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ABSTRACT. A pair of coupled nonlinear Volterra equa-
tions are examined for solutions that can have either global
or blow-up behavior. The results represent an extension of
the work in [8], where the analysis was restricted to cases in
which the integral equations had identical kernels. Sufficient
conditions are provided for global solutions as well as for blow-
up solutions. In the case of blow-up solutions, bounds on the
blow-up time are derived. To demonstrate the applicability of
the results, two examples are analyzed.

1. Introduction. We consider the possible blow-up behavior of the
following system of nonlinearly coupled Volterra equations:

(1)

u1(t) =

∫ t

0

k1(t− s)F1[u2(s) + h2(s)] ds,

u2(t) =

∫ t

0

k2(t− s)F2[u1(s) + h1(s)] ds, t ≥ 0.

In (1), it is assumed that the kernels kj(t), j = 1, 2, are continuous and
differentiable for t > 0 and have the properties

kj(t) ≥ 0, k′j(t) ≤ 0, 0 ≤ t < ∞, j = 1, 2.

The given functions hj(t), j = 1, 2, are continuously differentiable for
t ≥ 0 and have the properties

(2) 0 < a ≤ hj(t) ≤ b < ∞, h′
j(t) ≥ 0, t ≥ 0, j = 1, 2.

The nonlinearities Fj(v), j = 1, 2, are twice continuously differentiable
and have the properties

Fj(v) > 0, F ′
j(v) > 0, F ′′

j (v) ≥ 0 for v > 0, j = 1, 2.
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Our goal is to explore the conditions under which the solution uj(t),
j = 1, 2, of (1) does or does not exhibit blow-up behavior. In those
circumstances where a blow-up does occur, bounds on the blow-up
time will be provided.

The general results derived here represent an extension of those
presented by Olmstead, Roberts and Deng in [8]. The results presented
in [8] apply to system (1) only for the special case in which k1(t) =
k2(t), t ≥ 0.

The relationship of (1) with certain reaction-diffusion problems gov-
erned by coupled parabolic partial differential equations is developed
in [8]. It is shown how the kernels in (1) are derived from Green’s func-
tions associated with the parabolic operators that model the diffusive
behavior of the reactive materials. For situations in which the diffusive
media have dissimilar properties, the corresponding Green’s functions
presented in [8] will yield non-equal kernels as allowed in (1).

To illustrate the general results derived here, two examples will be
presented. One example that always exhibits a blow-up arises from the
work of Kirane and Malik in [3], where a system of fractional differential
equations with power-law nonlinearities is analyzed. A second example
demonstrates the possibility of either a global or a blow-up solution
depending upon the parameters of the problem. A special case of
this second example is related to an integro-differential equation being
considered by Kirane and Rihani [4].

2. Global and blow-up solutions. It is convenient to express
system (1) in vector operator form as

(3) u(t) = Tu(t),

where u = [u1, u2], k = [k1, k2], F = [F1, F2], T = [T1, T2] and

Tju(t) =

∫ t

0

kj(t− s)Fj [u3−j(s) + h3−j(s)] ds,

for 0 ≤ t < t̂, j = 1, 2.

In order to examine (3) for both the existence and nonexistence of a
global solution, we employ a methodology similar to that of [8]. We
consider the following space of pairs of continuous functions:

X = {u | uj continuous; 0 ≤ uj(t) ≤ M < ∞, 0 ≤ t < t̂, j = 1, 2},
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with the norm

‖u‖ =

2∑
n=1

sup
0≤t<t̂

|un(t)|.

To explore existence, we will apply the contraction mapping theorem
in order to establish a unique fixed point u ∈ X . It is clear that Tju(t)
is continuous and that

0 ≤ Tju(t) ≤ Fj(M + b)Ij(t), 0 ≤ t ≤ t̂, j = 1, 2

where

Ij(t) =

∫ t

0

kj(s) ds, j = 1, 2.

In order for T to map X into itself, it is sufficient that

Fj(M + b)Ij(t̂) ≤ M, j = 1, 2.

To satisfy this for j = 1, 2, it is sufficient to require

(4) F (M + b)I(t̂) ≤ M

where

(5)

F (M + b) = max
j=1,2

Fj(M + b),

I(t) =

∫ t

0

k(s) ds, and

k(t) = max
j=1,2

kj(t).

In order that T has the contraction property, it will be shown to be
sufficient that

(6) F
′
(M + b)I(t) < 1,

where F
′
(M + b) = maxj=1,2 F

′
j(M + b).

To satisfy both (4) and (6), it is appropriate to define

(7) Λ =
M∗

F (M∗ + b)
, M∗F

′
(M∗ + b) = F (M∗ + b).
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Satisfaction of (4) and (6) holds for 0 ≤ t < t∗, where

(8) I(t∗) = Λ.

The results on existence of a solution to (1) are given by the following
theorem.

Theorem 2.1. System (1) has a unique solution u(t) ∈ X for
0 ≤ t < t∗, where t∗ is given by (8). If I(∞) < Λ, then (1) has a
unique global solution.

Proof. T maps X into itself whenever (1) is satisfied. To examine the
contraction property of T , it follows from (3) that

(9)
|Tju(t)− Tjv(t)| ≤ F ′

j(M + b)

∫ t

0

kj(t− s)|u3−j(s)− v3−j(s)| ds,
j = 1, 2.

Then it follows that

(10) ||Tu− Tv|| ≤ F
′
(M + b)I(t)||u− v||.

Thus, T is a contraction for 0 ≤ t < t̂ provided that (6) is satisfied.
The largest interval [0, t∗) for which (4) and (6) are both satisfied is
provided by (7) and (8). This assures the existence of a unique solution
u(t) ∈ X for 0 ≤ t < t∗.

If I(∞) < Λ, then (4) and (6) are both satisfied for 0 ≤ t < ∞. Thus,
(1) has a global solution.

To demonstrate the monotone growth of uj(t), j = 1, 2, whenever
u(t) exists, consider the following theorem.

Theorem 2.2. Whenever (1) has a unique solution u(t) ∈ X, then
it is differentiable and u′

j(t) > 0, j = 1, 2, 0 < t < t̂.
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Proof. The formal derivative of (1) can be expressed in component
form as

(11)

u′
j(t) = kj(t)Fj [h3−j(0)]

+

∫ t

0

kj(t− s)F ′
j [u3−j(s) + h3−j(s)]

× [u′
3−j(s) + h′

3−j(s)] ds,

0 < t < t̂, t ≥ 0, j = 1, 2.

This can be viewed as a linear Volterra system for u′
j(t), j = 1, 2, with

the kernels

Kj(t, s) = kj(t− s)F ′
j [u3−j(s) + h3−j(s)], j = 1, 2.

The properties of kj(t), hj(t) and F ′
j (v) together with the existence of

continuous u3−j(t), 0 ≤ t < t̂, are sufficient to ensure that Kj(t, s) is
continuous in both t and s, 0 ≤ s < t < t̂, with the possibility of an
integrable singularity as s → t. This is sufficient (see [2]) to provide
that there is a continuous solution u′

j(t), j = 1, 2, of (11) for 0 < t < t̂.

To see that u′
j(t) > 0, j = 1, 2, 0 < t < t̂, first note that uj(0) = 0

and uj(t) > 0, 0 < t < t̂. This implies that u′
j(t) > 0, j = 1, 2, at least

on some common small interval 0 < t < t. Assume, for example, that
u′
1(t) = 0, u′

2(t) ≥ 0. Then, from (11) with j = 1,

(12)

0 = k1(t)F1[h2(0)]

+

∫ t

0

k1(t− s)F ′
1[u2(s) + h2(s)][u

′
2(s) + h′

2(s)] ds.

Clearly this is a contradiction since the right side of (12) must be
positive for t < ∞. Thus, u′

1(t) �= 0, and analogously it follows that
u′
2(t) �= 0. Hence, no such t exists, and consequently, u′ = [u′

1, u
′
2] is

such that

(13) u′
j(t) > 0, 0 < t < t̂, j = 1, 2.

To investigate the possibility of a blow-up solution to (1), a lower
bound on u(t) will be derived. It will be shown that the lower bounding
function cannot exist for t ≥ t∗∗ if there exists a t∗∗ < ∞ such that

(14) Ĩ(t∗∗) = κ = min
j=1,2

κj ,
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where

(15) Ĩ(t) =

∫ t

0

k̃(s) ds, k̃(t) = min
j=1,2

kj(t)

and

(16) κj =

∫ ∞

a

dz

Fj [G
−1
j [G3−j(z) +Gj(a)−G3−j(a)]]

, j = 1, 2.

The functions Gj(z) are the antiderivatives of Fj(z), i.e.,

(17) Fj(z) =
dGj(z)

dz
, j = 1, 2.

The results on a blow-up solution of (1) are given by the following
theorem.

Theorem 2.3. If there exists a t∗∗ < ∞ such that (14) is satisfied,
then the solution of (1) ultimately experiences a blow-up for some
tc < ∞, t∗ ≤ tc ≤ t∗∗. The upper and lower bounds on tc are given by
(8) and (14), respectively.

Proof. Assume that u = Tu has a continuous solution for 0 ≤ t ≤ t̂.
Since k1(t) and k2(t) are nonincreasing functions, then

uj(t) ≥ Jj(t) ≡
∫ t

0

kj(t̂− s)Fj [u3−j(s) + h3−j(s)] ds, j = 1, 2.

Then
J ′
j(t) = kj(t̂− t)Fj [u3−j(t) + h3−j(t)]

≥ k̃(t̂− t)Fj [J3−j(t) + a], Jj(0) = 0.

Note that k̃(t) is a nonincreasing function since k′j(t) ≤ 0 for j = 1, 2.
Also note that a blow-up of either Jj(t) would imply a blow-up of the
corresponding uj(t). To investigate the possibility of a blow-up in Jj(t),
consider the following comparison problem:

(18)
V ′
j (t) = k̃(t̂− t)Fj [V3−j(t)], Vj(0) = a− δ > 0,

δ > 0, 0 ≤ t ≤ t̂, j = 1, 2.
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Define
Uj(t) = Jj(t) + a− Vj(t).

Then
U ′
j(t) = J ′

j(t)− V ′
j (t)

≥ k̃(t̂− t)[Fj [J3−j(t) + a]− Fj [V3−j(t)]]

≥ k̃(t̂− t)F ′
j [Θ̃3−j(t)]U3−j(t),

Uj(0) = δ, j = 1, 2.

Here Θ̃j lies between Jj + a and Vj and hence is positive for j = 1, 2.
Integration gives

Uj(t) ≥ δ +

∫ t

0

k̃(t̂− s)F ′
j [Θ̃3−j(s)]U3−j(s) ds,

0 ≤ t ≤ t̂, j = 1, 2,

and that Uj(t) > 0 for 0 ≤ t ≤ t̂ for all δ > 0. Hence, Uj(t) ≥ 0 for
δ = 0, 0 ≤ t ≤ t̂. Thus, for δ = 0,

(19) uj(t) ≥ Jj(t) ≥ Vj(t)− a, 0 ≤ t ≤ t̂, j = 1, 2.

Then the system for Vj(t) given by (18) can be expressed as

(20)

d

dt
[Gj(V3−j(t))] =

d

dV3−j
[Gj(V3−j)]

dV3−j

dt

= Fj(V3−j)
dV3−j

dt

= k̃(t̂− t)Fj(V3−j(t))F3−j(Vj(t)), j = 1, 2.

Since the last expression in (20) is invariant for j = 1, 2, then

(21) G2(V1(t)) −G1(V2(t)) = G2(a)−G1(a), 0 ≤ t ≤ t̂.

Since Fj(V ) > 0 for V > 0, then Gj(V ) is strictly increasing and hence
invertible. Then it follows that

Vj(t) = G−1
3−j [Gj(V3−j(t)) +G3−j(a)−Gj(a)], j = 1, 2.
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Thus, from (18) with δ = 0, we have

dVj

dt
= k̃(t̂− t)Fj [G

−1
j [G3−j(Vj(t)) +Gj(a)−G3−j(a)]],

with Vj(0) = a, 0 ≤ t ≤ t̂, j = 1, 2. Then

(22)

∫ Vj(t̂)

a

dz

Fj [G
−1
j [G3−j(z) +Gj(a)−G3−j(a)]]

= Ĩ(t̂), j = 1, 2,

where Ĩ(t) is given by (15). If there exists a t∗∗ < ∞ such that (14)
holds, then (22) implies that Vj(t) → ∞ as t → t∗∗. In view of (19),
this implies that uj(t) → ∞ as t → tc ≤ t∗∗.

The lower bound on tc follows from Theorem 2.1, which provides that
u(t) exists for 0 ≤ t < t∗.

The results presented here for blow-up solutions of the Volterra
system (1) can be compared to very recent work in [1] for a single
Volterra equation. Similar to Theorem 2.3, the results of [1] provide
sufficient conditions for blow-up that include properties of the kernel to
ensure that I(t) grows sufficiently fast while a measure of the strength
of the nonlinearity, analogous to κ, remains bounded. In [1], the
main theorems are applied to various known blow-up problems to
demonstrate the versatility of the results.

Recent work in [7] examines the blow-up time for solutions to some
nonlinear Volterra equations. Here again the growth of I(t) and its
inverse, along with the strength of the nonlinearity, are used to develop
bounds on the blow-up time. Other recent results on blow-up behavior
for nonlinear Volterra equations are reviewed in [9].

3. Application to a system with power-law nonlinearities. In
this section, we consider an example of system (1) studied in [3]. As
part of the analysis in [3], the authors consider the following system of
nonlinear Volterra equations:

(23)

u(τ) = u0 +
μ

Γ(α)

∫ τ

0

[v(σ)]q

(τ − σ)1−α
dσ, τ > 0,

v(τ) = v0 +
μ

Γ(β)

∫ τ

0

[u(σ)]p

(τ − σ)1−β
dσ, τ > 0,

where u0 > 0, v0 > 0, p > 1, q > 1, 0 < α < β < 1, μ > 0.
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The form of (23) does not immediately allow for application of the
results derived in Section 2. In order to apply the results of Section 2,
it is necessary to first convert (23) into the form of (3). This is
accomplished through the following change of variables:

{u(τ), v(τ)} = {u0[u1(t) + 1], v0[u2(t) + 1]},
{τ, σ} = ω{t, s},
{α, β} = {β1, β2}, 0 < β1 < β2 < 1,

{k1(t), k2(t)} = γ{tβ1−1, tβ2−1},
{q, p} = {p1, p2},

where

(24) γ = μ

{
[Γ(β)]α

[Γ(α)]β
[v0]

βq+α

[u0]αp+β

}1/(β−α)

, ω =

[
Γ(β)

Γ(α)

vq+1
0

up+1
0

]1/(β−α)

.

This allows (23) to be expressed as

(25) uj(t) =

∫ t

0

kj(t− s)[u3−j(s) + 1]pj ds, t > 0, j = 1, 2.

The solution of (25) always experiences a blow-up as will be estab-
lished in the following theorem.

Theorem 3.1. System (25) has a unique, continuous and mono-
tonically increasing solution for 0 ≤ t < t∗. That solution ultimately
experiences a blow-up as t → tc < ∞, where t∗ ≤ tc ≤ t∗∗. Values of
t∗ and t∗∗ are given by

t∗ =

⎧⎪⎪⎨
⎪⎪⎩

[
β1

γ
(r−1)(r−1)

rr

]1/β1

, if β1

γ
(r−1)(r−1)

rr ≤ 1,

[
β2

γ
(r−1)(r−1)

rr − (β2−β1)
β1

]1/β2

, if β1

γ
(r−1)(r−1)

rr > 1,

(26)

and

t∗∗ =

⎧⎪⎪⎨
⎪⎪⎩

[
β2

γ
r+1

p1p2−1

]1/β2

, if β2

γ
r+1

p1p2−1 ≤ 1,

[
β1

γ
r+1

p1p2−1 + (β2−β1)
β2

]1/β1

, if β2

γ
r+1

p1p2−1 > 1,

(27)
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where r = max{pj}, j = 1, 2.

Proof. The existence of a unique, continuous and monotonically
increasing solution for 0 ≤ t < t∗ follows directly from Theorems 2.1
and 2.2. The value of t∗ follows by first noting that

(28) k(t) = max
j=1,2

kj(t) =

{
γt−1+β1, 0 < t ≤ 1,

γt−1+β2, 1 < t < ∞,

and

(29) I(t) =

∫ t

0

k(s) ds =
γ

β1β2

{
β2t

β1 , 0 ≤ t ≤ 1,

β1t
β2 + (β2 − β1), 1 < t < ∞.

Then note that F (M + 1) = (M + 1)r, F
′
(M + 1) = r(M + 1)r−1.

Then from (7) and (8),

(30) I(t∗) =
(r − 1)r−1

rr
< 1.

Solving (30) for t∗ gives (26).

To calculate t∗∗, first note that k̃(t) is the complementary case of
(28), and hence

(31) Ĩ(t) =

∫ t

0

k̃(s) ds =
γ

β1β2

{
β1t

β2 , 0 ≤ t ≤ 1

β2t
β1 − (β2 − β1), 1 < t < ∞.

For the calculation of κj , as defined by (16), it follows that
(32)

κj =

∫ ∞

1

[
p3−j + 1

(pj + 1)(y)p3−j+1 + p3−j − pj

]pj/(pj+1)

dy, j = 1, 2.

The integral κj can be expressed in terms of hypergeometric functions.
To obtain a more useful upper bound t∗∗, it is convenient to replace
(32) by

(33) κj ≤
∫ ∞

1

(
1

y

)(p1p2+r)/(1+r)

dy =
r + 1

p1p2 − 1
, j = 1, 2.



NONLINEAR VOLTERRA EQUATIONS 387

Thus κ ≤ (r + 1)/(p1p2 − 1), from which (27) follows. It is clear that
(27) is always satisfied by some t∗∗ < ∞. Hence, the solution of (25)
always experiences a blow-up as t → tc < ∞.

Conversion of the bounds (26) and (27) back to the variables of (23)
yields

τ∗ =

⎧⎪⎪⎨
⎪⎪⎩

ω
[
α
γ

(r−1)r−1

rr

]1/α
, if α

γ
(r−1)r−1

rr ≤ 1,

ω
[
β
γ

(r−1)r−1

rr − (β−α)
α

]1/β
, if α

γ
(r−1)r−1

rr > 1,

(34)

τ∗∗ =

⎧⎪⎪⎨
⎪⎪⎩

ω
[
β
γ

r+1
pq−1

]1/β
, if β

γ
r+1
pq−1 ≤ 1,

ω
[
α
γ

r+1
pq−1 + (β−α)

β

]1/α
, if β

γ
r+1
pq−1 > 1.

(35)

It is difficult to make an exact comparison of the upper bound on
the blow-up time determined in [3] with that provided in (35). The
results of [3] involve a parameter used in establishing blow-up that has
no counterpart in the proof of blow-up as presented in Theorem 2.3.
In [3], an upper bound on the blow-up time is given by min [Tu, Tv],
where Tu depends upon u0 and Tv depends upon v0. Converting those
expressions to ones involving γ and ω yields

Tu = ĉuωγ
−m, m =

q + 1

βq + α
; Tv = ĉvωγ

−m̃, m̃ =
p+ 1

αp+ β
,

with (1/β) ≤ m, m̃ ≤ (1/α). The constants ĉu and ĉv are independent
of u0 and v0. These expressions for Tu and Tv have some similarity
to (35) in that they are directly proportional to ω and inversely
proportional to a power of γ.

The growth profile of uj(t) near blow-up is derived by applying
a methodology developed in [10]. The results are provided in the
following theorem.

Theorem 3.2. The asymptotic behavior near blow-up of the solution
to (25) is given by

(36) uj(t) ∼ Aj(tc − t)−lj , as t → tc,
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where

(37) lj =
pjβ3−j + βj

p1p2 − 1
, j = 1, 2,

and

(38) Aj = [mj(m3−j)
pj ]1/(p1p2−1), mj =

Γ(pj l3−j)

γΓ(βj)Γ(pj l3−j − βj)
.

Proof. This proof is a direct application of results developed in [10],
which will be outlined below. Consider the change of variables

(39) wj(η) = uj(t), η = (tc − t)−1 − η0, η0 = t−1
c ,

whereby the blow-up uj(t) → ∞ as t → tc then corresponds to
wj(η) → ∞ as η → ∞.

The change of variables converts (25) to the form

(40) wj(η) = γη

(
η + η0

η

)1−βj
∫ 1

0

[w3−j(ηξ) + 1]pj

(ηξ + η0)1+βj (1− ξ)1−βj
dξ.

The methodology of [10] is based upon well-known asymptotic methods
for Mellin transforms. To apply those methods, it is convenient to
employ the Parseval formula for Mellin transforms so as to convert
(40) to

(41) wj(η) = γΓ(βj)η

(
η + η0

η

)1−βj 1

2πi∫ c+i∞

c−i∞
η−z Γ(1− z)

Γ(1 + βj − z)
M [Qj(η); z] dz,

where the Mellin transform is defined by

M [Qj(η); z] =

∫ ∞

0

ηz−1Qj(η)dη,(42)

with

Qj(η) =
[w3−j(η) + 1]pj

(η + η0)1+βj
.
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The vertical integration path in (41) is taken to lie within a strip of
analyticity of the integrand.

It is then shown in [10] that algebraic growth of wj(η) as given by

(43) wj(η) ∼ Ajη
lj , lj > 0, Aj > 0, as η → ∞

yields an asymptotic version of (41) in the form

(44) Ajη
lj ∼ γ

Γ(βj)Γ(pj l3−j − βj)

Γ(pj l3−j)
(A3−j)

pjηpj l3−j−βj , j = 1, 2.

Satisfaction of (44) provides the values of lj and Aj given by (37) and
(38).

Remark. The asymptotic analysis of [10] does not determine an
explicit value of tc. The existence of tc with the bounds t∗ ≤ tc ≤
t∗∗ < ∞ is provided by Theorem 3.1.

Converting the results of Theorem 3.2 back to the variables of (23)
gives

(45) u(τ) ∼ c1(τc − τ)−l1 , v(τ) ∼ c2(τc − τ)−l2 , as τ → τc,

where

(46)

c1 =

[
Γ(ql2)

μΓ(ql2 − α)

]1/(pq−1)[
Γ(pl1)

μΓ(pl1 − β)

]q/(pq−1)

,

c2 =

[
Γ(ql2)

μΓ(ql2 − α)

]p/(pq−1)[
Γ(pl1)

μΓ(pl1 − β)

]1/(pq−1)

.

These results for the blow-up profiles associated with the solution of
(23) are essentially the same as those given in [3].

4. Application to a system with global and blow-up solu-
tions. Consider the system

(47) uj(t) =

∫ t

0

kj(t− s)[u3−j(s) + dj ]
pj ds, t > 0, j = 1, 2,
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where p1 = 1, p2 = p > 1, d1 = d > 0 and d2 = 1. The kernel has the
form

(48) kj(t) = e−cttβj−1, j = 1, 2,

where β1 = 1, β2 = α, 0 < α < 1 and c ≥ 0.

Integral equations with kernels in the form of (48) have been consid-
ered in [5, 6]. These papers demonstrate that, in a diffusive medium,
the exponential factor arises from allowing for an advection effect. Typ-
ically, c ∼ v2, where v is the velocity associated with advection. Ad-
vection has a cooling influence on the medium and would be expected
to diminish the tendency for a blow-up to occur. It will be shown that,
for c sufficiently large, (47) has a global solution.

The special case of (47) in which c = 0 can be converted to the
integro-differential equation

(49) u′(t) =
∫ t

0

(t− s)α−1[u(s)]p ds+ d, t > 0, u(0) = u0 > 0.

This equation with d = 0 has been considered in [4]. That limiting
case will be discussed at the end of this section.

By applying the results of Section 2 to (47), a sufficient condition for
a global solution is obtained. That condition involves the incomplete
gamma function γ(α, x) =

∫ x

0 sα−1e−s ds. A global solution of (47) is
provided by the following theorem.

Theorem 4.1. If α, d and p are such that

(50) c−αγ(α, c) + c−1e−c < p−p

{
p− 1

max[1, d]

}p−1

,

then (47) has a global solution.

Proof. To apply Theorem 2.1, it is noted that k(t) = e−ctmax[1, t−1+α],
and hence

(51) I(t) =

{
c−αγ(α, ct), 0 ≤ t ≤ 1,

c−αγ(α, c) + c−1(e−c − e−ct), t > 1.
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The value of Λ follows from (7) with F (M + b) = (M + b)p, where
b = max[1, d] ≥ 1. Then M∗ = b/(p− 1), and hence

(52) Λ = p−p

{
p− 1

max[1, d]

}p−1

< 1.

Then I(∞) < Λ yields (50).

It should be noted that (50) can always be satisfied for some suffi-
ciently large value of c. From an application viewpoint, this implies
that increasing the advection velocity can be used to prevent blow-up
in a reactive-diffusive medium.

If c is sufficiently small, (50) is not satisfied and hence allows for the
possibility of a blow-up. If c = 0, then the solution of (47) always
experiences a blow-up as shown by the following theorem.

Theorem 4.2. Let c = 0. Then the solution of (47) always
experiences a blow-up as t → tc, where t∗ ≤ tc ≤ t∗∗ < ∞. The
bounds on the blow-up time are given by

(53) t∗ =

[
αp−p

{
p− 1

max[1, d]

}p−1]1/α

and

(54) t∗∗ =

{
κ̃, if κ < 1,

[α(κ̃− 1) + 1]
1/α

, if κ ≥ 1,

where

(55) κ̃ =

[
π

2(p+ 1)

]1/2[
Γ

(
p− 1

2(p+ 1)

)/
Γ

(
p

p+ 1

)]
.

Proof. To apply Theorem 2.1, it is noted that k(t) = max[1, t−1+α],
and hence

(56) I(t) =

{
tα/α, 0 ≤ t ≤ 1,

1, t > 1.
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Then t∗ is determined by I(t∗) = Λ, where Λ is given by (52). Since
Λ < 1, then t∗ = (αΛ)1/α < 1.

To determine t∗∗, it is noted that k̃(t) = min[1, t−1+α], and hence

(57) Ĩ(t) =

{
t, 0 ≤ t ≤ 1,

1 + tα−1
α , t > 1.

For the lower bounding solution of (47), a version of (21) applicable
to this problem is

(58)
(V1 + 1)p+1

p+ 1
− V 2

2

2
=

1

p+ 1
− d2

2
,

where the initial values V1(0) = 0, V2(0) = d have been used. Using
(58), expressions for κj, j = 1, 2 can be derived from (16). Calculations
show that κ1 < κ2, and hence

(59) κ =

(
p+ 1

2

)1/2 ∫ ∞

0

dz

[(z + 1)p+1 − 1 + d2(p+1)
2 ]1/2

.

An upper bound on κ is given by κ̃, which corresponds to (59) with
d = 0. Evaluation of (59) with d = 0 provides (55). Then (54) follows
from (55) and (57).

Remark. For the integro-differential equation (49) with d = 0, as
considered in [4], the results of Theorem 4.2 apply in the limit d → 0.
It follows from (53) that t∗ = [αp−p(p − 1)p−1]1/α. The upper bound
t∗∗ given by (54) is valid since d = 0 was used to obtain κ < κ̃.

For (47), the growth profile of uj(t) near blow-up is given by the
following theorem.

Theorem 4.3. The asymptotic behavior near blow-up of the solution
to (47) is given by Theorem 3.2 for the particular choice of parameters
defined in (47), (48) and γ = 1.

Proof. In the development of the methodology in [10], it was shown
that the leading order growth of the solution near blow-up depends
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upon the asymptotic behavior of kj(t) as t → 0. In this limit, the
kernel in (48) is identical to that in (25) with γ = 1. Hence the results
of Theorem 3.2 apply to (47).

Remark. For the integro-differential equation (49) with d = 0, it
follows from Theorem 4.3 that

(60) u(t) ∼ A(tc − t)−l, as t → tc,

where

(61) l =
1 + α

p− 1
, A =

[ (1 + α)Γ
[
p
(

1+α
p−1

)]
(p− 1)Γ(α)Γ

(
p+α
p−1

)]1/(p−1)

.
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