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ABSTRACT. Deconvolution of appearance potential spec-
tra is an old strategy commonly used to investigate electronic
properties of solids in the surface region. Recently, this strat-
egy was found to be effective in the study of nanostructures.
In this context, the density of unoccupied states in the sur-
face region of a solid is recovered from the measured AP-
spectrum data from the governing equation k ∗ x ∗ x = g,
where k is a Lorentzian type function, g is a measured APS-
signal and x is the density function to be recovered. As an
important step in solving for x, we need to solve the auto-
convolution problem x ∗ x = f , which is a nonlinear ill-posed
Volterra problem. In this paper, we first improve upon the
existing local regularization theory developed in [9] for solv-
ing the autoconvolution problem, allowing for Lp data, where
1 ≤ p ≤ ∞. We prove the solutions of the regularized equa-
tion xδ

α ∈ L∞(0, 1) (smoother than xδ
α ∈ L2(0, 1) as in [9])

converge to the true solution x of the autoconvolution equa-
tion in L∞ norm (stronger than L2 norm as in [9]) when the
noise level in the data shrinks to 0. It is worth noting that
we obtain the improved convergence theory while imposing
less restrictions on the true solution x; namely x ∈ C1(0, 1)
in contrast to x ∈ W 2,∞(0, 1). Further, for the stable decon-
volution of appearance potential spectra, we apply the local
regularization methods to solve a combination of two ill-posed
Volterra problems: the linear problem of determining f from
f ∗ k = g and then the nonlinear autoconvolution problem of
determining x from x ∗ x = f . The results include a conver-
gence theory and a fast sequential numerical method which
essentially preserves the causal nature of the combined decon-
volution problem. Numerical examples are included to show
the effectiveness and efficiency of the methods.

1. Introduction. In this paper we first consider the inverse
autoconvolution problem of finding x ∈ L∞(0, T ) solving

(1) G(x) = f,
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where G is the nonlinear Volterra operator given by

(2) G(x)(t) = x ∗ x =

∫ t

0

x(t− s)x(s) ds, a.e. t ∈ (0, T ),

and where f ∈ Range (G) ⊆ Lp(0, T ) for 1 ≤ p ≤ ∞. Without loss of
generality, we will henceforth let T = 1.

The autoconvolution problem is ill-posed due to the lack of continuous
dependence of solutions x on data f [14 16, 18]. Indeed, for D(G) ≡
{x ∈ L2(0, 1), x(t) ≥ 0, a.e. t ∈ (0, 1)}, the operator G : D(G) ⊂
L2(0, 1) 
→ L2(0, 1) is such that the inverse autoconvolution operator
G−1 is discontinuous at every point f in the range of G; i.e., the
autoconvolution equation is locally ill-posed at every point x in D(G).
The degree of ill-posedness depends on both the smoothness of the
solution x and the behavior of x at 0 [16, 18]. In practice, we only
have access to perturbed data f δ and need to use this noisy data to
recover x. Therefore, regularization methods need to be employed in
order to stably solve the autoconvolution problem.

Three main regularization methods for the autoconvolution equation
currently exist in the literature: Tikhonov regularization [13, 18, 40],
Lavrent’ev regularization [22, 23] and local regularization [9]. It was
established in [9] that local regularization methods compare favorably
to Tikhonov and Lavrent’ev regularization in solving the nonlinear
autoconvolution equation, especially in recovering sharp features of
the unknown solution. In the following, we will briefly summarize
the existing results in comparing these three regularization methods
in solving the autoconvolution equation.

The nonlinear autoconvolution equation is Volterra with a causal na-
ture. When solved using the standard discretization without any regu-
larization, we can expect a fast sequential algorithm. As is well known
in the case of linear Volterra problems, classical regularization meth-
ods, such as Tikhonov, destroys the causal nature of the Volterra prob-
lems, generating a full domain problem that is numerically expensive.
This disadvantage is only magnified when we have to solve a nonlinear
equation at every step. In contrast, both Lavrent’ev and local regu-
larization preserve the casual nature of the autoconvolution problem,
leading to fast sequential numerical solutions. As a matter of fact,
the cost of the numerical method of local regularization as proposed in
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[9] is O(rN2 − r2N), which is similar to that of solving the problem
without any regularization. The Lavrent’ev is likely to have similar
operational counts. Without operation counts available for Tikhonov
regularization applied to this nonlinear problem, we will simply point
out that the cost of Tikhonov regularization on a general linear problem
is O(N3) flops. As seen from the numerical examples studied in [9],
the computation time for Tikhonov regularization applied to the auto-
convolution problem is at least 150 times that of local regularization in
recovering simple x.

Both found sequentially, local regularization outperforms Lavrent’ev
regularization when the signal-to-noise ratio in the data is small over
a large part of the domain [9]. Local regularization makes use of
future data in recovering the value of the solution at current time t,
whereas Lavrent’ev approximation does not. The amount of future
data used, α, is the regularization parameter for local regularization.
Depending on the signal-to-noise ratio in the data, we can adjust α
so that meaningful information from data can be used. Without such
an ability for adjustment, Lavrent’ev regularization can fail to recover
the solution when signal-to-noise ratio in the data is small over a
large part of the domain. A modified discrepancy principle has been
developed in determining α for the linear convolution problem [3, 4];
criteria in selecting α for nonlinear problems, including the nonlinear
autoconvolution problem, is still under study.

Another important aspect that makes local regularization methods
superior to both Tikhonov and Lavrent’ev regularizations is that it
does not require an initial guess x� of the unknown true solution x as
the other two methods. The source conditions needed for convergence
rates for Tikhonov regularization as applied to the nonlinear problem
(1) require that x − x� = G′(x)�w for some w ∈ L2(0, 1) [12], where
x� is an initial guess for x and x is the true solution of (1). It is not
hard to show that the source condition requires that x�(1) = x(1);
since x� is part of the Tikhonov algorithm, the method then requires
knowledge of the value of the unknown solution x at t = 1. It is worth
noting that more recent study of the method of approximate source
conditions for Tikhonov regularization for nonlinear ill-posed problems
allows for more flexibility in yielding convergent solutions when the
above benchmark source conditions are not satisfied [21]. However,
the success of the method of approximate source conditions largely
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relies on the successful balancing of the distance occurring functions
which cannot be guaranteed. In the case of Lavrent’ev regularization,
it is required that x�(0) = x(0), which means that x(0) must be known
in advance (or at least computed using regularized differentiation of
noisy data). The performance of both the Lavrent’ev and Tikhonov
methods seems fairly dependent on the choice of the initial guess x�

and of its closeness to x. The convergence theory for local regularization
does require a source condition that includes a particular relationship
between x(0) and ‖x′‖∞, but the numerical methods only make use of
the data f δ without initial guess of the value of x at any point.

In [9], we formulated the local regularized equation for the autocon-
volution problem and proved the convergence of the solution produced
by this regularized equation to x as the noise level δ in the data shrinks
to zero. The convergence rate of O(δ2/5) that we obtain for L2 data
is not as good as that O(δ1/2) obtained by Tikhonov regularization
and Lavrent’ev regularization. Only with continuous data are we able
to reach the O(δ1/2) rate of these methods. We improve the conver-
gence theory in [9] in several important ways. First of all, instead of
restricted only to L2 and continuous data as in [9], we are able to ob-
tain our convergence theory in case data f δ ∈ Lp(0, 1), with the rate of
convergence O(δp/(2p+1)), for 1 ≤ p ≤ ∞. Note that we obtain the op-
timal rate of convergence O(δ1/2) in the case of L∞ data, as obtained
by Tikhonov regularization and Lavrent’ev regularization. Secondly,
we obtain smoother solutions for the regularized equation of the auto-
convolution problem, namely, xδα ∈ L∞(0, 1), rather than xδα ∈ L2(0, 1)
in [9]. It is worth noting that these improvements are made with fewer
restrictions on x than what was required in [9], namely, we can reduce
the smoothness requirement on x from x ∈W 2∞(0, 1) to x ∈ C1(0, 1).

The second part of this paper applies the local regularization meth-
ods developed here for the autoconvoluation problem as well as linear
Volterra problems [24 26, 30, 31] to the devolution of appearance po-
tential spectra. Appearance Potential Spectroscopy (APS) is a generic
term which involves several techniques such as Auger Electron Appear-
ance Potential Spectroscopy (AEAPS), Soft X-ray Appearance Poten-
tial Spectroscopy (SXAPS) and Disappearance Potential Spectroscopy
(DAPS). These techniques involve gradually increasing the energy of
the exciting beam and detecting the onset of the excitation of a core
level and are used to investigate electronic properties of solids in their
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surface region. For example, Soft X-ray appearance potential spectra
from solids carry information on the local density of unoccupied states
in the surface region of the sample. The total soft x-ray yield from
a sample bombarded with monoenergetic electrons is measured. As
the bombarding energy is varied, sharp increases occur in the radia-
tion yield at energies given by the binding energies of core electrons.
The measured signal is called an AP-spectrum of the sample. Approx-
imately, the AP-spectrum can be considered proportional to an auto-
convolution of the density function of unoccupied states in the surface
region. Our goal is to determine the density of unoccupied state x from
equation

(3) k ∗ x ∗ x = g,

where g is the integrated version of AP-spectrum and the kernel k is
assumed to be a Lorentzian function given by

(4) k(s) =
1

1 + (s/γ)2
, s ∈ R; γ > 0.

This model formed the basis of a number of early models for appearance
potential spectra [1, 10, 11, 20, 37 39, 43], and appears today in
applications related to nano-structures [17]. Clearly, the governing
equation (3) can be decomposed as a linear Volterra equation of
convolution type

(5)

∫ t

0

k(t− s)f(s) = g(t), t ∈ [0, 1],

and the nonlinear autoconvolution equation defined by (2). Therefore,
determining the density function x from the governing equation (3)
can be accomplished in two steps: we first determine f from the
linear inverse problem (5) and then use the approximating solution
as perturbed data f δ to solve the nonlinear inverse autoconvolution
problem (2). We will apply local regularization to both the outside
ill-posed linear Volterra problem and the inside ill-posed nonlinear
Volterra problem given that local regularization methods are well-
established and well-suited in solving the linear Volterra problem (5) as
well as the nonlinear autoconvolution problem (2) as described above
[9, 24 28, 30, 31]. The result is an effective and efficient method for
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deconvolution of appearance potential spectra to recover the density of
the unoccupied states in the surface region.

2. The regularized autoconvolution equation. Because this
paper extends the ideas in [9], we will briefly review the ideas of the
regularized autoconvolution equation.

We assume that equation (1) holds on an extended interval [0, 1+ α]
for some small α ∈ (0, 1], i.e., x solves∫ t+ρ

0

x(t+ ρ− s)x(s) ds = f(t+ ρ), a.e. t ∈ (0, 1), ρ ∈ (0, α),

for any 0 < α < α. After splitting the integral at ρ and t and changing
the variable of integration, we obtain

(6) 2

∫ ρ

0

x(t+ ρ− s)x(s) ds+

∫ t

ρ

x(t+ ρ− s)x(s) ds = f(t+ ρ)

for a.e. t ∈ (0, 1), ρ ∈ (0, α). We employ an α-dependent measure
η = η(ρ) > 0 in order to consolidate the local future information
introduced by the variable ρ; that is, we integrate both sides of (6)
with respect to η and obtain

(7)

2

∫ α

0

∫ ρ

0

x(t+ ρ− s)x(s) ds dη(ρ)

+

∫ α

0

∫ t

ρ

x(t+ ρ− s)x(s) ds dη(ρ)

=

∫ α

0

f(t+ ρ) dη(ρ) a.e. t ∈ (0, 1).

Note that x still satisfies (7) exactly.

Here, the Borel measure η = η(ρ) is similarly defined as in [9], namely,

(8)

∫ α

0

g(ρ) dη(ρ) ≡
∫ α

0

g(ρ)ω(ρ, α) dρ, g ∈ L2(0, α),

where the family {ω(·, α) ∈ L∞(0, α)}α∈(0,α] is such that there exist ω,
ω > 0 independent of α so that

(9) 0 < ω ≤ ω(ρ, α) ≤ ω, a.e. ρ ∈ (0, α],
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for all α sufficiently small. Note that a property for such an η is that,
for any real m ≥ 0, there exist constants K(m) > 0 independent of α
so that

(10)

∫ α

0 ρm dη(ρ)∫ α

0 ρ dη(ρ)
≤ K(m)αm−1

for all α > 0 sufficiently small. This class of Borel measures is frequently
used in local regularization of linear and nonlinear Volterra problems
([5 7, 24 27, 29, 30, 32, 34, 35, 41]).

In practice, we almost always have to replace the “ideal” data f by the
perturbed f δ, in which case we need to regularize the original equation
(1), or its equivalent (7) to find a suitable approximation of x. Local
regularization suggests that we momentarily hold x constant on a small
local interval [t, t+ α], i.e., we replace x(t + ρ − s) by x(t) in the first
term of (7) for values of ρ, s such that ρ − s ∈ [0, α]. The length of
the local interval we use, α, serves as the regularization parameter. We
then obtain the regularization equation

(11) aα(x)x + Fα(x) = f δ
α,

where, for almost every t ∈ (0, 1),

aα(x) ≡ 2

∫ α

0

∫ ρ

0

x(s) ds dη(ρ),(12)

Fα(x)(t) ≡
∫ α

0

∫ t

ρ

x(t + ρ− s)x(s) ds dη(ρ),(13)

f δ
α(t) ≡

∫ α

0

f δ(t+ ρ) dη(ρ).(14)

The nonlinear operator G which defines the original problem (1)
appears in the regularized equation in the form of two terms on the
left hand side of (11). The coefficient of x in first term aα(x) depends
only on the restriction of x on the interval [0, α], and as such is not as
difficult to handle as is the second term Fα(x) on the left of (11), which
we linearize about the true solution x. That is, using arguments quite
similar to those in the proof of Lemma 2.3 in [9], we can conclude that
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the operator Fα : L∞(0, 1) → L∞(0, 1) as defined in (13) is Fréchet
differentiable with

(15) F ′
α(x)(h)(t) = 2

∫ α

0

∫ t

ρ

x(t+ρ−s)h(s) ds dη(ρ), a.e. t ∈ (0, 1),

for h ∈ L∞(0, 1). Further, F ′
α is uniformly Lipschitz in L∞(0, 1) for all

α > 0 sufficiently small, i.e.,

(16) ‖F ′
α(x1)− F ′

α(x2)‖ ≤ 2

∫ α

0

dη(ρ)‖x1 − x2‖∞

for x1, x2 ∈ L∞(0, 1), where ‖·‖ denotes the usual L(L∞(0, 1)) operator
norm.

We define the closed ball in L∞(0, 1) centered at x0 with radius r as

(17) B(x0, r) = {z ∈ L∞(0,∞), ‖z − x0‖∞ ≤ r}.

Following the same arguments as in the proof of Lemma 2.4 in [9],
we know that the remainder terms of the linearization defined as

(18) Rα(x, v) ≡ Fα(x + v)− Fα(x) − F ′
α(x)v

for v, v1, v2 ∈ B(0, r) ⊆ L∞(0, 1) and x ∈ L∞(0, 1), satisfies

(19) ‖Rα(x, v)‖∞ ≤ 1

2

∫ α

0

dη(ρ) ‖v‖2∞

and

‖Rα(x, v1)−Rα(x, v2)‖∞ ≤
∫ α

0

dη(ρ) max{‖v1‖∞, ‖v2‖∞} ‖v1−v2‖∞

for all α > 0 sufficiently small [8, 9, 23].

3. Convergence results. As in [9], in order to begin the arguments
needed to prove the main convergence results, we first rewrite the
original autoconvolution equation (7) using similar notation to that
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used in the regularization equation (11). That is, the solution x of the
original autoconvolution equation satisfies

(20) aα(x)x+ Fα(x) = fα + εα,

where

(21)
εα(t) ≡ 2

∫ α

0

∫ ρ

0

(x(t)− x(t+ ρ− s))x(s) ds dη(ρ),

a.e. t ∈ (0, 1),

aα(x) and Fα(x) are defined as in (12) (13), using x instead of x, and
fα is defined as in (14) using f instead of f δ.

We rewrite the regularized equation (11) using the expansion of Fα(x)
as

(22) aα(x)x + Fα(x) + F ′
α(x)(x− x) +Rα(x, x− x) = f δ

α.

Combining (20) and (22), we obtain
(23)

(aα(x)I +Bα(x))(x − x) = f δ
α − fα − εα −Rα(x, x− x)

+Dα(x)(x− x) + (aα(x)− aα(x))x,

where I is the identity operator on L∞(0, 1), and

Bα(x)(h)(t) ≡ 2

∫ α

0

∫ t

0

x(t+ ρ− s)h(s) ds dη(ρ),

Dα(x)(h)(t) ≡ 2

∫ α

0

∫ ρ

0

x(t+ ρ− s)h(s) ds dη(ρ)

for almost every t ∈ (0, 1). We further denote for v ∈ L∞(0, 1) that

(24) Eα(x, v) = Dα(x)(v) − aα(v)x.

Then (23) becomes
(25)

(aα(x)I + Bα(x))(x− x) = f δ
α − fα − εα −Rα(x, x− x)

+ Eα(x, x− x) + (aα(x) − aα(x))(x − x)
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Without loss of generality, we will henceforth assume that x(0) > 0.
Notice that the solutions of the autoconvolution problem always show
up in pairs: if x is a solution to the autoconvolution problem, then so is
−x. Therefore, it is reasonable to make the assumption that x(0) > 0.
According to Lemma (3.5) of [9], if x ∈ C1[0, 1+βα] satisfies x(0) > 0,
then for the measure η satisfying (8) (9), we have aα(x) > 0 and

(26)
1

aα(x)
≤ 1

x(0)
∫ α

0 ρ dη(ρ)
,

as long as α > 0 is sufficiently small.

In [9], it is the accretivity of the operator Bα(x) that guaranteed the
invertibility of the operator (aα(x)I+Bα(x)). To obtain the accretivity
of the operator Bα(x) in [9], we imposed two conditions on the true
solution x of the autoconvolution problem that are crucial. First, x
was required to be sufficiently smooth, namely, x ∈ W 2,∞[0, 1 + α];
secondly, it was required that the true solution x does not cross the
horizontal axis, i.e., x is either strictly positive or strictly negative. It
is worth noting that, even though these two constraints on x are both
also required with the Lavent’ev regularization [22, 23], the Tikhonov
regularization does not require x to be strictly positive (or strictly
negative) [14]. However, it is quite reasonable to assume that x > 0
given that x almost always represents some type of density function
in practice. In this paper, we are able to establish the invertibility of
the operator (aα(x)I +Bα(x)) ∈ L(L∞(0, 1)) without requiring Bα(x)
to be accretive. In doing so, we can get away with requiring excessive
smoothness on x which is needed in [9]. Even though we do not have to
explicitly require that x does not cross the horizontal axis, the condition
is implied by convergence theory. In order to establish the invertibility
of the operator (aα(x)I +Bα(x)), we introduce the following lemma.

Lemma 1. Let h satisfy

(27) aα(x)h(t) +Bα(x)(h)(t) = g(t),

almost everywhere t ∈ (0, 1) for g ∈ L∞(0, 1). If x ∈ W 1,∞[0, 1 + α]
and, for some k > 1,

(28)
k

k − 1

‖x′‖∞
x(0)

< 1.
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Then equation (27) has a unique solution h ∈ L∞(0, 1) and

(29) ‖h‖∞ ≤ C

aα(x)
‖g‖∞,

where

(30) C =
2(k − 1)x(0)

(k − 1)x(0)− k‖x′‖∞ .

Proof. To simplify notation, we define, for t ∈ [0, 1], bα(t) ≡
2
∫ α

0 x(t+ ρ) dη(ρ); then we can write, for h ∈ L∞(0, 1), Bα(x)(h)(t) =∫ t

0 bα(t− s)h(s) ds.

We further defineKα(t) = (bα(t))/(bα(0)) and ε(α) = (aα(x))/(aα(0)),
so that equation (27) can be written as

(31) h(t) +
1

ε(α)

∫ t

0

Kα(t− s)h(s)ds =
g(t)

aα(x̄)

almost everywhere t ∈ (0, 1).

Note that, under the assumption that x(0) > 0, for α sufficiently
small, we have bα(0) = 2

∫ α

0
x(ρ) dη(ρ) > 0 and ε(α) > 0 (independent

of t). From the proof of Lemma 4.1 in [35], we have

(32) h(t) =

∫ t

0

G(t, s)h(s) ds+

[
g(t)

aα(x)
− ψ(t, ε) ∗ g(t)

aα(x)

]

almost everywhere t ∈ [0, 1], where ψ(t, ε) is defined as

(33) ψ(t, ε) ≡
{
0 t < 0

(1/ε)e−t/ε t ≥ 0

for a given ε > 0, and

G(t, s) ≡
∫ t

s

ψ(t− τ, ε)(−K ′
α(τ − s)) dτ



234 ZHEWEI DAI

for 0 ≤ s ≤ t ≤ 1. However, there exists a ξ ∈ [0, α] and some k > 1
(to be determined later), such that

|G(t, s)| ≤ ‖K ′
α‖∞

∣∣∣∣
∫ t

s

1

ε
e−(t−τ)/εdτ

∣∣∣∣
= ‖K ′

α‖∞(1− e−(t−s)/ε) ≤ ‖K ′
α‖∞ =

∥∥∥∥ b′α(t)bα(0)

∥∥∥∥
∞

=

∥∥∥∥
∫ α

0
x′(t+ ρ) dη(ρ)∫ α

0
x(ρ) dη(ρ)

∥∥∥∥
∞

≤
∥∥∥∥ ‖x′‖∞

∫ α

0
dη(ρ)∫ α

0
[x(0) + x′(ξ)ρ] dη(ρ)

∥∥∥∥
∞

=

∥∥∥∥ ‖x′‖∞
∫ α

0 dη(ρ)∫ α

0 x(0)[1 + (x′(ξ))/(x(0))ρ] dη(ρ)

∥∥∥∥
∞

≤ ‖x′‖∞
∫ α

0 dη(ρ)

x(0)
∫ α

0 (1 − (1/k)) dη(ρ)

=
k

k − 1

‖x′‖∞
x(0)

,

for almost every 0 ≤ s ≤ t ≤ 1. Further, for almost every t ∈ [0, 1],

g(t)

aα(x)
− ψ(t, ε) ∗ g(t)

aα(x)
≤

∥∥∥∥ g(·)
aα(x)

∥∥∥∥
∞

[
1 +

∫ t

0

ψ(t− τ, ε) dτ

]

≤ 2

∥∥∥∥ g(·)
aα(x)

∥∥∥∥
∞
.

Combining the above estimates with equation (32), we have

‖h‖∞ ≤ k

k − 1

‖x′‖∞
x(0)

‖h‖∞ + 2

∥∥∥∥ g(·)
aα(x)

∥∥∥∥
∞
.

Provided that k/(k − 1)‖x′‖∞/(x(0)) < 1, we obtain inequality (29).

From Lemma (1), we conclude that, for x ∈ W 1,∞[0, 1+α] satisfying

k

k − 1

‖x′‖∞
x(0)

< 1,

for some k > 1, we have (aα(x)I + Bα(x))
−1 ∈ L(L∞(0, 1)), and the

linear operator norm is bounded,

(34) ‖(aα(x)I +Bα(x))
−1‖ ≤ C

aα(x)
,
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with C given by equation (30). Note that this is similar to the upper
bound for the operator norm of (aα(x)I+Bα(x))

−1 we obtained in [9],
with constant 1 replaced by C. To be able to obtain this bound for the
general solution x, we have to impose an a priori condition of x given
by (28). We will see later the implication of this a priori condition.

We can now rewrite our regularized equation (11) as

(35) x = Hα x,

where, from (25), Hα : L∞(0, 1) 
→ L∞(0, 1) is given by

(36)
Hαx = (aα(x)I +Bα(x))

−1[f δ
α − fα − εα −Rα(x, x− x)

+ Eα(x, x− x) + (aα(x)− aα(x))(x − x)] + x.

The following two lemmas will bound relevant quantities on the right-
hand side of (36).

Lemma 2. Let f ∈ Lp(0, 1 + α), 1 ≤ p ≤ ∞, and let the measure η
be given satisfying (8) (9). Then fα ∈ L∞(0, 1) for α ∈ (0, α]. Further,
if f, f δ ∈ Lp(0, 1 + α) with ‖f − f δ‖Lp ≤ δ, then

(37) ‖fα − f δ
α‖∞ ≤ δωα1/q

for ω given in (9) and q satisfying (1/p) + (1/q) = 1.

Proof. For almost every t ∈ (0, 1) and q such that (1/p) + (1/q) = 1,

|fα(t)| =
∣∣∣∣
∫ α

0

f(t+ ρ) dη(ρ)

∣∣∣∣ =
∣∣∣∣
∫ α

0

f(t+ ρ)ω(ρ) dρ

∣∣∣∣
≤ ‖f(t+ ·)‖Lp(0,α)‖ω‖Lq(0,α)≤ ‖f‖Lp(0,1+α) · ω ·

(∫ α

0

1 dρ

)1/q

.

Therefore, for any α ∈ (0, α], we have fα ∈ L∞(0, 1) and

‖fα‖L∞(0,1) ≤ ‖f‖Lp(0,1+α) · ω ·R1/q.

Similarly, for almost every t ∈ [0, 1],

|f δ
α(t)− fα(t)| ≤ ‖f δ − f‖Lp(0,1+α) · ω · R1/q.
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Equation (37) immediately follows given that ‖f δ − f‖Lp(0,1+α) ≤ δ.

Lemma 3. Let x ∈ C1[0, 1+α] satisfy x(0) > 0. Assume the measure
η satisfies (8) (9). Let x1, x2 ∈ L∞(0, 1). Then

(38) ‖Eα(x, x1 − x2)‖∞ ≤ ‖x′‖∞‖x1 − x2‖∞
∫ α

0

ρ2 dη(ρ),

(39) ‖εα‖∞ ≤ ‖x′‖∞
(
3x(0)

∫ α

0

ρ2 dη(ρ) +
5

3

∫ α

0

ρ3 dη(ρ)‖x′‖∞
)

and

(40) |aα(x1)− aα(x2)| ≤ ‖x1 − x2‖∞
∫ α

0

ρ dη(ρ).

Proof. Similar arguments to Lemma 3.6 of [9].

We are now ready to state the main convergence theorem.

Theorem 4. Assume that f δ ∈ Lp(0, 1 + α), 1 ≤ p ≤ ∞ satisfies

‖f δ − f‖Lp ≤ δ.

Assume that the measure η(ρ) > 0 satisfies (8) (9) and that the
autoconvolution problem (1) has a solution x ∈ C1[0, 1 + α] satisfying

(41) x(0) >
(
4
√
2b+ 1

)2

‖x′‖∞

for b ≥ 2ω/ω, where ω, ω are given in (8). Then there exist constants

k1 > 0 and Ĉ > 0 independent of α such that, if δ = δ(α) > 0 satisfies

(42) δ ≤ k1α
2+(1/p),

then for all α > 0 sufficiently small, the regularized equation (35) has
a unique solution xδα ∈ L∞(0, 1) satisfying

(43) ‖xδα − x‖∞ ≤ Ĉα.
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Further, xδα ∈ L∞(0, 1) depends continuously on f δ ∈ Lp for all α > 0
sufficiently small.

Proof. We will apply the contraction mapping principle to the
regularized equation (35) in the ball B(x, Ĉα). From Lemmas 1, 2
and 3 and inequalities (16), (19), (26) and (34), if x satisfies

(44) 0 <
k

k − 1

‖x′‖∞
x(0)

< 1,

for some k > 1, we then have

‖Hαx− x‖∞ ≤ C

α(x)
‖f δ

α − fα‖∞

+
C

α(x)
‖Rα(x, x− x)‖∞ +

C

α(x)
‖εα‖∞

+
C

α(x)
‖Eα(x, x− x)‖∞ +

|aα(x)− aα(x)|
aα(x)

‖x− x‖∞

≤ 2C

x(0)

ω

ω
α(1/q)−2δ +

C

x(0)

ω

ω
α−1‖x− x‖2∞

+ C‖x′‖∞
(
2ω

ω
α+

5‖x′‖∞
3 x(0)

K(3)α2

)

+
C ‖x′‖∞
x(0)

K(2)α‖x− x‖∞ +
2C

x(0)
‖x− x‖2∞,

for C = [2(k − 1)x(0)]/[(k − 1)x(0)− k‖x′‖∞] and q satisfying 1/p +

1/q = 1. Using assumption (42) and the fact that ‖x− x‖α ≤ Ĉα, we
have

‖Hαx− x‖∞ ≤ 2C

x(0)

ω

ω
k1α+

C

x(0)

ω

ω
Ĉ2α

+ C‖x′‖∞ 2ω

ω
α+

5C‖x′‖2∞
3 x(0)

K(3)α2

+
C ‖x′‖∞
x(0)

K(2) Ĉα2 +
2C

x(0)
Ĉ2α2.

Therefore, to have ‖Hαx − x‖∞ ≤ Ĉα for some Ĉ > 0 and all α > 0
sufficiently small, a sufficient condition is that

(45)
C

x(0)
b k1 +

C

x(0)
b Ĉ2 + C‖x′‖∞ b < Ĉ.
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If we let

(46) k1 = ‖x′‖∞ x(0),

then (45) becomes

(47) L(Ĉ) ≡ Cb

x(0)
Ĉ2 − Ĉ + 2 b C ‖x′‖∞ < 0.

In order for L(Ĉ) = 0 to have two distinct positive solutions 0 < Ĉ1 <

Ĉ2, we will require the discriminant of L(Ĉ) to be positive, i.e.,

(48) Δ = 1− 8b2C2

x(0)
‖x′‖∞ > 0.

After plugging in the value for C and some algebraic manipulation,
inequality (48) becomes, for k > 1,

(49) 1 > 4
√
2 b

(‖x′‖∞
x(0)

)1/2

+
k

k − 1

‖x′‖∞
x(0)

.

Under the prior assumption given by (44), a sufficient condition for
Δ > 0 is that

(50) 1 >

(
4
√
2 b+

√
k

k − 1

)(‖x′‖∞
x(0)

)1/2

.

This poses a more stringent condition on x than (44). We pick k

sufficiently large; then it is not hard to see that L(Ĉ) = 0 to have

two distinct positive solutions 0 < Ĉ1 < Ĉ2 by assumption (41).

Then, for Ĉ satisfying Ĉ1 < Ĉ < Ĉ2, we have L(Ĉ) < 0, and thus

‖Hαx− x‖∞ ≤ Ĉα for all α > 0 sufficiently small.

To further demonstrate that Hα is a contraction on B(x, Ĉα), we let

x1, x2 ∈ B(x, Ĉα), and note that

‖Hαx1 −Hαx2‖∞
= ‖(aα(x)I+Bα(x))

−1{Rα(x, x2−x)−Rα(x, x1−x)+Eα(x, x1−x2)
− [(aα(x1)− aα(x))(x1 − x)− (aα(x2)− aα(x))(x2 − x)]}‖∞

≤ Tα(x1, x2),
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where

Tα(x1, x2) ≡ C

aα(x)
‖Rα(x, x2 − x)−Rα(x, x1 − x)‖∞

+
C

aα(x)
‖Eα(x, x1 − x2)‖∞

+
C

aα(x)
‖(aα(x1)− aα(x))(x1 − x)

− (aα(x2)− aα(x))(x2 − x)‖∞.
Since

1

aα(x)
‖(aα(x1)− aα(x))(x1 − x)− (aα(x2)− aα(x))(x2 − x)‖∞

=
1

aα(x)
‖(aα(x1)− aα(x2))(x1 − x) + (aα(x2)− aα(x))(x1 − x2)‖∞

≤ |aα(x1)− aα(x2)|
aα(x)

‖x1 − x‖∞ +
|aα(x2)− aα(x)|

aα(x)
‖x1 − x2‖∞

≤ 2‖x1 − x2‖∞
∫ α

0
ρ dη(ρ)

x(0)
∫ α

0 ρ dη(ρ)
‖x1 − x‖∞

+
2‖x2 − x‖∞

∫ α

0 ρ dη(ρ)

x(0)
∫ α

0 ρ dη(ρ)
‖x1 − x2‖∞

≤ 4Ĉα

x(0)
‖x1 − x2‖∞,

we have

Tα(x1, x2) ≤
[
C

x(0)

2ω

ω
Ĉ

]
‖x1 − x2‖∞

+

[
C ‖x′‖∞
x(0)

K (3)α+
4CĈα

x(0)

]
‖x1 − x2‖∞.

Thus, if we require that

(51) Ĉ <
x(0)

b C
,

it follows that

(52) Ĉ <
x(0)

C

ω

2ω
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and, for α > 0 sufficiently small,

(53) ‖Hα x1 −Hαx2‖∞ ≤ Tα(x1, x2) ≤ q ‖x1 − x2‖∞

for any x1, x2 ∈ B(x, Ĉα) with some q < 1. Further, we note that

(Ĉ1 + Ĉ2)/2 = (x(0))/(b C), and therefore our regularized equation

(35) has a unique solution xδα in B(x, Ĉα) for Ĉ satisfying Ĉ1 < Ĉ <
(x(0))/(b C).

Similar arguments to those of Theorem 3.7 in [9] give the continuous
dependence of solutions on data for the regularized equation (35).

The following theorem gives the convergence rate of the solution for
the regularized equation (35). It immediately follows from Theorem 4.

Theorem 5. Assume f δ ∈ Lp(0, 1 + α), 1 < p <∞, satisfies the

‖f δ − f‖Lp ≤ δ.

Let the measure η be given satisfying (8) (9).

Then there exist C > 0 and κ1 > 0, κ2 > 0 independent of α such
that, if the true solution x ∈ C1[0, 1+α] of the autoconvolution equation
satisfies

(54) x(0) > C ‖x′‖∞,

then, for α = α(δ) > 0 selected satisfying

(55) κ1δ
p/(2p+1) ≤ α(δ) ≤ κ2 δ

p/(2p+1)

as δ → 0, it follows that there is a unique solution xδα(δ) of the

regularization equation (11) associated with data f δ which depends
continuously on f δ ∈ Lp(0, 1) and which satisfies

(56) ‖xδα(δ) − x‖L∞(0,1) = O(δp/(2p+1))

as δ → 0. Thus, the best rate occurs as p→ ∞, i.e., in the case of L∞
data, with rate approaching O(δ1/2).
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Remark. A collocation based discretization of the regularization
equation (11) leads to a stable numerical method to solve for x on
the interval [0, 1]. The resulting method is linear and sequential in
recovering x on the interval [α, 1] but nonlinear and nonsequential on
the interval [0, α] due to the coefficient term aα(x). Even though the
interval where the nonlinearity remains is small, it motivated us to look
for alternative methods in recovering x(t) on the interval 0 ≤ t ≤ α. As
justified in [9], any O(αp) approximation of x on [0, α] for some p > 1 is
good enough to use in the approximating equation to recover x(t) on the
interval [α, 1]. This gives us various options in practice for alternative
methods on [0, α]. For example, if we know x(0), we can simply form
an O(α) approximation of x via xα(t) = x(0); or if we know both x(0)
and x′(0), we can form an O(α2) approximation of x via xα(t) = x(0)+
x′(0)t. However, as shown in [8], such approximations on [0, α] do not
perform as well as approximations based on solving the unregularized
equation (1) using a simple collocation-based discretization, which is
an O(α) approximation of x on [0, α]. This is likely due to the fact
that collocation-based discretization, even though unregularized, makes
good use of the data f δ, where the approximations based on Taylor
expansion completely ignores the data f δ. The exact statements of the
theoretical results justifying these other choices of recovering x on [0, α]
can be found in [9], with proofs similar to those in [9] but making use
of Theorem 4 in this paper with loosened restrictions on x.

4. Application to devolution of the appearance potential
spectra. We now turn to devolution of the appearance potential spec-
tra, where we recover the density function x > 0 from solving equation
(3) in two steps. We first solve the outside linear Volterra equation and
then use what we recover as data to solve the inside autoconvolution
equation, using local regularization at both steps. Local regularization
methods have the advantage of preserving the causal nature of Volterra
problems, allowing for fast sequential solution methods. These meth-
ods have proved to be effective and efficient regularization procedures
for both linear and nonlinear Volterra problems [9, 24 28, 30, 31].

Let x be the true solution satisfying equation (3); then f = x ∗ x
satisfies the linear Volterra equation (5) with the Lorentzian kernel
defined in (4). It is not hard to see that the kernel k is 1-smoothing,
i.e., k ∈ C1[0, 1] and k(0) = 1 �= 0. We will first solve this mildly
ill-posed linear Volterra problem using local regularization.
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We use the same underlying rationale for local regularization methods
to derive the regularized equation, namely, we utilize future data on a
small future interval beyond t in recovering solution at time t. We first
extend equation (5) slightly into the future by assuming it holds on an
extended interval [0, 1+β] for some small β ∈ (0, 1] and then consolidate
the future information by integrating both sides of the equation with
respect to a suitable Borel measure η = ηβ(ρ) where β ∈ [0, β]. The
resulting equation is:

∫ t

0

∫ β

0

k(t+ ρ− s) dηβ(ρ)f(s) ds+

∫ β

0

∫ ρ

0

k(ρ− s)f(t+ s) ds dηβ(ρ)

=

∫ β

0

g(t+ ρ)dηβ(ρ), t ∈ [0, 1].

We still have an equation that f satisfies exactly. In reality, we
only have access to the perturbed data gδ ∈ C[0, 1 + β] satisfying
||gδ − g||∞ ≤ δ; therefore, we regularize the equation by holding f
constant on a small local interval of length [t, t+β], where the length β
of this local interval serves as the regularization parameter. We obtain
the regularized equation as follows:

(57)

∫ t

0

k̃β(t− s)f(s) ds+ aβf(t) = g̃δβ(t), t ∈ [0, 1],

where

k̃β(t) =

∫ β

0

k(t+ ρ) dηβ(ρ),(58)

g̃δβ(t) =

∫ β

0

gδ(t+ ρ)dηβ(ρ),(59)

aβ =

∫ β

0

∫ ρ

0

k(ρ− s) ds dηβ(ρ).(60)

Signed Borel measures are needed to establish stability and conver-
gence for the local regularization of linear μ-smoothing Volterra prob-
lems for all μ = 1, 2, . . . [30]. However, since our problem is only
1-smoothing, we can use simpler measures ηβ(ρ) > 0 defined similarly
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to η(ρ) by equations (8) and (9), with α replaced by β in those equa-
tions. With the positive measure ηβ(ρ) defined this way, we can see
that aβ �= 0 for all β > 0 sufficiently small. Therefore, there is a unique
solution f δ

β(δ) ∈ L2(0, 1) of equation (57) which depends continuously

on data gδ in C[0, 1] or L2(0, 1) topologies. If we assume smooth or
piecewise smooth data gδ, it is clear that f δ

β(δ) ∈ C[0, 1]. It is shown

in [24] that the regularized solution f δ
β(δ) converges to f in the case of

one-smoothing kernels as δ, the level of noise in the data, goes to zero,
with a resulting convergence rate of order O(δ1/2). The following the-
orems give the convergence of regularized equation (57) for the outside
linear Volterra problem in the deconvolution of appearance potential
spectra.

Theorem 6. Assume f is the true solution to equation (5) with the
kernel given by (4). Assume gδ ∈ C[0, 1+ β] such that ||gδ − g||∞ ≤ δ.
Let the measure ηβ(ρ) be defined by equations (8) and (9), with α
replaced by β in those equations. Then, for β = β(δ) > 0 sufficiently
small, the regularized equation (57) has a unique solution f δ

β(δ) ∈
L2(0, 1). Further, as δ → 0,

β(δ) −→ 0,

and

||f δ
β(δ) − f || −→ 0.

Once f δ
β(δ) is solved, we can then use it as the noisy data f δ for the

autoconvolution problem. The convergence theorem that ultimately
recovers x immediately follows from Theorem 5.

Theorem 7. Assume x ∈ C1[0, 1+α] is the true solution to equation
(3) satisfying

(61) x(0) > C ‖x′‖∞,
for some C > 0. Let the measure η(ρ) be defined by equations (8) and
(9). Then α = α(||f δ

β(δ)−f ||) can be selected such that there is a unique
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FIGURE 1. Example 1a. Solution obtained with N = 100, α = 1, β = 1 and 0.03%

relative noise in the observed gδ.

solution xδα(δ),β(δ) ∈ L∞(0, 1) of the regularized equation (11) associated

with perturbed data f δ
β(δ) which depends continuously on f δ

β(δ). Further,

xδα(δ),β(δ) −→ x

as δ → 0.

5. Numerical examples. To illustrate local regularization meth-
ods for deconvolution of appearance potential spectra, we present a nu-
merical equation using k(s) = 1/(1 + (πs)2), a normalized Lorentzian
kernel. That is, we wish to solve

∫ t

0

k(t− s)(x ∗ x) ds = g(t)

for x.

In the figures, the true solution x = 1−3(t−1/2)2 is plotted as a solid
curve, and the regularized approximation xδα(δ),β(δ) is plotted as points.
The collocated discretization is based on subdivision of the interval
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FIGURE 2. Example 1b. Solution obtained with N = 100, α = 7, β = 3 and 0.03%
relative noise.

[0, 1] into N = 100 subintervals, α is the number of data points used for
autoconvolution regularization and β is the number of data points used
for the linear regularization. Thus, local regularization intervals are
given by [0, α/N ] and [0, β/N ] for the inside autoconvolution problem
and the outside linear Volterra problem, respectively. The measures
η(ρ) and ηβ(ρ) are both the simple Lebesgue measure.

We present several illustrative examples.

5.1. Example 1. In Figure 1, the solution is obtained with no
regularization at all (α = 1 and β = 1), and despite a low relative
noise in gδ of 0.03%, the reconstruction shows the great instability
characteristic of inverse problems. In fact, any more noise, and the
numerical reconstruction fails altogether.

In Figure 2, by contrast, the noise is the same, but regularization is
used on both the inside autoconvolution problem and the outside linear
Volterra problem, with α = 7 and β = 3. Compared to Figure 1, the
smoothing effect of the regularization is apparent.

Several general characteristics of the double regularization are also
worth noting.
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FIGURE 3. Error in the reconstructed solution with varying α and β, on N = 100
subintervals and 0.01% relative noise. Darker boxes represent larger errors. The
worst is no regularization at all (α = 1, β = 1), and the best is α = 5, β = 2.

The first α reconstructed points are necessarily solved without regu-
larization of the autoconvolution. The nonlinear autoconvolution reg-
ularization begins only with the (α+ 1)-th point.

Second, the reconstruction, because both regularizations are forward
looking, only produces N −α− β points, so there are no reconstructed
data at the end of the interval. Larger choices of the regularization
parameters will make this “gap” respectively larger.

5.2. Varying α and β. Figure 3 shows a measure of the error in
reconstruction over a range of choices of α and β. In all cases, the
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FIGURE 4. Example 2a. Solution obtained with α = 5 and β = 5, on N = 100
subintervals and 0.1% relative noise.

noise was 0.01%. The best solution occurs with the choice of α = 5
and β = 2.

Even for such low noise levels, a little regularization of either problem
goes a long way towards smoothing the instability of the reconstruction.
In the optimal choice, very little linear regularization is needed.

5.3. Example 2. Here the noise in gδ is a bit more substantial
δ = 0.1%, and several solutions are shown. In the first (Figure 4), the
solution was obtained with significant regularization of both problems
(α = 5 and β = 5). The second (Figure 5) shows the result with
only slight autoconvolution regularization (α = 2 and β = 5), while
the third (Figure 6) is obtained with only slight linear regularization
(α = 5 and β = 2).

With insufficient regularization of either problem, the solution ob-
tained is sub-optimal. In both cases a kind of oscillatory behavior is
apparent in the reconstruction, although it appears worse when the
linear problem is insufficiently regularized.

The final, Figure 7, shows that significant improvement is still possi-
ble by increasing the autoconvolution regularization by just one more
point (α = 6).
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FIGURE 5. Example 2b. Solution obtained with α = 2 and β = 5, on N = 100
subintervals and 0.1% relative noise.
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FIGURE 6. Example 2c. Solution obtained with α = 5 and β = 2, on N = 100
subintervals and 0.1% relative noise.
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FIGURE 7. Example 2d. Solution obtained with α = 6 and β = 5, on N = 100
subintervals and 0.1% relative noise.

The observations here stand in contrast to the error results in the
previous section, where the optimal choice was just a little linear
regularization and much more autoconvolution regularization. We have
observed that, as the noise level changes, the optimal choices for the
regularization parameters α and β change too.

We have not yet produced any model for making optimal choices of α
and β, but numerical experience perhaps supports our hypothesis that
α should generally be larger than β, because the linear problem is only
1-smoothing, and therefore not as ill-posed. A formal model awaits
further research.
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REFERENCES

1. J. Baumeister, Deconvolution of appearance potential spectra, in Direct and
inverse boundary value problems, R. Kleinman, R. Kress, and E. Martensen, eds.,
Lang, Frankfurt am Main, Germany, 1991.

2. J.V. Beck, B. Blackwell and C.R. St. Clair, Jr., Inverse heat conduction, Wiley-
Interscience, New York, 1985.



250 ZHEWEI DAI

3. C.D. Brooks, A discrepancy principle for parameter selection in the local
regularization of linear Volterra inverse problems, Ph.D. thesis, Department of
Mathematics, Michigan State University, East Lansing, MI, 2007.

4. C.D. Brooks and P.K. Lamm, A discrepancy principle for parameter selection
in the local regularization of linear Volterra inverse problems, preprint, 2007.

5. A.C. Cinzori, Continuous future polynomial regularization of 1-smoothing
Volterra problems, Inverse Prob. 20 (2004), 1791 1806.

6. A.C. Cinzori and P.K. Lamm, Future polynomial regularization of ill-posed
Volterra equations, SIAM J. Numer. Anal. 37 (2000), 949 979.

7. C. Cui, Local regularization methods for n-Dimensional first-kind integral
equations, Ph.D. thesis, Michigan State University, East Lansing, MI, 2005.

8. Z. Dai, Local Regularization For The Autoconvolution Problem, Ph.D. thesis,
Department of Mathematics, Michigan State University, East Lansing, MI, 2005.

9. Z. Dai and P.K. Lamm, Local regularization for the nonlinear inverse auto-
convolution problem, SIAM J. Numer. Anal. 46 (2008), 832 868.

10. V. Dose and Th. Dose, Deconvolution of appearance potential spectra, Appl.
Phys. 19 (1979), 19 23

11. V. Dose and H. Scheidt, Deconvolution of appearance potential spectra II,
Appl. Phys. 20 (1979), 299 303.

12. H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems,
Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.

13. H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov
regularization of nonlinear ill-posed problems, Inverse Prob. 5 (1989), 524 540.

14. G. Fleischer, R. Gorenflo and B. Hofmann, On the autoconvolution equation
and total variation constraints, ZAMM Z. Angew. Math. Mech. 79 (1999), 149 159.

15. G. Fleischer and B. Hofmann, On inversion rates for the autoconvolution
equation, Inverse Prob. 12 (1996), 419 435.

16. , The local degree of ill-posedness and the autoconvolution equation,
Nonlinear Anal. 30 (1997), 3323 3332.

17. Y. Fukuda, Appearance potential spectroscopy (APS): Old Method, but appli-
cable to study of nano-structures, Anal. Sci. 26 (2010), 187 197.

18. R. Gorenflo and B. Hofmann, On autoconvolution and regularization, Inverse
Prob. 10 (1994), 353 373.

19. G. Gripenberg, S.O. Londen and O. Saffens, Volterra integral and functional
equations, Cambridge University Press, Cambridge, 1990.

20. H. Hagstrum, Ion-neutralization spectroscopy of solids and solid surfaces,
Phys. Rev. 150 (1966), 495 515.

21. T. Hein and B. Hofmann, Approximate source conditions for nonlinear ill-
posed problems-chances and limitations, Inverse Prob. 25 (2009), 035003.

22. J. Janno, On a regularization method for the autoconvolution equation,
Z. Angew. Math. Mech. 77 (1997), 393 394.

23. , Lavrent’ev regularization of ill-posed problems containing nonlinear
near-to-monotone operators with application to autoconvolution equation, Inverse
Prob. 16 (2000), 333 348.



LOCAL REGULARIZATION METHODS 251

24. P.K. Lamm, Approximation of ill-posed Volterra problems via predictor-
corrector regularization methods, SIAM J. Appl. Math. 56 (1996), 524 541.

25. , Future-sequential regularization methods for ill-posed Volterra equa-
tions: Applications to the inverse heat conduction problem, J. Math. Anal. Appl.
195 (1995), 469 494.

26. , Regularized inversion of finitely smoothing Volterra operators:
Predictor-corrector regularization methods, Inverse Prob. 13 (1997), 375 402.

27. , Variable-smoothing regularization methods for inverse problems, in
Theory and practice of control and systems, A. Conte and A.M. Perdon, eds., World
Scientific, Singapore, 1999.

28. , A survey of regularization methods for first-kind Volterra equations,
in Surveys on solution methods for inverse problems, D. Colton, H.W. Engl, A.
Louis, J.R. McLaughlin and W. Rundell, eds., Springer, Vienna, 2000.

29. , Variable-smoothing local regularization methods for first-kind integral
equations, Inverse Prob. 19 (2003), 195 216.

30. , Full convergence of sequential local regularization methods for
Volterra inverse problems, Inverse Prob. 21 (2005), 785 803.

31. P.K. Lamm and Z. Dai, On local regularization methods for linear Volterra
problems and nonlinear equations of Hammerstein type, Inverse Prob. 21 (2005),
1773 1790.

32. P.K. Lamm and L. Eldén, Numerical solution of first-kind Volterra equations
by sequential Tikhonov regularization, SIAM J. Numer. Anal. 34 (1997), 1432 1450.

33. P.K. Lamm and X. Luo, Local regularization methods for nonlinear Ham-
merstein equations, preprint.

34. P.K. Lamm and T. Scofield, Sequential predictor-corrector methods for
the variable regularization of Volterra inverse problems, Inverse Prob. 16 (2000),
373 399.

35. , Local regularization methods for the stabilization for ill-posed
Volterra problems, Numer. Funct. Anal. Optim. 23 (2001), 913 940.

36. R. Miller, Nonlinear Volterra integral equations, W.A. Benjamin, New York,
1971.

37. R.L. Park, Recent developments in appearance potential spectroscopy, Surface
Sci. 48 (1975), 80 98.

38. R.L. Park and J.E. Houston, The electronic structure of solid surfaces: Core
level excitation techniques, J. Vac. Sci. Tech. 11 (1974), 176 182.

39. , Soft x-ray appearance potential spectroscopy, J. Vac. Sci. Tech. 10
(1973), 1 18.

40. R. Ramlau, Morozov’s discrepancy principle for Tikhonov regularization of
nonlinear operators, Numer. Funct. Anal. Optim. 23 (2002), 147 172.

41. W. Ring and J. Prix, Sequential predictor-corrector regularization methods
and their limitations, Inverse Prob. 16 (2000), 619 634.

42. O. Scherzer, The use of Morozov’s discrepancy principle for Tikhkonov
regularization for solving nonlinear ill-posed problems, Computing 51 (1993), 45 60.



252 ZHEWEI DAI

43. S.W. Schultz, K.Th. Schleicher, D.M. Ruck and H.U. Chun, Derivation of the
density of unoccupied states in polycrystalline ferromagnetic Fe, Co, and Ni from
highly resolved appearance potential spectra, J. Vac. Sci. Tech.: Vacuum, Surfaces,
and Films (1984), 822 825.

44. S. Schwabik, Generalized ordinary differential equations, World Scientific
Publishing Co., New Jersey, 1992.

45. D. Willett, A linear generalization of Gronwall’s inequality, Proc. Amer.
Math. Soc. 16 (1965), 774 778.

Department of Mathematics, Alma College, Alma, MI 48801
Email address: dai@alma.edu



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [432.000 648.000]
>> setpagedevice


