− δ(m+ n)(m+ n− 1)um+n−2|∇u|2,

and

Jt −△J − Jmum−1

∫
Ω

undy − num
∫
Ω

un−1J dy(4.1)

≥ nδum
∫
Ω

u2n+m−1dy − δnu2m+n−1

∫
Ω

undy

= nδum
(∫

Ω

u2n+m−1dy − um+n−1

∫
Ω

undy

)
.

Since m+n > 1 and n/(2n+m− 1)+ (m+ n− 1)/(2n+m− 1) = 1,
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by Young’s inequality, we get

(4.2) um+n−1

(∫
Ω

u2n+m−1dy

)n/(2n+m−1)

≤ m+ n− 1

2n+m− 1
(um+n−1)(2n+m−1)/(m+n−1)

+
n

2n+m− 1

∫
Ω

u2n+m−1dy.

By Hölder’s inequality, we have

(4.3)

∫
Ω

undy ≤
(∫

Ω

u2n+m−1dx

)n/(2n+m−1

.

Combining (4.2) and (4.3) with (4.1), we obtain

Jt −△J − Jmum−1

∫
Ω

undy − num
∫
Ω

un−1Jdy

≥ nδum
(∫

Ω

u2n+m−1dy − um+n−1

)(∫
Ω

u2n+m−1dy

)n/(2n+m−1)

≥ nδum
(∫

Ω

u2n+m−1dy − m+ n− 1

2n+m− 1
um+2n−1

− n

2n+m− 1

∫
Ω

u2n+m−1dy

)
= nδum

m+ n− 1

2n+m− 1

(∫
Ω

u2n+m−1dy − u2n+m−1

)
≥ 0.

On the other hand, for (x, t) ∈ ∂Ω× (0, T ), we have

J = ut − δum+n =
∫
Ω
lf(x, y)ul−1utdy − δ

(∫
Ω
f(x, y)uldy

)m+n

=
∫
Ω
lf(x, y)ul−1J dy

+
∫
Ω
lδf(x, y)um+n+l−1dy − δ

(∫
Ω
f(x, y)uldy

)m+n

.
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By Jensen’s inequality, we know that

J ≥
∫
Ω

lf(x, y)ul−1J dy + lδ

(∫
Ω

f(x, y)uldy

)(m+n+l−1)/l

− δ

(∫
Ω

f(x, y)uldy

)m+n

.

We can choose a suitable constant l satisfying that

l

(∫
Ω

f(x, y)uldy

)(m+n+l−1)/l

≥
(∫

Ω

f(x, y)uldy

)m+n

.

Hence, for such a constant l we get J ≥
∫
Ω
lf(x, y)ul−1J dy. Moreover,

J(x, t) = ut(x, t)− δum+n(x, t) = △u− um
∫
Ω

undy − δum+n,

and so J(x, 0) ≥ 0, since conditions (C1)–(C2) hold. Therefore, J(x, t)
≥ 0 for all (x, t) ∈ Ω×[0, T ), which means that ut ≥ δum+n in Ω×[0, T ).
Integrating this inequality over (t, T ), we get u ≤ C(T − t)−1/(m+n−1),
where C = [δ(m+ n− 1)]−1/(m+n−1). Combining this inequality with
Lemma 4.1, the desired result follows. �

4.2. Blow-up profile. In this section, we assume that m < 1 and
u(x, t) is a blow-up solution of problems (1.1)–(1.3) in finite time. Let
u ∼ v denote limt→T u(t)/v(t) = 1.

Remark 4.2. Using Schauder’s fixed point theorem, one can show
that the regularized problems of (1.1)–(1.3) admit a unique classical
solution uε(x, t) on QTε for p = 2, see [13, 26].

Lemma 4.3. Suppose that
∫
Ω
φ(x, y) dy ≥ 1 for x ∈ ∂Ω, l ≥ 1, m < 1

and m+ n > 1. If △u0 ≤ 0 in Ω, then △u ≤ 0 in any compact subset
of Ω.

Proof. Let uε(x, t) be a solution to problems (1.1)–(1.3) in QTε , and
let W = △uε. We then have

Wt = △W +m(m− 1)um−2
ε |∇u|2

∫
Ω

unε dy +mumε △uε
∫
Ω

unε dy.

It follows from uε(x, t)>0 andm<1 thatWt−△W ≤mum−1
ε W

∫
Ω
unε dy.
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For (x, t) ∈ ∂Ω× (0, T ), we get

W = △uε = uεt − umε

∫
Ω

unε dy

=

∫
Ω

φ(x, y)lul−1
ε uεtdy − umε

∫
Ω

unε dy

=

∫
Ω

φ(x, y)lul−1
ε Wdy

+

∫
Ω

unε dy

(
l

∫
Ω

φ(x, y)um+l−1
ε dy − umε

)
≤

∫
Ω

φ(x, y)lul−1
ε W dy

+

∫
Ω

unε dy
(
lCm+l−1

1

∫
Ω

φ(x, y) dy − Cm
2

)
≤

∫
Ω

φ(x, y)lul−1
ε W dy,

where C1 = maxx∈QTε
uε, C2 = minx∈QTε

uε and W (x, 0) = △u0 ≤ 0,
which completes the proof. �

Let g(t) =
∫
Ω
undx, and let G(t) =

∫ t

0
g(s) ds.

Lemma 4.4. Under the same conditions as Lemma 4.3, we have

lim
t→T

g(t) = lim
t→T

G(t) = +∞.

Proof. By Lemma 4.3, we know that ut ≤ umg(t). Integrating this
inequality over (0, t), we get

(4.4)
1

1−m
u1−m(x, t) ≤

∫ t

0

g(s) ds+
1

1−m
u1−m(x, 0),

from which the desired result follows, since limt→T ∥u∥ = +∞ and
m < 1. �

From now on, we assume that C is a generic positive constant not
necessarily the same at different occurrences.
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Lemma 4.5. Under the same conditions as Lemma 4.3, we have

lim
t→T

∫ t

0
G(1−m)/(1−m−n)(s) ds

G(t)
= 0.

Proof. From Theorem 1.10, we know that

∫ t

0

G(1−m)/(1−m−n)ds ≤ C

∫ t

0

(T − t)1−mds.

Combining this inequality with (4.4), we obtain

G(t) ≥ Cu1−m−n ≥ C(T − t),

from which the result follows. �

Lemma 4.6. Under the same conditions as Lemma 4.3, we have

lim
t→T

u1−m(x, t)

(1−m)G(t)
= lim

t→T

∥u(·, t)∥1−m
∞ (x, t)

(1−m)G(t)
= 1

for any compact subset of Ω.

Proof. It is obvious that lim supt→T (u
1−m)/[(1−m)G(t)] ≤ 1 from

Lemma 4, and so we only need to show the opposite inequality.

Let z(x, t) = G(t)−[u1−m(x, t)]/(1−m), and let η(t) =
∫
Ω
z(y, t)ϕ(y)

dy. If ϕ(x) solves the following problem:

−△ϕ(x) = λϕ(x, t), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω,
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and
∫
Ω
ϕ(x) dx = 1, we have

η′(t) =

∫
Ω

(g(t)− u−m(y, t)ut(y, t))ϕ(y) dy

= −
∫
Ω

u−m(y, t)△u(y, t)ϕ(y) dy

≤ λ

∫
Ω

u1−m(y, t)ϕ(y) dy

≤
∫
Ω

(G(t)− z(y, t))ϕ(y) dy

≤ C(G(t) +

∫
Ω

z−(y, t)ϕ(y) dy),

where z− = max{−z, 0}. It follows from (4.4) that infΩz(x, t) ≥ −C.
Then z− ≤ C and

η′(t) ≤ CG(t) + C ′.

Integrating the inequality above over (0, t), we get

η(t) ≤ C(1 +

∫ t

0

G(s) ds),

which implies that∫
Ω

|z(y, t)|ϕ(y) dy ≤ C

(
1 +

∫ t

0

G(s) ds

)
.

Setting Kρ = {y ∈ Ω | dist (y, ∂Ω) > ρ}, we get

sup
Kρ

z(x, t) ≤ C

ρN+1
C

(
1 +

∫ t

0

G(s) ds

)
,

since −△z ≤ 0 in Ω× (0, T ). By inequality (4.4), we obtain

− C

G(t)
≤ 1− u1−m

(1−m)G(t)
≤ C

ρN+1

C(1 +
∫ t

0
G(s) ds)

G(t)
,

from which and from Lemmas 4.4 and 4.5 the desired result follows. �

Remark 4.7. Lemma 4.6 implies that the blow-up set is the whole
domain Ω if the conditions of Lemma 4.3 are satisfied.
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Proof of Theorem 1.11. By Lemma 4.6, we have

G′(t) =

∫
Ω

undx ∼ |Ω|[(1−m)G(t)]m/(1−m) as t→ T.

Moreover, we can obtain

G(t) ∼ (1−m)−1

((
|Ω|m+ n− 1

1−m

)−1/(m+n−1)

(1−m)−1/(m+n−1)

)1−m

(T − t)(m−1)/(m+n−1)

= (1−m)−1M1−m
1 (T − t)(m−1)/(m+n−1),

where

M1 =

(
|Ω|m+ n− 1

1−m

)−1/(m+n−1)

(1−m)−1/(m+n−1).

This completes the proof. �
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