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ABSTRACT. We propose and analyze a new spectral collo-
cation method to solve eigenvalue problems of compact inte-
gral operators, particularly, piecewise smooth operator kernels
and weakly singular operator kernels of the form 1/|t− s|µ,
0 < μ < 1. We prove that the convergence rate of eigen-
value approximation depends upon the smoothness of the cor-
responding eigenfunctions for piecewise smooth kernels. On
the other hand, we can numerically obtain a higher rate of
convergence for the above weakly singular kernel for some μ’s
even if the eigenfunction is not smooth. Numerical experi-
ments confirm our theoretical results.

1. Introduction. We consider numerical approximation of the
eigenvalue problem for a compact integral operator T on a Banach
space. Recent years have witnessed a revitalization of this field, and
various methods are applied to solve the problem. The Galerkin,
Petrov-Galerkin, collocation, Nyström and degenerate kernel methods
have been extensively studied for the approximation of eigenvalues and
eigenvectors of integral operators. The results are well documented in
the literature. Here, we mention a few related to our current work. As
early as 1967, Atkinson proved a general theorem showing the conver-
gence of numerical eigenvalues and eigenvectors to those of compact in-
tegral operators [2]. In 1975, he further obtained a convergence rate for
the approximation [3], based upon which Osborn established a general
spectral approximation theory for compact operators, when a sequence
of {Tn} approximates T in a collectively compact manner. The analysis
of [3, 17] covers many methods and provides a basis for the conver-
gence analysis of our method. In [13], Dellwo and Friedman proposed
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a new approach by solving a polynomial eigenvalue problem of a higher
degree, based upon which Alam et al. [1] obtained an accelerated spec-
tral approximation for eigenelements. Kulkarni [16] introduced another
method by involving a new approximation operator Tn and obtained
a high-order convergence rate. In addition, a multiscale method was
discussed in [11]. Comprehensive studies for eigenvalue problem can be
found in [5, 9, 21]. For the numerical solution of integral equations or
integro-differential equations, interested readers are referred to [4, 7].

In this article, we approximate eigenfunctions by some appropriate
orthogonal polynomial expansions. In a different manner from previous
methods in the literature we find the exact integration when calculating
the convolution of the singular kernel with the orthogonal polynomi-
als. The key ingredients here are some special identities. By doing so,
we: 1) avoid large numerical quadrature errors accumulated with the
singular kernels and thereby obtain higher accuracy for eigenvalue ap-
proximations, and 2) avoid product integration methods and therefore
reduce the computational cost. Furthermore, if the kernel is positive
definite and piecewisely smooth, a refined result can be obtained.

To fix the idea, we consider problems of the form

(1.1)

∫ 1

0

k(t, s)u(s) ds = λu(t), t ∈ [0, 1],

where k(t, s) = |t − s|−μ for 0 < μ < 1, k(t, s) is piecewisely smooth
or smooth. We will develop algorithms for all three types of problems
separately.

This paper is organized as follows. In Section 2, some preliminary
knowledge is given. In Section 3, algorithms for all types of equations
are listed. Section 4 is devoted to convergence analysis of algorithms.
Finally, we illustrate our theories with numerical examples in Section 5.
Throughout the paper, C stands for a generic constant that is indepen-
dent of collocation points p but which may depend upon the index μ
and the number of pieces a piecewise kernel has.

2. Preliminaries. Let T : X → X be a compact linear operator on
a Banach space X and σ(T ) and ρ(T ) the spectrum and resolvent of T ,
respectively. Let λ be a nonzero eigenvalue of T with multiplicity m,
and let Γ be a circle centered at λ which lies in ρ(T ) and which encloses
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no other points in σ(T ). Then the spectral projection associated with
T and λ is defined by

E = − 1

2πi

∫
Γ

(T − zI)−1dz

and maxz∈Γ ‖(T − zI)−1‖ ≤ C.

Let {Tn} be a sequence of operators in B(X) that converges to T in a
collective way, i.e., the set {Tnx : ‖x‖ ≤ 1, n = 1, 2, . . .} is sequentially
compact. For n large enough, Γ ∈ ρ(Tn) and the associated projection,

En = − 1

2πi

∫
Γ

(Tn − zI)−1dz

exists and maxz∈Γ ‖(Tn − zI)−1‖ ≤ C. Clearly, dim (E) = dim (En) =
m and TnEn = EnTn. Furthermore, the spectrum of Tn inside Γ
contains m approximations of λ, i.e., λn,1, λn,2, . . . , λn,m, counted
according to their algebraic multiplicities [9, 17]. Let

λ̂n =
λn,1 + λn,2 + · · ·+ λn,m

m
.

Then we have the following theorem.

Theorem 2.1 [17]. For all n sufficiently large,

|λ− λ̂n| ≤ C‖(T − Tn)|R(E)‖,

where R(E) is the range of the projection E.

This is a rather general result. We may refine the result if the kernel
is positive definite. Let

(2.1) a(u, v) =

∫ 1

0

∫ 1

0

k(t, s)u(s)v(t) ds dt, b(u, v) =

∫ 1

0

u(t)v(t) dt,

where v is a test function in the L2 space V . If the bilinear operator
a(u, v) is coercive, then we can list eigenvalues of T by

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0,
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with zero the only possible cluster point.

Let us consider a numerical approximation of the first eigenpair
(λ, u). Let (λp, vp) be their Galerkin approximation, and let up be
the Legendre expansion of u. We have

(2.2) λ =
a(u, u)

b(u, u)
= sup

v∈V

a(v, v)

b(v, v)
, λp =

a(vp, vp)

b(vp, vp)
= max

v∈Pp

a(v, v)

b(v, v)
.

Here Pp is the polynomial space with degree no more than p. Denote

λ̃p = a(up, up)/b(up, up); then we have the following lemma.

Lemma 2.2. Let λ, λp and λ̃p be defined as above and a(u, v)
coercive. Then

(2.3) 0 ≤ λ− λp ≤ λ− λ̃p = λ
‖u− up‖2b

‖u‖2b
− ‖u− up‖2a

‖u‖2b
.

Proof. From [5, page 701, Lemma 9.1], we have

(2.4) 0 ≤ νp − ν ≤ ν̃p − ν ≤ ‖u− up‖2b
‖u‖2a

− ν
‖u− up‖2a

‖u‖2a
,

where ν = 1/λ, νp = 1/λp and ν̃p = 1/λ̃p. Hence,

(2.5) 0 ≤ λ− λp

λ
≤ λp

‖u− up‖2b
‖u‖2a

− λp

λ

‖u− up‖2a
‖u‖2a

.

Using the fact that

a(up, up) = λpb(up, up),

we derive (2.3) from (2.5).

Next, we introduce some identities, which will be essential in this
paper. Towards this end, we define the class of Jacobi polynomials

P
(α,β)
n (x). Under the normalization P

(α,β)
k (1) =

(
k+α
k

)
, one has the

expression, namely,

(2.6) P
(α,β)
k (x) =

1

2k

k∑
l=0

(
k + α

k − l

)(
k + β

l

)
(x − 1)l(x+ 1)k−l.
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Jacobi polynomials satisfy the three-term recursive relations:

(2.7)
P

(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

1

2
[(α− β) + (α+ β + 2)x],

a1,kP
(α,β)
k+1 (x) = a2,kP

(α,β)
k (x)− a3,kP

(α,β)
k−1 (x),

where
(2.8)
a1,k = 2(k + 1)(k + α+ β + 1)(2k + α+ β),

a2,k = (2k + α+ β + 1)(α2 − β2) + xΓ(2k + α+ β + 3)/Γ(2k + α+ β),

a3,k = 2(k + α)(k + β)(2k + α+ β + 2).

Especially if α = 0 and β = 0, Jacobi polynomials become Legendre
polynomials.

Lemma 2.3 [19]. Let a, b be positive constants and Ln(x) the
Legendre polynomials with degree n on [−1, 1]. Then

∫ b

a

(s− a)α−1Ln

(
s

b

)
ds =

n!

(α)n+1
(b− a)αP (α,−α)

n

(
a

b

)
,(2.9)

−b < a < b, α > 0,∫ b

−a

(b− s)β−1Ln

(
s

a

)
ds =

n!

(β)n+1
(b + a)βP (−β,β)

n

(
b

a

)
,(2.10)

−a < b < a, β > 0,

where (k)n+1 = k(k + 1) · · · (k + n).

Specifically, if we choose a = 1, b = x, β = 1 − μ in (2.10), then we
obtain

(2.11)

∫ x

−1

Ln(t)

(x− t)μ
dt =

n!

(1− μ)n+1
(1 + x)1−μP (μ−1,1−μ)

n (x),

and a = x, b = 1, α = 1− μ in (2.9), we arrive at

(2.12)

∫ 1

x

Ln(t)

(t− x)μ
dt =

n!

(1− μ)n+1
(1− x)1−μP (1−μ,μ−1)

n (x).
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Remark 1. We use identities (2.11) and (2.12) in our algorithm
for weakly singular kernels after we expand eigenvectors by Legendre
polynomials.

Lemma 2.4 [18]. Let α > −1, β > −1 and 0 < ν < 1. Then, for
−1 < x < 1,

(2.13)

∫ 1

−1

(1− t)α(1 + t)βP
(α,β)
m (t) dt

|x− t|ν

=
cos(πν/2)Φ1(x) + cosπ((ν/2)− β)Φ2(x)

Γ(ν) cos(πν/2)
, m = 0, 1, 2, . . . ,

where

Φ1(x) =
Γ(m+ α+ 1)Γ(m+ ν)Γ(β − ν + 1)(−1)m

2−α−β+ν−1Γ(m+ α+ β − ν + 2)m!

(2.14)

× 2F1

(
m+ ν, ν −m− α− β − 1;−β + ν;

1 + x

2

)
,

Φ2(x) =
Γ(m+ β + 1)Γ(ν − β − 1)(−1)m+1

2−α(1 + x)ν−β−1m!

(2.15)

× 2F1

(
m+ β + 1,−m− α;β − ν + 2;

1 + x

2

)
.

Here, 2F1(a, b; c; z) is known as Gauss’s hypergeometric functions.

For the sake of convergence analysis, we need to introduce the error
estimate of Gauss quadrature.

Lemma 2.5 [12]. Let f ∈ C2n, xi and wi be the Gauss points and
their corresponding quadrature weights on the interval [a, b]. Then
(2.16)∫ b

a

f(x) dx−
n∑

i=0

wif(xi) =
(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), ξ ∈ (a, b).
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3. Algorithms. In this section, we develop algorithms for eigen-
problem with all three kinds of kernels mentioned before. Models that
we consider in this article are:

(1) Weakly singular kernels

(3.1) λy(t) =

∫ 1

0

y(s)

|t− s|μ ds, 0 < μ < 1, t ∈ [0, 1];

(2) Piecewise smooth kernels

(3.2)

λy(t) =

∫ 1

0

k(t, s)y(s) ds, t ∈ [0, 1],

where k(t, s) =

{
t− s/2 if 0 ≤ t ≤ s ≤ 1,

s/2 if 0 ≤ s < t ≤ 1;

(3) Smooth kernels

(3.3) λy(t) =

∫ 1

0

esty(s) ds, t ∈ [0, 1].

3.1. The first algorithm for (3.1). It is clear that (3.1) is
equivalent to

(3.4) λy(t) =

∫ t

0

y(s)

(t− s)μ
ds+

∫ 1

t

y(s)

(s− t)μ
ds.

We make a change of variable t = (1 + x)/2 and obtain
(3.5)∫ (1+x)/2

0

(
1 + x

2
− s

)−μ

y(s) ds+

∫ 1

(1+x)/2

(
s− 1 + x

2

)−μ

y(s) ds=λu(x),

where x ∈ [−1, 1] and u(x) = y((1 + x)/2). Next, we make another
change of variable, s = (1 + τ )/2 and reach
(3.6)(

1

2

)1−μ∫ x

−1

(x−τ)−μu(τ) dτ+

(
1

2

)1−μ∫ 1

x

(τ−x)−μu(τ) dτ=λu(x),

x ∈ [−1, 1].
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Let up(x) =
∑p

j=0 cjLj(x) be the approximation of u(x). Obviously,
the cj ’s satisfy the equation

(3.7)(
1

2

)1−μ p∑
j=0

cj

∫ xi

−1

Lj(τ)

(xi − τ)μ
dτ +

(
1

2

)1−μ p∑
j=0

cj

∫ 1

xi

Lj(τ)

(τ − xi)μ
dτ

= λp

p∑
j=0

cjLj(xi).

Substituting (2.11) and (2.12) into (3.7), we obtain

(3.8)

p∑
j=0

cj

[(
1

2

)1−μ
j!

(1− μ)j+1
(1 + xi)

1−μP
(μ−1,1−μ)
j (xi)

+

(
1

2

)1−μ
j!

(1 − μ)j+1
(1− xi)

1−μP
(1−μ,μ−1)
j (xi)

]
= λp

p∑
j=0

cjLj(xi), i = 0, . . . , p.

If we write

aij =

(
1

2

)1−μ
j!

(1 − μ)j+1
(1 + xi)

1−μP
(μ−1,1−μ)
j (xi)

+

(
1

2

)1−μ
j!

(1− μ)j+1
(1− xi)

1−μP
(1−μ,μ−1)
j (xi)

bij = Lj(xi),

then we have ACp = λpBCp, where A = (aij), B = bij , Cp =
(c0, c1, . . . , cp)

T .

3.2. The second algorithm for (3.1). From [20, Theorem 1], we
assume that the first true eigenvector is of the form

(3.9) y(t) = d̂1t
1−μ + d̂2(1 − t)1−μ + a smoother function φ(t).

Hence, we approximate the eigenvector by up(t) = d1t
1−μ+d2(1−t)1−μ+∑p

j=0 cjPj(t), where Pj(t) is the shifted Legendre polynomial on [0, 1],
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j = 0, 1, . . . , p. Substituting it into (3.1) and taking the same change
of variables as the previous algorithm, we obtain

(3.10)

(
1

2

)2−2μ(
d1

∫ 1

−1

(1 + τ)1−μ

|x− τ |μ dτ + d2

∫ 1

−1

(1− τ)1−μ

|x− τ |μ dτ

)
+

(
1

2

)1−μ p∑
j=0

cj

(∫ x

−1

(x− τ)−μLj(τ) dτ +

∫ 1

x

(τ − x)−μLj(τ) dτ

)

= d1

(
1 + x

2

)1−μ

+ d2

(
1− x

2

)1−μ

+

p∑
j=0

cjLj(x), x ∈ [−1, 1].

From Lemmas 2.3 and 2.4 and (3.10), we obtain

(
1

2

)2−2μ
Γ(2 − 2μ)

22μ−2Γ(3 − 2μ)
2F1

(
μ, 2μ−2; 2μ−1;

1 + xi

2

)
d1

(3.11)

+

(
1

2

)2−2μ
1

Γ(μ)

(
Γ(2 − μ)Γ(μ)Γ(1− μ)

22μ−2Γ(3− 2μ)
2F1

(
μ, 2μ− 2;μ;

1 + xi

2

)
− Γ(μ− 1)

2μ−1(1 + xi)μ−1 2F1

(
1, μ− 1; 2− μ;

1 + xi

2

))
d2

+

p∑
j=0

cj

[(
1

2

)1−μ
j!

(1− μ)j+1
(1 + xi)

1−μP
(μ−1,1−μ)
j (xi)

+

(
1

2

)1−μ
j!

(1− μ)j+1
(1 − xi)

1−μP
(1−μ,μ−1)
j (xi)

]
= λp

( p∑
j=0

cjLj(xi) + d1

(
1 + xi

2

)1−μ

+ d2

(
1− xi

2

)1−μ)
,

i = 0, . . . , p+ 2.

Note that the first hypergeometric function is not well defined when
μ = 1/2. However, the integration of the two singular terms with the
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kernel are simpler, in which case, the linear system is
(3.12)(

π(1 + xi)

4
+

√
1− xi

2
+

1 + xi

2

× log

(
1 +

√
1− xi

2

)
− 1 + xi

4
log

(
1 + xi

2

))
d1

+

(√
1 + xi

2
− xi − 1

2
tanh−1

(√
1 + xi

2

)
− π(xi − 1)

4

)
d2

+

p∑
j=0

cj

[(
1

2

)1−μ
j!

(1− μ)j+1
(1 + xi)

1−μP
(μ−1,1−μ)
j (xi)

+

(
1

2

)1−μ
j!

(1− μ)j+1
(1− xi)

1−μP
(1−μ,μ−1)
j (xi)

]
= λp

(
d1

√
1 + xi

2
+ d2

√
1− xi

2
+

p∑
j=0

cjLj(xi)

)
, i = 0, . . . , p+ 2.

3.3. Algorithm for (3.2). We make the change of variable as
before and let u(x) = y((1 + x)/2). We obtain

(3.13) λu(x) =

∫ 1

−1

1 + τ

8
u(τ) dτ +

1

4

∫ 1

x

(x− τ)u(τ) dτ.

Let up(x) =
∑p

j=0 cjLj(x) be the approximation of u(x). Then the cj ’s
satisfy
(3.14)

λp

p∑
j=0

cjLj(xi) =

p∑
j=0

cj

∫ 1

−1

1 + τ

8
Lj(τ) dτ +

p∑
j=0

cj

∫ 1

xi

(xi − τ)Lj(τ) dτ,

i = 0, . . . , p,
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i.e.,

λp

p∑
j=0

cjLj(xi) =

(
c0
4

+
c1
12

)(3.15)

+
1− xi

8

p∑
j=0

cj

p∑
k=0

wk(xi − xk)Lj

(
1 + xi

2
+

1− xi

2
xk

)
,

i = 0, . . . , p.

Here, the numerical integration is exact. The scheme is of the form

ACp = λpBCp,

where

bij = Lj(xi)

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−xi)/8
∑p

k=0 wk(xi−xk)Lj((1+xi)/2+(1−xi)/2xk)

if j �= 0, 1,

(1−xi)/8
∑p

k=0 wk(xi−xk)Lj((1+xi)/2+(1−xi)/2xk)+1/4

if j = 0;

(1−xi)/8
∑p

k=0 wk(xi−xk)Lj((1+xi)/2+(1−xi)/2xk)+1/12

if j = 1.

3.4. Algorithm for (3.3). Substituting the Legendre expansion
y(t) =

∑p
j=0 yjLj(t) into (3.3) and collocating at n Gaussian points,

we have

(3.16)

p∑
j=0

yj

∫ 1

0

estiLj(s) ds = λ

p∑
j=0

yjLj(ti), i = 1, 2, . . . , n.

The matrix form of (3.16) is

(3.17) Ky = λLy,
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where

(3.18) Kij =

∫ 1

0

estiLj(s) ds, Lij = Lj(ti), y = (y1, y2, . . . , yn)
T .

Kij can be calculated by the n-point Gaussian quadrature

(3.19)

∫ 1

0

estiLj(S) ds ≈
p∑

l=0

esltiLj(sl)wl, sk = tk.

4. Convergence analysis. Let Lk be the standard Legendre
polynomial of degree k, and let πpf ∈ Pp[−1, 1] interpolate a smooth
function f at (p+1)-Gauss points: −1 < x0 < · · · < xp < 1. Let Tk be
the first kind Chebyshev polynomial of degree k. Then the remainder
of the interpolation is

(4.1) f(x)− πpf(x) = f [x0, x1, . . . , xp, x]ν(x),

where ν(x) = (x− x0)(x− x1) · · · (x− xp).

Note that

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n

(4.2)

=
1

2nn!

dn

dxn

n∑
j=0

(
n

j

)
x2(n−j)(−1)j

=
1

2nn!

n∑
j=0

(
n

j

)
(2n−2j)(2n−2j−1)· · ·(2n−2j−n+1)xn−2j(−1)j .

From the term with j = 0, we get the leading coefficient

(4.3)
1

2nn!

(
n

0

)
(2n)(2n− 1) · · · (2n− n+ 1)(−1)0 =

(2n)!

2n(n!)2

By the Stirling formula,

(4.4)
(2n)!

2n(n!)2
≈ (2n/e)2n

√
4πn

2n[(n/e)n
√
2πn]2

= 2n.
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Hence,

(4.5) f(x)− πpf(x) ≈ f [x0, x1, . . . , xp, x]

2p+1
Lp+1(x).

If f ∈ Cp+1[−1, 1], the divided difference

(4.6) f [x0, x1, . . . , xp, x] =
f (p+1)(ξx)

(p+ 1)!
, ξx ∈ (−1, 1).

The result can be concluded as the following theory.

Theorem 4.1. (1) If y(t) satisfies condition (K): ‖y(k)‖L∞[0,1] ≤
Ck!R−k, then

(4.7) ‖y − πpy‖L∞[0,1] ≤ C

(4R)p+1
;

(2) If y(t) satisfies condition (M): ‖y(k)‖L∞[0,1] ≤ CMk, we have

(4.8) ‖y − πpy‖L∞[0,1] ≤ C√
p+ 1

(
eM

4(p+ 1)

)p+1

.

Proof. We make the change of variables

t =
1 + x

2
, s =

1 + τ

2
, x, τ ∈ [−1, 1],

and let u(x) = y((1 + x)/2). Then the result for y under condition (K)
follows directly from (4.6) and the fact that dt = (1/2)dx.

If y satisfies condition (M), by applying the Stirling’s formula,

‖y − πpy‖L∞[0,1] = ‖u− πpu‖L∞[−1,1]

(4.9)

≤ CMp+1

(4R)p+1(p+ 1)!
≈ cMp+1√

2π(p+ 1)(4(p+ 1)/e)p+1

=
C√
p+ 1

(
eM

4(p+ 1)

)p+1

.
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For non-smooth functions, we need some other estimates.

Theorem 4.2 [8]. (1) For any f ∈ Hk(−1, 1),

(4.10) ‖f − πpf‖L2(−1,1) ≤ Cp−k|f |Hk,p(−1,1).

(2) For any f ∈ Hk
w(−1, 1),

(4.11) ‖f − πc
pf‖L2(−1,1) ≤ Cp−k|f |Hk,p

w (−1,1),

where two seminorms are defined by

|f |Hk,p(−1,1) =

( k∑
s=min(k,p+1)

‖f (s)‖2L2(−1,1)

)1/2

,

|f |Hk,p
w (−1,1) =

( k∑
s=min(k,p+1)

‖f (s)‖2L2
w(−1,1)

)1/2

,

and the weight w(x) = (1−x)−1/2(1+x)−1/2 and πc
p is the interpolatory

operator on Chebyshev points.

Let R(E) and R(Ep) be the range of E and Ep, respectively. De-
fine πp : R(E) → R(Ep) as an interpolatory projection by πp(t) =∑p

j=0 ξjLj(t) and ξj is determined by

p∑
j=0

ξjLj(ti) = x(ti), i = 0, . . . , p.

Then our algorithms can be written as

(4.12) Tpup = λpup, where Tp = πpT.

Theorem 4.3. Let y be the exact first eigenvector and T a compact
operator in (3.1), (3.2) or (3.3) and Tp defined as above. Then
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(1) If y ∈ Hk(0, 1),

(4.13) |λ− λ̂p| ≤ C

(2p)k
;

(2) Furthermore, if y satisfies condition (K),

(4.14) |λ− λ̂p| ≤ C

(4R)p+1
;

(3) Furthermore, if y satisfies condition (M),

(4.15) |λ− λ̂p| ≤ C√
p+ 1

(
eM

4(p+ 1)

)p+1

.

Proof. The result follows directly from Theorems 2.1, 4.1, 4.2 and
[16, Theorem 2.2]. To make the paper self contained, we put the proof
here.

Let Êp = Ep|R(E) : R(E) → R(Ep). Then, for large p, Êp is bijective

and ‖Ê−1
p ‖ ≤ 2 [17]. Define T̂ = TR(E), and T̂p := Ê−1

p TpÊp. Then

|λ− λ̂p| = 1

m
|trace (T̂ − T̂p)| ≤ ‖T̂ − T̂p‖

(4.16)

= ‖Ê−1
n (ÊpT − ÊTp)‖ ≤ C‖(T − Tp)|R(E)‖

= C‖(I − πp)T |R(E)‖.

Since Tu is smoother than u, see [10, 15]; then the result follows.

Theorem 4.4. Let λ and λp be the exact eigenvalue and its numer-
ical approximation of a positive definite operator T whose kernel is a
piecewise smooth function, respectively. Then

(1) if u satisfies condition (K),

(4.17) |λ− λp| ≤ C

(
1

(4R)2p+2
+

e2p

p2p−3/226p

)
;
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(2) if u satisfies condition (M),

(4.18) |λ− λp| ≤ C

(
1

p+ 1

(
eM

4(p+ 1)

)2p+2

+
e2p

p2p−3/226p

)
;

(3) if u ∈ Hk[0, 1],

(4.19) |λ− λp| ≤ C

(
1

(2p)2k
+

e2p

p2p−3/226p

)
,

Proof. By our algorithms, we have

(4.20)

∫ 1

0

k(ti, s)up(s) ds = λpup(ti),

where ti are (p+ 1)-Gauss points on [0,1].

Multiplying both sides by Lj(ti)wi and summing up from 0 to p, we
obtain

(4.21)

p∑
j=0

∫ 1

0

k(ti, s)up(s)Lj(ti)wi ds = λp

p∑
j=0

up(ti)Lj(ti)wi.

Here, wi are weights of the Gauss quadrature.

If we write Ã=(
∫ 1

0

∫ 1

0 k(t, s)Lj(s)Li(t) dsdt)ij , B̃=(
∫ 1

0 Lj(t)Li(t) dt)ij
and recall that up(x) =

∑p
i=0 ũiLi(x), we obtain

Ãũ = λ̃pB̃ũ,

where ũ = [ũ0, ũ1, . . . , ũp]
T .

However, for most cases, we can only apply numerical quadrature to
find elements of Ã and B̃. If the kernel is piecewise smooth, we apply
the Gauss quadrature piece by piece. Therefore, the system that we
actually solve is

(4.22) Au = λpBu.

Now we are ready to analyze errors of eigenvalue approximations.
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First, we analyze the case when the kernel is a linear piecewise
polynomial. Noting the fact that (p + 1)-Gauss quadrature is exact
for all polynomials of degree less than or equal to 2p+ 1, we have

(4.23) A = Ã, and B = B̃.

Here, the integration is piecewise, so is the numerical integration.

Denote the arithmetic mean of the approximation of λ by λp again,
if it is a multiple eigenvalue. We derive from Lemma 2.2 that

(4.24) |λ− λp| = |λ− λ̃p|

≤ C

⎧⎪⎨⎪⎩
1/42p+2 if u satisfies condition (K);

1/(p+ 1)(eM/(4(p+ 1)))2p+2 if u satisfies condition (M);

1/(2p)2k if u ∈ Hk[0, 1].

If the kernel is piecewise smooth or smooth, from the analysis of the
previous case, we only need to estimate A− Ã since B = B̃. If we write
the remainder of Gaussian quadrature as ε, then

(4.25) A− Ã ≤ Cε

⎡⎢⎢⎢⎢⎣
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1
1 1 · · · 1

⎤⎥⎥⎥⎥⎦ .

Here, we define E < F if and only if |(E)ij | < |(F )ij |.
By the error estimate of the Gauss quadrature and Stirling’s formula,

we have

(4.26)

ε ≤ C

(
[p!]4

(2p+ 1)[(2p)!]3

)
≈ C

(
[
√
2πp(p/e)p]4

(2p+ 1)[
√
2π(2p)(2p/e)2p]3

)
≤ C

(
e2p

p2p+1/226p

)
.

Hence,

(4.27) ‖A− Ã‖n ≤ C

(
pe2p

p2p+1/226p

)
, n = 1,∞.
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Clearly, (4.22) is equivalent to

(4.28) B−1Au = λpu.

Thus,

(4.29)

‖B̃−1Ã−B−1A‖n ≤ ‖B−1‖n‖Ã−A‖n
≤ C

(
p2e2p

p2p+1/226p

)
, n = 1,∞,

by noting that B = B̃ = diag (1, 1/3, . . . , 1/(2p+ 1)). Therefore, by a
perturbation theory, see [9, page 30], we have

(4.30) |λp − λ̃p| ≤ C

(
e2p

p2p−3/226p

)
.

Denote the arithmetic mean of the approximation of λ by λp again, if
it is a multiple eigenvalue. We derive from Lemma 2.2 and (4.30) that

|λ− λp| ≤ |λ− λ̃p|+ |λ̃p − λp|

≤ C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((1/42p+2) + (e2p/(p2p−1/226p)))

if u satisfies condition (K);

(1/(p+ 1)(eM/(4(p+ 1)))2p+2 + (e2p/(p2p−1/226p)))

if u satisfies condition (M);

((1/(2p)2k) + (e2p/(p2p−1/226p)))

if u ∈ Hk[0, 1].

Remark 2. Theorem 4.4 shows that, although numerical integration
contributes to the error of eigenvalue approximation, it is trivial com-
pared with truncation error for our method. Hence, in our numerical
experiments, we ignore it for reference curves.

5. Numerical examples. In this section, we will find numerical
approximations to solutions of some examples to demonstrate our
theory.
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FIGURE 1. (Left) Linear piecewise kernel. (Right) Kernel: est.

TABLE 1. Example 5.1: λ− λp.

p 3 4 5 6

error 5.2298e-06 1.1826e-07 1.8490e-09 2.1241e-11

p 7 8

error 1.8759e-13 1.3045e-15

TABLE 2. Example 5.2: λp (The first algorithm).

p 10 20 30 40

1.805741190980 1.805772959954 1.805776000579 1.805776693513

p 50 55 60 65

1.805776926254 1.805776984244 1.805777024037 1.805777051585

Example 5.1 [1]. We consider a problem with form (3.2). Then each
λj = 1/((2j − 1)2π2), j = 1, 2, . . . , is an eigenvalue of T of algebraic

multiplicity m = 2. Let λ̂ denote the arithmetic mean of the two
eigenvalues of Tp to the largest two eigenvalues λ = 1/π2. Numerical
errors are presented in Table 1 and the left part of Figure 1, from which
we see that the error decays super-geometrically. Here Reference Curve
is the graph of

f(p) =
1

100(p+ 1)

(
eπ

4(p+ 1)

)2p+2

.
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FIGURE 2. Kernel: |t − s|1/3. The first algorithm (Left), the second algorithm
(Middle) and the discontinuous linear elements method (Right).

TABLE 3. Example 5.2: λp (The second algorithm).

p 10 20 30 40

1.805777162409 1.805777143959 1.80577714315 1.805777143861

p 50 55 60 65

1.805777143840 1.805777143837 1.805777143834 1.805777143833

Example 5.2. Now let us consider an eigenproblem of form (3.1)
with μ = 1/3. From [20], eigenfunctions belong to H(7/6)−ε(0, 1),
where ε is a sufficiently small positive number and we expect to obtain
a convergence rate of O(p−7/3) based on Theorem 4.3 for the first
algorithm. Here, we apply both our spectral collocation methods and
the three-point Gaussian collocation on equally spaced intervals with
discontinuous piecewise quadratic elements method. Unfortunately, we
do not know the exact eigenvalues for such types of kernels. However,
we list some of our numerical approximations in Table 2, and we use
the numerical approximation of the second algorithm for p = 70 as our
“exact” value to obtain Figure 2. It is easy to see that we can only
obtain a 7 digit accuracy for the first algorithm; we obtain an 11 digit of
accuracy and a convergence rate of O(p−14/3) for the second algorithm,
see Table 3. However, the convergence rate for the three-point Gaussian
collocation with discontinuous piecewise quadratic element is only
O(h7/6). This fact also confirms results in [6], which says that the
convergence rate for p-version methods doubles the convergence rate
for the h-version method if the true solution is singular.

Example 5.3. We consider an eigenproblem of form (3.1) with
μ = 1/2. In this case, eigenfunctions belong to H1(0, 1). Again, we use
both algorithms to solve it and consider the numerical approximation
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of the second algorithm for p = 70 as the “exact” first eigenvalue.
Numerical results are shown in Table 4, Table 5 and Figure 3.

Example 5.4. Consider the eigenvalue problem of the form (3.3).
We apply the algorithm in Section 3. Since the kernel is smooth,
the first eigenvalue converges very fast, see Table 6 and the right
part of Figure 1. In this case, Reference Curve is the graph of
f(p) = 1/(10(p+ 1))(e/(2(p+ 1)))2p+2.
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FIGURE 3. (Left) Kernel: |t−s|1/2 (The first algorithm). (Right) Kernel: |t−s|1/2
(The second algorithm).

TABLE 4. Example 5.3: λp (The first algorithm).

p 10 20 30 40

2.682832453413 2.682906259562 2.682914644141 2.682916773709

p 50 55 60 65

2.682917548869 2.682917752298 2.682917896142 2.682917998252

TABLE 5. Example 5.3: λp (The second algorithm).

p 10 20 30 40

2.682918574502 2.682918399599 2.682918386165 2.682918383536

p 50 55 60 65

2.682918382751 2.682918382579 2.682918382452 2.682918382377

TABLE 6. Example 5.4: λ− λp.

p 1 2 3 4

error 9.4969e-04 5.0595e-06 1.5456e-08 3.1190e-11

p 5 6

error 4.3077e-14 6.6613e-16
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