
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 25, Number 1, Spring 2013

DIFFERENTIABILITY OF SOLUTIONS OF ABSTRACT
NEUTRAL INTEGRO-DIFFERENTIAL EQUATIONS
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ABSTRACT. In this paper we study the differentiability
of solutions of abstract neutral integro-differential equations
with infinite delay. We consider specially the cases when
the underlying space is reflexive or at least has the Radon-
Nikodym property.

1. Preliminaries. In this work we are concerned with regularity
properties of solutions of abstract neutral integro-differential equations
with infinite delay.

Let X be a Banach space endowed with a norm ‖ · ‖. In this paper
we study the existence of classical solutions for the class of abstract
neutral integro-differential equations described in the form

(1.1)
d

dt

(
x(t) +

∫ t

0

N(t− s)x(s) ds

)

= Ax(t) +

∫ t

0

B(t− s)x(s) ds+ f(t, xt),

for t ∈ I = [0, a], with initial condition

(1.2) x0 = ϕ ∈ B

In this description x(t) ∈ X and the history xt : (−∞, 0] → X , given
by xt(θ) = x(t + θ) for θ ≤ 0, belongs to some abstract phase space
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B defined axiomatically. Moreover, N(t) denotes a bounded linear
operator from X into X , A,B(t) are closed linear operators defined
in the Banach space X , and f : I ×B → X is an appropriate function.

Partial neutral integro-differential equations with unbounded delay
arise, for instance, in the theory developed by Gurtin and Pipkin [20]
and Nunziato [29] for the description of heat conduction in materials
with fading memory.

We next establish some basic properties of the initial boundary value
problem

d

dt

(
x(t) +

∫ t

0

N(t− s)x(s) ds

)(1.3)

= Ax(t) +

∫ t

0

B(t− s)x(s) ds, t ≥ 0,

x(0) = z ∈ X.(1.4)

We associate with equation (1.3) a resolvent operator. The subject
of the existence and qualitative properties of a resolvent operator for
integro-differential equations has been considered in several works. The
book of Gripenberg, Londen and Staffans [19] contains an overview of
the theory for the case the underlying space X has finite dimension.
The subject also has been studied by several authors for abstract
integro-differential equations. Related to our work, we mention the
articles [5 8, 16 18, 23, 26, 27]. Furthermore, integro-differential
equations with infinite delay have been considered recently by Ezzinbi,
Toure and Zabsonre [13], and neutral integro-differential equations
with infinite delay have been studied by Dos Santos et al. in [10, 11].

Throughout this paper, for Banach spacesX,Y we denote by L(X,Y )
the Banach space of bounded linear operators from X into Y endowed
with the operator norm, and we abbreviate this notation by L(X) in
the case X = Y . Moreover, we denote the dual space of X by X∗. If
C is a linear operator defined in a dense subspace D(C), then C∗ will
represent the adjoint operator of C, and if x ∈ X and x∗ ∈ X∗, we
will write indistinctly 〈x∗, x〉 or 〈x, x∗〉 for the value x∗(x). We denote
by D(A) the domain of operator A, and by [D(A)] the space D(A)
endowed with the graph norm

‖x‖1 = ‖x‖+ ‖Ax‖, x ∈ D(A).
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In addition, we denote by ρ(A) the resolvent set of A and R(λ,A) =

(λI − A)−1 is the resolvent operator of A. Finally, we designate by f̂
the Laplace transform of an appropriate function f : [0,∞) → X .

We introduce the following concept of resolvent operator for problem
(1.3) (1.4).

Definition 1.1. A one parameter family of bounded linear operators
(R (t))t≥0 on X is called a resolvent operator for problem (1.3) (1.4) if
the following conditions are verified.

(a) The function R (·) : [0,∞) → L(X) is strongly continuous,
exponentially bounded and R (0) = I.

(b) For x ∈ D(A), R (·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞), X), and

(1.5)
d

dt

[
R(t)x+

∫ t

0

N(t− s)R (s)x ds

]

= AR(t)x +

∫ t

0

B(t− s)R (s)x ds,

(1.6)
d

dt

[
R(t)x+

∫ t

0

R(t− s)N(s)x ds

]

= R(t)Ax +

∫ t

0

R(t− s)B(s)x ds,

for every t ≥ 0.

The existence of a resolvent operator for problem (1.3) (1.4) has been
considered in the Appendix. In what follows, we use the terminology
and notations introduced in the Appendix. In particular, we always
assume that conditions (P1) (P4) are verified, and consequently that
there exists a resolvent operator for problem (1.3) (1.4).

We complete the preliminaries with a brief description of the paper.
This paper has five sections. In Section 2 we study the existence of
classical solutions for the non-homogeneous problem

(1.7)
d

dt

(
x(t) +

∫ t

0

N(t− s)x(s) ds

)

= Ax(t) +

∫ t

0

B(t− s)x(s) ds+ f(t), t ∈ I,



50 H.R. HENRÍQUEZ AND J.P.C. DOS SANTOS

with initial condition (1.4), where f : [0, a] → X is a continuous
function. Moreover, we include in this section an application to the
existence of classical solutions for a semi-linear equation of type (1.7).
In Section 3 we discuss the existence of classical solutions for an abstract
neutral integro-differential equation with infinite delay. In Section 4
we apply our results to an equation that arises in the study of heat
conduction in material with fading memory. Finally, in Section 5 we
have met the basic properties of resolvent operators which will be used
throughout the text.

2. Classical solutions for the semi-linear equation. We begin
this section by characterizing the elements x ∈ X for which the function
R (·)x is differentiable. Initially we generalize a well-known result for
strongly continuous semi-groups of linear operators [4].

Theorem 2.1. Assume that X is reflexive and that b(·) is locally
bounded. If

(2.1) lim inf
t→0+

∥∥∥∥R(t)x− x

t

∥∥∥∥ <∞,

then x ∈ D(A).

Proof. Under condition (2.1), it follows that there is a sequence (τn)n
convergent to 0 such that the set

{
R(τn)x − x

τn
: n ∈ N

}

is bounded. Since X is reflexive, by passing to a subsequence, we may

assume that R (τn)x−x
τn

converges to some element y ∈ X as n → ∞ in
the weak topology. Using Lemma 5.8, we have that

1

τn
V (τn)x =

1

τn

∫ τn

0

R(s)x ds ∈ D(A)
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and

(2.2)

A
1

τn
V (τn)x =

R(τn)x− x

τn

+
1

τn

∫ τn

0

N(τn − s)R (s)x ds

− 1

τn

∫ τn

0

B(τn − s)V (s)x ds.

It is clear that

1

τn

∫ τn

0

N(τn − s)R (s)x ds → N(0)x, n→ ∞.

Moreover,∥∥∥∥ 1

τn

∫ τn

0

B(τn − s)V (s)x ds

∥∥∥∥ ≤ 1

τn

∫ τn

0

b(τn − s)‖V (s)x‖1 ds.

Since V (·)x is ‖ · ‖1-continuous and b(·) is locally bounded, it follows
that

1

τn

∫ τn

0

B(τn − s)V (s)x ds −→ 0, n→ ∞.

Using (2.2), we obtain that A( 1
τn
V (τn)x) converges as n → ∞ in the

weak topology. Since 1/τnV (τn)x → x, n → ∞, and A is a closed
operator, we conclude that x ∈ D(A).

Employing the Eberlein-Smulian theorem and arguing as above we
can substitute the reflexivity of X by a compactness condition. For the
sake of brevity we omit the proof.

Proposition 2.2. If the set {1/t(R (t)x−x) : 0 < t ≤ 1} is relatively
weakly compact and b(·) is locally bounded, then x ∈ D(A).

We now consider the differentiability of solutions of the inhomoge-
neous equation (1.7) with initial condition (1.4). In this part we always
assume that f is a continuous function. We refer the reader to Defini-
tion 5.7 for the concept of the mild solution of problem (1.4) (1.7).
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To abbreviate our next statements, we introduce some additional
notation. In the sequel we denote by M0 and M1 a pair of positive
constants such that ‖R(t)‖ ≤ M0 and ‖AV (t)‖ ≤ M1 for 0 ≤ t ≤ a,
and we represent by υ(f) the variation of f on [0, a], and by υ(t, f) the
variation of f on the interval [0, t].

For a function h : [0, a] → X , we denote by hτ the function given by

hτ (s) =

⎧⎨
⎩
h(s+ τ) 0 ≤ s+ τ ≤ a,

h(0) s+ τ ≤ 0,

h(a) a ≤ s+ τ .

We consider the following condition for functions of bounded variation:

(T) υ(hτ − h) → 0, τ → 0+.

Remark 2.3. In this remark we collect some properties relative to the
condition (T).

(i) If h satisfies assumption (T), then h is continuous. In fact, for
0 ≤ t < a, we have that

‖h(t+ τ) − h(t))‖ = ‖hτ (a)− h(a)− (hτ (t)− h(t))‖ ≤ υ(hτ − h)

which implies that h is right-continuous at t. Similarly, we can show
that h is left-continuous on (0, a].

(ii) If h is continuously differentiable, then h satisfies condition (T).
In fact, it is well known [3] that

υ(hτ − h) =

∫ a

0

‖h′(t+ τ)− h′(t)‖ dt→ 0, τ → 0.

(iii) There are continuous functions of bounded variation that do
not satisfy condition (T). We next illustrate this assertion with an
example. Let hn(t) = 1/n cosnπt for 0 ≤ t ≤ 1 and n ∈ N. Since
h′n(t) = −π sinnπt, we deduce that {hn : n ∈ N} is equicontinuous on
[0, 1] and

υ(hn) =

∫ 1

0

|h′n(t)| dt = π

∫ 1

0

| sinnπt| dt = 2.
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We define h : [0, 1] → 	∞ by h(t) = (hn(t))n. Using the equicontinuity
of functions hn we get that h is continuous. On the other hand, let
d = {ξ0, ξ1, . . . , ξk}, where 0 = ξ0 < ξ1 < · · · < ξk = 1, be a division of
the interval [0, 1]. For each ε > 0, we can choose ni ∈ N such that

υd(h) =

k∑
i=1

‖h(ξi)− h(ξi−1)‖∞

≤
k∑
i=1

|hni(ξi)− hni(ξi−1)|+ ε

≤ π

k∑
i=1

|ξi − ξi−1|+ ε

≤ π + ε.

This implies that h is a function of bounded variation with υ(h) ≤ π.
To complete this remark, we will estimate υ(hτ − h). It is clear that
υ(hτ −h) ≥ υ(hτn−hn) for every n ∈ N. Again, using [3], we can write

υ(hτn − hn) =

∫ 1

0

∣∣∣∣ ddt (hτn(t)− hn(t))

∣∣∣∣ dt
≥

∫ 1−τ

0

| − π sinnπ(t+ τ) + π sinnπt| dt

= π

∫ 1−τ

0

|(1− cosnπτ ) sinnπt− sinnπτ cosnπt| dt.

Hence, for τ = 1/n, we get that

υ(h1/nn − hn) ≥ π

∫ 1−(1/n)

0

|2 sinnπt| dt

= 2π

∫ 1

0

| sinnπt| dt

− 2π

∫ 1

1−(1/n)

| sinnπt| dt

≥ 4− 2π

n
.

Consequently, υ(hτ − h) does not converge to zero as τ → 0.
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We next use the notation

(2.3) u(t) =

∫ t

0

R(t− s)f(s) ds.

We begin by establishing some preliminary results.

Lemma 2.4. Assume that X is a reflexive space, and let h : [0, a] →
X be a function of bounded variation. Then the Riemann-Stieltjes
integral ∫ a

0

AV (s) dsh

exists in the weak topology and∥∥∥∥
∫ a

0

AV (s) dsh

∥∥∥∥ ≤M1υ(h).

Furthermore, if 0 < b < a, then

(2.4)

∫ a

0

AV (s) dsh =

∫ b

0

AV (s) dsh+

∫ a

b

AV (s) dsh.

Proof. Let Λ : D(A∗) ⊆ X∗ → C be defined by

Λ(x∗) =
∫ a

0

〈V (s)∗A∗x∗, dsh〉.

The Riemann-Stieltjes integral in the above expression exists because
s �→ V (s)∗A∗x∗ is a continuous function and h has bounded variation
([25]). The first assertion is a consequence of the fact that the map
V (·), and hence also V (·)∗, is continuous for the norm of operators.
Moreover, Λ is linear and

|Λ(x∗)| ≤M1υ(h)‖x∗‖.

Since D(A∗) is dense in X∗ ([12, Section I.5.14]) the functional Λ
has a continuous extension, still denoted by Λ, to X∗. Consequently,
Λ ∈ X∗∗ and, in view of the fact that X is a reflexive space, we infer
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the existence of x ∈ X with ‖x‖ ≤ M1υ(h) such that Λ(x∗) = 〈x∗, x〉,
for all x∗ ∈ X∗. We set x =

∫ a
0 AV (s) dsh.

Proceeding in a similar way, we can establish the existence of∫ a
b AV (s) dsh when b < a and the equality (2.4) is immediate.

Lemma 2.5. Assume that X is a reflexive space, and let h : [0, a] →
X be a function of bounded variation that satisfies assumption (T).
Then the Riemann-Stieltjes integral

g(t) =

∫ t

0

AV (t− s) dsh = −
∫ t

0

AV (s) dsh(t− s)

exists in the weak topology and defines a continuous function g : [0, a] →
X.

Proof. The existence of g(t) is an immediate consequence of Lemma 2.4.
On the other hand, using (2.4), we have

g(t+ τ) − g(t) = −
∫ t+τ

0

AV (s) dsh(t+ τ − s)

+

∫ t

0

AV (s) dsh(t− s)

= −
∫ t

0

AV (s) ds[h(t+ τ − s)− h(t− s)]

−
∫ t+τ

t

AV (s) dsh(t+ τ − s).

We next estimate the two terms on the right hand side of the above
expression separately. Since h is continuous, it follows from [25,
Proposition I.2.9] that

(2.5)

∥∥∥∥
∫ t+τ

t

AV (s) dsh(t+ τ − s)

∥∥∥∥ ≤M1υ(τ, h) −→ 0, τ → 0.

On the other hand,∥∥∥∥
∫ t

0

AV (s) ds[h(t+ τ − s)− h(t− s)]

∥∥∥∥ ≤M1υ(h
τ − h) −→ 0, τ → 0.
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Collecting this property with (2.5), we conclude that g(t+τ)−g(t) → 0
as τ → 0 which shows that g(·) is right continuous at t. Similarly, one
can prove that g is left continuous at t, which completes the proof.

Theorem 2.6. Assume that X is a reflexive space, and let f be a
function of bounded variation on [0, a] that satisfies assumption (T).
If z ∈ D(A), then the mild solution x(·) of problem (1.4) (1.7) is a
classical solution on (0, a]. If, further, z ∈ E, then x(·) is a classical
solution on [0, a].

Proof. We consider a sequence (fn)n of step functions, where each
fn is the function given by f(t1)χ[t0,t1] +

∑n
i=2 f(ti)χ(ti−1,ti]. In this

expression, we have chosen the points ti = (a/n)i, i = 0, 1, . . . , n, and
χJ represents the characteristic function associated to an interval J .
It is clear that the sequence (fn)n converges uniformly to f . Let un
be the function given by (2.3) with fn instead of f . Then, un → u as
n → ∞, uniformly on [0, a]. Moreover, by Theorem 5.9, we have that
un(·) is a classical solution on [0, a] of problem (1.4) (1.7) with z = 0
and fn instead of f . Consequently, un(t) ∈ D(A) for 0 ≤ t ≤ a.

On the other hand, if we fix 0 < t ≤ a and n ∈ N, then t ∈ (tj−1, tj ],
for some j = 1, . . . , n. From our definitions, we can write

Aun(t) = A

j−1∑
i=1

∫ ti

ti−1

R(t− s)f(ti) ds+A

∫ t

tj−1

R(t− s)f(tj) ds

(2.6)

= A

j−1∑
i=1

[V (t− ti−1)− V (t− ti)]f(ti) +AV (t− tj−1)f(tj)

= AV (t)f(0) +

j∑
i=1

AV (t− ti−1)[f(ti)− f(ti−1)],

so that

‖Aun(t)‖ ≤M1υ(f) +M1‖f‖∞.
Hence, it follows that (Aun(t))n is a sequence uniformly bounded on
[0, a]. Consequently, for each t, there is a subsequence which converges
to w(t) ∈ X in the weak topology. This implies that u(t) ∈ D(A)
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and w(t) = Au(t). A standard argument shows that the full sequence
(Aun(t))n converges to Au(t).

Moreover, it follows from (2.6) that

Au(t) =

∫ t

0

AV (t− s) dsf(s) +AV (t)f(0)

and Lemma 2.5 implies that Au(·) is a continuous function. If z ∈
D(A), applying Corollary 5.10, we conclude that x(t) = R (t)z + u(t)
is a classical solution of (1.7) (1.4) on (0, a]. Similarly, if z ∈ E, then
x(·) is a classical solution on [0, a].

In a particular case we can omit the reflexivity of space X .

Proposition 2.7. Let f(t) = ϕ(t)y, where ϕ : [0, a] → C is a
continuous function of bounded variation and y ∈ X. If z ∈ D(A),
then the mild solution x(·) of problem (1.7) (1.4) is a classical solution
on (0, a]. If z ∈ E, then the mild solution x(·) of problem (1.7) (1.4)
is a classical solution on [0, a].

Proof. For the most part we proceed as in the proof of Theorem 2.6.
Since AV (·)y is a continuous function and ϕ has bounded variation, we
can use the properties of the integration of Riemann-Stieltjes developed
in [25] to conclude that the integral

∫ t
0 AV (t − s)y dϕ(s) exists as a

limit in the norm of X and that the function t �→ ∫ t
0 AV (t− s)y dϕ(s)

is continuous. It follows from (2.6) that

Aun(t) = ϕ(0)AV (t)y +

j∑
i=1

[ϕ(ti)− ϕ(ti−1)]AV (t− ti−1)y,

which implies that Aun(t) → ∫ t
0 AV (t − s)y dϕ(s) + ϕ(0)AV (t)y as

n → ∞. We finish the proof by proceeding as in the proof of
Theorem 2.6.
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Now we consider the semilinear problem

(2.7)
d

dt

(
x(t) +

∫ t

0

N(t− s)x(s) ds

)

= Ax(t) +

∫ t

0

B(t− s)x(s) ds+ f(t, x(t)), t ∈ I,

with initial condition (1.4), where f : [0, a] ×X → X is a continuous
function.

This type of equation has been used in [5, Section 5] to model the
problem of heat conduction in materials with fading memory and also
represents a generalization of equations used recently in [15] to study
the heat flux in a conserved system, and in [14] for studying systems
with memory relaxation.

We recall the definition of solution [11, 22].

Definition 2.8. A function x : [0, a] → X is a mild solution of
(2.7) (1.4) if x is continuous and satisfies the integral equation

x(t) = R (t)z +

∫ t

0

R(t− s)f(s, x(s)) ds, t ∈ I.

A function x(·) is said to be a classical solution of (2.7) (1.4) if it
fulfills the conditions established in Definition 5.4 for f(t, x(t)) instead
of f(t).

On the other hand, it is well known that every reflexive space has the
Radon-Nikodym property (abbreviated, RNP) and that there are non
reflexive spaces that have the RNP. We refer to [9] for several character-
izations of the RNP. For this reason, in the sequel, we consider spaces
that have the RNP. We consider the following Lipschitz condition for
f .

(H1) For each r > 0, there exists a constant C(r) > 0 such that

‖f(t, y)− f(s, x)‖ ≤ C(r)[|t − s|+ ‖y − x‖]

for all 0 ≤ s, t ≤ r and ‖x− z‖, ‖y − z‖ ≤ r.
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Theorem 2.9. Assume that X satisfies the RNP. Let z ∈ E, and
let f be a function that satisfies condition (H1). Then there is a unique
classical solution x(·) of problems (1.4) (2.7) on [0, β], for some β > 0.

Proof. Proceeding as usual, applying the fixed point theorem for
contraction maps, we obtain that there is a unique mild solution x(·)
of problems (1.4) and (2.7) on [0, β], for some 0 < β ≤ a. This is
also a consequence of results established in [11, 22]. We can assume
that ‖x(t) − z‖ ≤ r for some r > 0 and all 0 ≤ t ≤ β. Hence, for
0 ≤ s ≤ t ≤ β, and using that z ∈ E, we have

‖x(t)− x(s)‖ ≤ ‖R(t)z − R(s)z‖

+

∥∥∥∥
∫ t

0

R(ξ)f(t− ξ, x(t− ξ)) dξ

−
∫ s

0

R(ξ)f(s− ξ, x(s− ξ)) dξ

∥∥∥∥
≤ ‖R(t)z − R(s)z‖

+

∥∥∥∥
∫ t

s

R(ξ)f(t− ξ, x(t− ξ)) dξ

∥∥∥∥
+

∥∥∥∥
∫ s

0

R(ξ)[f(t−ξ, x(t− ξ))−f(s−ξ, x(s− ξ))]

∥∥∥∥ dξ
≤ C1(r)(t − s) +M0C(r)

∫ s

0

‖x(t− s+ ξ)− x(ξ)‖ dξ,

for a certain constant C1(r). It follows from the above estimate and
Gronwall-Bellman’s lemma that x(·) is Lipschitz continuous. Conse-
quently, the function t �→ g(t) = f(t, x(t)) is Lipschitz continuous and,
since the space X satisfies the RNP, the function g ∈ W 1,1([0, β], X).
The assertion is now a consequence of Theorem 5.9.

3. Existence of solutions for the functional problem. In this
section we study the existence of classical solutions for the abstract
neutral problem with infinite delays (1.1) (1.2). In the sequel, we
always assume that conditions (P1) (P4) are verified and that R (t)
is the resolvent operator studied in Section 5.

We use an axiomatic definition of the phase space B, which is similar
to the one used in [24]. Specifically, B will be a linear space of functions
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mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B and verifying
the following axioms.

(A) If x : (−∞, σ+a) → X , a > 0, σ ∈ R, is continuous on [σ, σ+a)
and xσ ∈ B, then for every t ∈ [σ, σ+ a), the following conditions hold:

(i) xt is in B.
(ii) ‖x(t)‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous,
M is locally bounded and H,K,M are independent of x(·).
(A1) For the function x(·) in (A), the function t→ xt is continuous

from [σ, σ + a) into B.
(B) The space B is complete.

Example 3.1. The phase space Cr × Lp(ρ,X). Let r ≥ 0,
1 ≤ p < ∞, and let ρ : (−∞,−r] → R be a nonnegative measurable
function which satisfies conditions (g-5) and (g-6) in the terminology
of [24]. Briefly, this means that ρ is locally integrable and there
exists a non-negative, locally bounded function γ on (−∞, 0] such that
ρ(ξ + θ) ≤ γ(ξ)ρ(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where
Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space
Cr × Lp(ρ,X) consists of all classes of functions ϕ : (−∞, 0] → X
such that ϕ is continuous on [−r, 0], Lebesgue-measurable, and ρ‖ϕ‖p
is Lebesgue integrable on (−∞,−r). The semi-norm in Cr × Lp(ρ,X)
is defined by

‖ϕ‖B = sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
(∫ −r

−∞
ρ(θ)‖ϕ(θ)‖pdθ

)1/p

.

The space B = Cr × Lp(ρ,X) satisfies axioms (A), (A-1) and (B).
Moreover, when r = 0 and p = 2, we can take H = 1, M(t) = γ(−t)1/2
and

K(t) = 1 +

(∫ 0

−t
ρ(θ) dθ

)1/2

, for t ≥ 0.

See [24, Theorem 1.3.8] for details.

To study problem (1.1) (1.2) in what follows we assume that f
satisfies the following assumption.
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(H2) The function f : I × B → X verifies the following conditions:

(i) The function f(t, ·) : B → X is continuous for every t ∈ I, and
for every ψ ∈ B the function f(·, ψ) : I → X is strongly measurable.

(ii) There exist a continuous function mf : I → [0,∞) and a
continuous non-decreasing function Ωf : [0,∞) → (0,∞) such that

‖f(t, ψ)‖ ≤ mf (t)Ωf (‖ψ‖B), (t, ψ) ∈ I × B.

Motivated by the results in Section 5, we introduce the following con-
cepts of mild and classical solutions for the neutral system (1.1) (1.2).

Definition 3.2. A function x : (−∞, a] → X is called a classical
solution of the neutral system (1.1) (1.2) on (0, a] if x0 = ϕ, the
restriction x|[0,a]

∈ C([0, a], [D(A)]) ∩ C1((0, a], X) and (1.1) is verified

on [0, a]. If, further, x|[0,a]
∈ C([0, a], [D(A)]) ∩ C1([0, a], X), then x(·)

is said to be a classical solution of the neutral system (1.1) (1.2) on
[0, a].

Definition 3.3. A function x : (−∞, a] → X is called a mild solution
of the neutral system (1.1) (1.2) on [0, a] if x0 = ϕ, the restriction
x|[0,a]

∈ C([0, a], X) and the equation

x(t) = R (t)ϕ(0) +

∫ t

0

R(t− s)f(s, xs) ds, t ∈ [0, a],

is verified.

The proof of the next results is standard [11, 22]. For the sake of
brevity we omit it.

Theorem 3.4. Assume that the function f : I×B → X is continuous
and there is an Lf ∈ L1([0, a],R+) such that

‖f(t, ψ1)− f(t, ψ2)‖ ≤ Lf (t)‖ψ1 − ψ2‖, t ∈ I, ψ1, ψ2 ∈ B.

Then there is a unique mild solution of (1.1) (1.2) on [0, a].
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Similarly, for functions f that satisfy a local Lipschitz condition we
can establish a result of existence of local solutions. We consider the
following Lipschitz condition for f .

(H3) For each r > 0, there exists a constant C(r) > 0 such that

‖f(t, ψ2)− f(s, ψ2)‖ ≤ C(r)[|t − s|+ ‖ψ2 − ψ1‖B],

for 0 ≤ s, t ≤ r and ψ1, ψ2 ∈ B with ‖ψi − ϕ‖B ≤ r for i = 1, 2.

Proposition 3.5. Assume that the function f : I ×B → X satisfies
condition (H3). Then there is a unique mild solution of (1.1) (1.2) on
[0, β], for some 0 < β ≤ a.

Arguing as usual, using the compactness of the resolvent operator and
the Schauder-Tikhonov theorem, we can avoid the Lipschitz condition.

Theorem 3.6. Assume that condition (H2) is fulfilled, and that R(t)
is compact for every t > 0. Then there exists a mild solution of problem
(1.1) (1.2) on [0, β] for some 0 < β ≤ a.

We refer to Lemma 5.3 for a criterion to guarantee the compactness
of R (t). On the other hand, we define the operator S(t) : B → B for
t ≥ 0 by

[S(t)ψ](θ) =

{
ψ(0) −t ≤ θ ≤ 0,

ψ(t+ θ) θ ≤ −t.
It follows from the axioms of the phase space that S(·) is a strongly
continuous semigroup. We denote by BLip the subspace of B consisting
of functions ψ such that

‖S(h)ψ − ψ‖B ≤ Lψh, h ≥ 0,

where Lψ ≥ 0 is a constant.

Example 3.7. Let B = C0 × L2(ρ,X) be the space defined in
Example 3.1. Assume, in addition, that the function ρ is integrable on
(−∞, 0]. It is clear that, if ψ ∈ B is a uniformly Lipschitz continuous
function, then ψ ∈ BLip.
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The next property can be proved using a standard argument based
upon the phase space axioms and the Gronwall-Bellman lemma. We
omit the proof.

Lemma 3.8. Assume that condition (H3) is fulfilled, ϕ ∈ BLip and
ϕ(0) ∈ E. Let x(·) be the mild solution of (1.1) (1.2) on [0, β]. Then
the functions x(·) and s→ xs are Lipschitz continuous on [0, a].

Corollary 3.9. Assume that X satisfies the RNP and that the
function f : I × B → X verifies condition (H3). If ϕ ∈ BLip and
ϕ(0) ∈ E, then the mild solution x(·) of (1.1) (1.2) on [0, β] is a
classical solution on [0, β].

Proof. It follows from Lemma 3.8 that the function t �→ xt is
Lipschitz continuous. Therefore, the function t �→ f(t, xt) is also
Lipschitz continuous. We complete the proof arguing as in the proof of
Theorem 2.9.

We complete this result by studying the differentiability of function
t �→ xt when f is only Lipschitz continuous. To establish this result, we
will need additional properties of the phase space B. We next denote
by C00(X) the space of continuous functions from (−∞, 0] to X with
compact support. We consider the following axiom for the phase space
B ([24]).

(C2) If a uniformly bounded sequence (ϕn)n in C00(X) converges to
a function ϕ in the compact-open topology, then ϕ belongs to B and
‖ϕn − ϕ‖B → 0, as n→ ∞.

It is easy to see ([24]) that if axiom (C2) holds, then the space of
continuous and bounded functions Cb = Cb((−∞, 0], X) is continuously
included in B. Thus, there exists a constant Q > 0 such that

‖ϕ‖B ≤ Q‖ϕ‖∞, ϕ ∈ Cb((−∞, 0], X).

Furthermore, in this case ([24, Proposition 7.1.5]) the function K(·)
involved in axiom (A) can be chosen as the constant Q. As an example,
we mention that, if the function ρ is integrable on (−∞,−r], then the
space Cr × Lp(ρ,X) defined in Example 3.1 satisfies axiom (C2). We
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also use the notation UCb = UCb((−∞, 0], X) to represent the subspace
of Cb consisting of uniformly continuous functions.

Corollary 3.10. Assume that X satisfies the RNP, the space B
satisfies axiom (C2) and the function f : I × B → X verifies condition
(H3). Assume, further, that ϕ ∈ Cb is a continuously differentiable
function such that ϕ′ ∈ UCb, ϕ(0) ∈ E and

ϕ′(0) = Aϕ(0) + f(0, ϕ)−N(0)ϕ(0).

Let x(·) be the mild solution of (1.1) (1.2) on [0, β]. Then the function
t �→ xt is continuously differentiable on [0, β].

Proof. Assumptions on ϕ and axiom (C2) imply that ϕ ∈ BLip. It
follows from Corollary 3.9 that x(·) is continuously differentiable on
[0, β] and the right derivative x′(0+) verifies

x′(0+) = Aϕ(0) + f(0, ϕ)−N(0)ϕ(0).

Turning to use the properties of ϕ, we conclude that x(·) is continuously
differentiable on (−∞, a]. The assertion is now a consequence of [21,
Lemma 1.1].

Finally, we will study the existence of classical solutions when X is
a general Banach space and f is a smooth function. We introduce
some additional notations. Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach
spaces. For a differentiable function g : I × W → Z, we denote by
Dg(t, w) : R×W → Z the derivative of g at (t, w). We decompose

Dg(t, w)(h,w1) = hD1g(t, w) +D2g(t, w)(w1).

Theorem 3.11. Assume that B satisfies the axiom (C-2). Let
f ∈ C1([0, a]× B, X) be such that Df satisfies the Lipschitz condition

(3.1) ‖Df(s, ψ2)−Df(s, ψ1)‖ ≤ L(s)‖ψ2 − ψ1‖B,
where L(·) is a locally bounded function. Let ϕ ∈ B be a continuously
differentiable function such that ϕ′ ∈ B, ϕ(0) ∈ E, and

(3.2) ϕ′(0) = Aϕ(0) + f(0, ϕ)−N(0)ϕ(0).
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Then there is a classical solution of (1.1) and (1.2) on [0, β] for some
0 < β ≤ a.

Proof. By Theorem 2.1 we can affirm that there is a mild solution
x(·) of (1.1) and (1.2) on [0, β1] for some 0 < β1 ≤ a.

We consider the initial value problem

(3.3)

w(t) = R (t)ϕ′(0) + h(t) +

∫ t

0

R(t− s)B(s)ϕ(0) ds

+

∫ t

0

R(t− s)D1f(s, xs) ds

+

∫ t

0

R(t− s)D2f(s, xs)(ws) ds,

(3.4) w0 = ϕ′,

where h(t) = d/dt
∫ t
0 R(t−s)[N(0)−N(s)]ϕ(0) ds. Using the condition

ϕ(0) ∈ E, it follows from Definition 1.1 and Remark 5.6 that h is a
continuous function such that h(0) = 0. Hence, equation (3.3) has the
form

w(t) = g(t) +

∫ t

0

R(t− s)P (s)(ws) ds,

where g is a continuous function and the bounded linear map P (s) =
D2f(s, xs) is continuous at s. Applying the contraction mapping
principle, we can show that there exist 0 < β < β1, a unique function
w : (−∞, b] → X which is continuous on [0, β] and a solution of problem
(3.3) (3.4).

We define v(t) = ϕ(0) +
∫ t
0
w(s) ds for t ≥ 0 and v(θ) = ϕ(θ) for

θ ≤ 0. It follows from (3.3) and condition (3.2) that

v(t) = ϕ(0) +

∫ t

0

R(s)[Aϕ(0) + f(0, ϕ)−N(0)ϕ(0)] ds+

∫ t

0

h(s) ds

(3.5)

+

∫ t

0

∫ s

0

R(s− ξ)B(ξ)ϕ(0) dξ ds
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+

∫ t

0

∫ s

0

R(s− ξ)D1f(ξ, xξ) dξ ds

+

∫ t

0

∫ s

0

R(s− ξ)D2f(ξ, xξ)wξ dξ ds.

On the other hand, since the function s �→ ws is continuous, from the
theory of integration of vector functions with values in Banach spaces
([28]) and axiom (C-2), we obtain that vt = ϕ +

∫ t
0
ws ds for t ≥ 0.

Consequently, functions t �→ vt and t �→ ∫ t
0
R(t − s)f(s, vs) ds are

continuously differentiable, and

d

dt

∫ t

0

R(t− s)f(s, vs) ds

=
d

dt

∫ t

0

R(s)f(t− s, vt−s) ds

= R(t)f(0, ϕ) +

∫ t

0

R(s)[D1f(t− s, vt−s)

+D2f(t− s, vt−s)wt−s] ds

= R(t)f(0, ϕ) +

∫ t

0

R(t−s)[D1f(s, vs)+D2f(s, vs)ws] ds.

Integrating on the interval [0, t] in the above expression, we obtain

(3.6)

∫ t

0

R(t− s)f(s, vs) ds =

∫ t

0

R(s)f(0, ϕ) ds

+

∫ t

0

∫ s

0

R(s− ξ)D1f(ξ, vξ) dξ ds

+

∫ t

0

∫ s

0

R(s− ξ)D2f(ξ, vξ)wξ dξ ds.

On the other hand, applying resolvent equation (1.6), we can write

(3.7) R (t)ϕ(0) +

∫ t

0

R(t− s)N(s)ϕ(0) ds

= ϕ(0) +

∫ t

0

R(s)Aϕ(0) ds

+

∫ t

0

∫ s

0

R(s− ξ)B(ξ)ϕ(0) dξ ds,
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and, combining (3.6) with (3.7), we have

ϕ(0) +

∫ t

0

R(s)f(0, ϕ) ds

= R(t)ϕ(0) +

∫ t

0

R(t− s)N(s)ϕ(0) ds

−
∫ t

0

R(s)Aϕ(0) ds−
∫ t

0

∫ s

0

R(s− ξ)B(ξ)ϕ(0) dξ ds

+

∫ t

0

R(t− s)f(s, vs) ds

−
∫ t

0

∫ s

0

R(s− ξ)D1f(ξ, vξ) dξ ds

−
∫ t

0

∫ s

0

R(s− ξ)D2f(ξ, vξ)wξ dξ ds.

Substituting this expression in (3.5) yields

v(t) = R (t)ϕ(0) +

∫ t

0

R(t− s)f(s, vs) ds

+

∫ t

0

∫ s

0

R(s− ξ)[D1f(ξ, xξ)−D1f(ξ, vξ)] dξ ds

+

∫ t

0

∫ s

0

R(s− ξ)[D2f(ξ, xξ)−D2f(ξ, vξ)]wξ dξ ds.

Now, using Definition 3.3. we get

v(t)− x(t) =

∫ t

0

R(t− s)[f(s, vs)− f(s, xs)] ds

+

∫ t

0

∫ s

0

R(s− ξ)[D1f(ξ, xξ)−D1f(ξ, vξ)] dξ ds

+

∫ t

0

∫ s

0

R(s− ξ)[D2f(ξ, xξ)−D2f(ξ, vξ)]wξ dξ ds.

Combining [1, Proposition 2.4.7] with condition (3.1) and the fact that
x and v are continuous functions, we can state that

‖f(s, vs)− f(s, xs)‖ ≤ C‖vs − xs‖B,
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where C is a constant independent of x, v and s for s ∈ [0, β]. Therefore,
again using condition (3.1), we can affirm that

‖v(t)− x(t)‖ ≤M0CQ

∫ t

0

max
0≤s≤t

‖v(s)− x(s)‖ ds

+M0C1Q

∫ t

0

max
0≤s≤t

‖v(s)− x(s)‖ ds,

where C1 is also a constant independent of x, v and t for t ∈ [0, β]. Ap-
plying the Gronwall-Bellman lemma we conclude that x(t) = v(t) and
the function t �→ xt = vt is continuously differentiable. Consequently,
the function t �→ f(t, xt) is also continuously differentiable. From The-
orem 5.9, it follows that x(·) is a classical solution of (1.1) (1.2) on
[0, β].

4. Applications. In this section we apply our abstract results to
study a neutral integro-differential equation that arises in the theory
of heat flow in materials with fading memory ([5]). To simplify the
exposition we assume the domain is [0, π] and that the external source
is modeled by a general expression which is used by several authors to
describe systems with past dependence. Specifically, we consider the
system

∂

∂t

[
u(t, ξ) +

∫ t

0

a(t− s)u(s, ξ) ds

](4.1)

=
∂2u(t, ξ)

∂ξ2
+

∫ t

0

b(t− s)
∂2u(s, ξ)

∂ξ2
ds

+H

(∫ ∞

0

q(s)u(t− s, ξ) ds

)
+ p(u(t, ξ)) + h̃(t, ξ),

u(t, π) = u(t, 0) = 0,
(4.2)

u(θ, ξ) = ϕ(θ, ξ),
(4.3)

for (t, ξ) ∈ [0,∞) × [0, π], θ ≤ 0. In this system, a, b, q : [0,∞) → R,

H, p : R → R and h̃ : [0,∞)× [0, π] → R are continuous functions that
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satisfy appropriate conditions to be specified later. Moreover, we have
identified ϕ(θ)(ξ) = ϕ(θ, ξ).

To represent this system in the abstract form (1.1) (1.2), we choose
the spaces X = L2([0, π]) and B = C0 ×L2(ρ,X), where ρ : (−∞, 0] →
[0,∞) is integrable. In the sequel, A : D(A) ⊆ X → X is the operator
given by Ax = x′′ with domain D(A) = {x ∈ X : x′′ ∈ X, x(0) =
x(π) = 0}. It is well known that A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0 onX . Moreover,A has discrete spectrum,
the eigenvalues of A are −n2, n ∈ N, with corresponding eigenvectors
zn(ξ) = (2/π)1/2 sin(nξ). Moreover, the set of functions {zn : n ∈ N}
is an orthonormal basis of X and

T (t)x =

∞∑
n=1

e−n
2t〈x, zn〉zn for x ∈ X.

We assume that the following conditions hold:

(i) The functions a, b ∈ L1([0,∞)), and there is a ϑ ∈ (π/2, π) such
that |â(λ)| ≤ C/|λ| for λ ∈ Λϑ = {λ ∈ C \ {0} : |arg (λ)| < ϑ} and

|̂b(λ)| → 0 as λ ∈ Λϑ and |λ| → ∞.

(ii)
∫ 0

−∞(q2(−θ))/ρ(θ) dθ <∞.

(iii) The functions H, p are uniformly Lipschitz continuous on R.

(iv) The function h̃ satisfies Caratheódory conditions to ensure that

h(t) = h̃(t, ·) ∈ L2([0, π] for t ≥ 0, and there is a positive function
g ∈ L2([0, π]) such that

|h̃(t2, ξ)− h̃(t1, ξ)| ≤ g(ξ)|t2 − t1|

for all t2, t1 ≥ 0 and ξ ∈ [0, π].

We define the operators N(t) : X → X , B(t) : D(A) ⊆ X → X and
f : [0,∞)× B → X by the expressions

(B(t)x)(ξ) = b(t)Ax(ξ),

(N(t)x)(ξ) = a(t)x(ξ),

f(t, ψ)(ξ) = H

(∫ 0

−∞
q(−s)ψ(s, ξ) ds

)
+ p(ψ(0, ξ)) + h̃(t, ξ).
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It follows from (i) that conditions (P1) (P4) are satisfied with N̂(λ) =

â(λ)I, B̂(λ) = b̂(λ)A, and where we take D = C∞
0 ([0, π]) the space

consisting of infinite differentiable functions that vanish at ξ = 0 and
ξ = π. Moreover, it is not difficult to see from (ii) (iv) that f(·, ·) is a
uniformly Lipschitz continuous function.

With this notation the system (4.1) (4.3) can be considered as an

abstract neutral system (1.1) (1.2). From the expression for N̂(λ), it
follows that the space E = D(A).

Since X is a Hilbert space, the next results are a direct consequence
of Corollaries 3.9 and 3.10.

Proposition 4.1. Assume that ϕ ∈ B is uniformly Lipschitz
continuous and ϕ(0, ·) ∈ D(A). Then there exists a classical solution
u(·) of (4.1) (4.3) on [0,∞).

Proposition 4.2. Assume that ϕ satisfies the following conditions:

(i) ϕ(0, ·) ∈ D(A).

(ii) ϕ(·, ξ) is continuous almost everywhere ξ ∈ [0, π] and supθ≤0∫ π
0 |ϕ(θ, ξ)|2 dξ <∞.

(iii) (∂/∂θ)ϕ(·, ξ) is uniformly continuous almost everywhere ξ ∈
[0, π], and supθ≤0

∫ π
0 |(∂/∂θ)ϕ(θ, ξ)|2 dξ <∞.

(iv)

∂

∂θ
ϕ(0, ξ) =

∂2

∂ξ2
ϕ(0, ξ) +H

(∫ 0

−∞
q(−θ)ϕ(θ, ξ) dθ

)
+ p(ϕ(0, ξ)) + h̃(0, ξ)

− a(0)ϕ(0, ξ).

Let u(·) be the classical solution of (4.1) (4.3) on [0,∞). Then the
function t �→ ut is differentiable on [0,∞).

APPENDIX

5. In this section we collect some properties about the resolvent
operator for the problem (1.3) (1.4). This section includes only a brief
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review, mostly without proof, of properties of the resolvent operator to
make the text self-contained. For details, we refer to [10, 11, 22].

We consider the following conditions:

(P1) The operator A : D(A) ⊆ X → X is the infinitesimal generator
of an analytic semigroup T (t) on X , and there are constants M0 > 0
and ϑ ∈ (π/2, π) such that ρ(A) ⊇ Λϑ = {λ ∈ C \ {0} : |arg (λ)| < ϑ}
and ‖R(λ,A)‖ ≤M0/|λ| for every λ ∈ Λϑ.

(P2) The function N : [0,∞) → L(X) is strongly continuous and

N̂(λ)x is absolutely convergent for x ∈ X and Re (λ) > 0. There

are an α > 0 and an analytical extension of N̂(λ) (still denoted by

N̂(λ)) to Λϑ such that ‖N̂(λ)‖ ≤ N0/|λ|α for every λ ∈ Λϑ, and

‖N̂(λ)x‖ ≤ N1/|λ|‖x‖1 for every λ ∈ Λϑ and x ∈ D(A).

(P3) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear
operator, D(A) ⊆ D(B(t)) and B(·)x is strongly measurable on (0,∞)

for each x ∈ D(A). There exists a b(·) ∈ L1
loc(R

+) such that b̂(λ) exists
for Re (λ) > 0 and ‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A).

Moreover, the operator valued function B̂ : Λπ/2 → L([D(A)], X)

has an analytical extension (still denoted by B̂) to Λϑ such that

‖B̂(λ)x‖ ≤ ‖B̂(λ)‖ ‖x‖1 for all x ∈ D(A), and ‖B̂(λ)‖ → 0 as |λ| → ∞.

(P4) There exists a subspace D ⊆ D(A) dense in [D(A)] such that

A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), N̂(λ)(D) ⊆ D(A), and the following
estimates are verified:

‖AB̂(λ)x‖ ≤ C1(x),

‖N̂(λ)x‖1 ≤ C2

|λ|α ‖x‖1

for every x ∈ D and λ ∈ Λϑ.

In what follows, we always assume that conditions (P1) (P4) are
verified.

In the rest of this section, r > 0, θ ∈ ((π/2), ϑ) are fixed numbers,
and we represent for Λr,θ the set {λ ∈ C\{0} : |λ| > r, |arg (λ)| < θ}.
Additionally, we denote by Γir,θ for i = 1, 2, 3 the curves

Γ1
r,θ = {teiθ : t ≥ r},

Γ2
r,θ = {reiξ : −θ ≤ ξ ≤ θ}



72 H.R. HENRÍQUEZ AND J.P.C. DOS SANTOS

and

Γ3
r,θ = {te−iθ : t ≥ r},

and Γr,θ = ∪3
i=1Γ

i
r,θ. We always assume that these curves are oriented

so that Im (λ) is increasing.

Lemma 5.1. There exists a constant r > 0 such that the operator

G(λ) = (λI + λN̂(λ)−A− B̂(λ))−1 ∈ L(X)

for λ ∈ Λr,ϑ. Moreover, the following properties hold:

(a) The function G : Λr,ϑ → L(X) is analytic and there exists a
constant M1 such that

‖G(λ)‖ ≤ M1

|λ| .

(b) The space R(G(λ)) ⊆ D(A) and the function AG : Λr,ϑ → L(X)
is analytic, and there exist constants M2,M3 such that

‖AG(λ)x‖ ≤ M2

|λ| ‖x‖1, x ∈ D(A),

‖AG(λ)‖ ≤M3,

for every λ ∈ Λr,ϑ.

Theorem 5.2. The function

(5.1) R (t) =

{
1

2πi

∫
Γr,θ

eλtG(λ) dλ t > 0,

I t = 0

is a resolvent operator for the integro-differential system (1.3) (1.4).

The following property is a direct consequence of the construction of
the resolvent operator.

Lemma 5.3. If R(λ0, A) is a compact operator for some λ0 ∈ ρ(A),
then R(t) is compact for all t > 0.
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Proof. It follows from Lemma 5.1 that G(λ) is compact for all
λ ∈ Λr,ϑ. The assertion is now a consequence of expression (5.1).

For the convenience of the reader, we restate the non-homogeneous
problem

(5.2)
d

dt

(
x(t) +

∫ t

0

N(t− s)x(s) ds

)

= Ax(t) +

∫ t

0

B(t− s)x(s) ds+ f(t), t ∈ I,

(5.3) x(0) = z,

where f : [0, a] → X is a continuous function.

Definition 5.4. A function x : [0, a] → X is called a classical
solution of problem (5.2) (5.3) on (0, a] if x ∈ C([0, a], [D(A)]) ∩
C1((0, a], X), the condition (5.3) holds and equation (5.2) is verified
on [0, a]. If, further, x ∈ C([0, a], [D(A)]) ∩ C1([0, a], X), the function
x is said to be a classical solution of problem (5.2) (5.3) on [0, a].

It is clear from the preceding definition that R (·)z is a classical
solution of problem (1.3) (1.4) on (0,∞) for z ∈ D(A).

Initially, we establish that the solutions of problem (5.2) (5.3) are
given by the variation of constants formula.

Theorem 5.5. Let z ∈ D(A). Assume that f ∈ C([0, a], X) and x(·)
is a classical solution of problem (5.2) (5.3) on (0, a]. Then

x(t) = R (t)z +

∫ t

0

R(t− s)f(s) ds, t ∈ [0, a].

Proof. For ε > 0, we consider t ≥ ε, and we define

w(t) = R (ε)x(t − ε)− R(t)z −
∫ t−ε

0

R(t− s)f(s) ds.
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Taking the limit at the above expression as ε → 0, and using the
properties of R (·), the assertion follows.

Remark 5.6. We define the space E consisting of vectors x ∈ X such
that the function R (·)x ∈ C([0,∞), [D(A)])∩C1([0,∞), X). It is clear
that E ⊆ D(A) and d/dtR(t)x|t=0 = Ax−N(0)x for x ∈ E.

Motivated by the variation of constants formula, we introduce the
following concept of the mild solution.

Definition 5.7. The function x(·) given by (5.4) is said to be the
mild solution of problem (5.2) (5.3).

Next we will study several conditions under which the mild solution of
problem (5.2) (5.3) is a classical solution. We begin with the following
lemma.

Lemma 5.8. Let V : [0,∞) → L(X) be the operator-valued function

defined by V (t)x =
∫ t
0 R(s)x ds. Then R(V (t)) ⊆ D(A) for all t ≥ 0,

the map AV (·) : [0,∞) → L(X) is strongly continuous, and

(5.5)

AV (t)x = R(t)x − x+

∫ t

0

N(t− s)R (s)x ds

−
∫ t

0

B(t− s)V (s)x ds, t ≥ 0, x ∈ X.

Proof. For x ∈ D(A), the assertion is an easy consequence of
the properties of the resolvent operator. For x ∈ X , we select a
sequence (xn)n in D(A) such that xn → x as n → ∞. Consequently,
V (t)xn → V (t)x as n → ∞. It follows from our initial assertion
that (AV (t)xn)n is a Cauchy sequence. Since A is closed, we obtain
that V (t)x ∈ D(A). Moreover, B(t − s)V (s) is a bounded linear
operator and B(t − s)V (s)xn → B(t − s)V (s)x as n → ∞. In view of
‖B(t− s)V (s)xn‖ ≤ b(t− s)‖V (s)xn‖1, from the Lebesgue dominated

convergence theorem, we can affirm that
∫ t
0
B(t − s)V (s)xn ds →∫ t

0
B(t− s)V (s)x ds as n→ ∞.
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Using the resolvent equation (1.5) with xn instead of x, we get

AV (t)xn −→ R(t)x − x+

∫ t

0

N(t− s)R (s)x ds

−
∫ t

0

B(t− s)V (s)x ds, n→ ∞,

which implies that (5.5) holds. Since the function t �→ ∫ t
0 B(t −

s)V (s)x ds is continuous, from the above expression we conclude that
AV (·)x ∈ C([0,∞), X). This completes the proof.

Theorem 5.9. Let z ∈ D(A), and let f ∈ W 1,1([0, a], X). Then
the mild solution x(·) of problem (5.2) (5.3) is a classical solution on
(0, a]. Further, if z ∈ E, then x(·) is a classical solution on [0, a].

Proof. We may assume that z = 0. Let u be the function given by
(2.3). Applying [2, Proposition 1.3.6], we can assert that functions u(·)
and N ∗ u(·) are of class C1 on [0, a] and that

u′(t) =
∫ t

0

R(t− s)f ′(s) ds+ R(t)f(0),

d

dt

(∫ t

0

N(t− s)u(s) ds

)
=

∫ t

0

N(t− s)u′(s) ds+N(t)u(0),

for each t ∈ [0, a]. Using these expressions, we can establish that u(·) is
a classical solution of problem (5.2) (5.3) on [0, a] with initial condition
u(0) = 0.

Let f ∈ C([0, a], X). Approximating f by continuously differentiable
functions, and applying Theorem 5.9, we can establish the following
consequence.

Corollary 5.10. Let z ∈ D(A) and f ∈ C([0, a], X). Let x(·) be the
mild solution of problem (5.2) (5.3). If x ∈ C([0, a], [D(A)]), then x(·)
is a classical solution on (0, a].
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11. J.P.C. Dos Santos, H.R. Henŕıquez and E. Hernández, Existence results for
neutral integro-differential equations with unbounded delay, J. Integral Equat. Appl.
23 (2011), 289 330.

12. K-J. Engel and R. Nagel, One-Parameter semigroups for linear evolution
equations, Springer, New York, 2000.

13. K. Ezzinbi, H. Toure and I. Zabsonre, Local existence and regularity of
solutions for some partial functional integrodifferential equations with infinite delay
in Banach spaces, Nonlinear Anal. 70 (2009), 3378 3389.

14. S. Gatti, M. Grasselli, A. Miranville and V. Patta, Memory relaxation of first
order evolutions equations, Nonlinearity 18 (2005), 1859 1883.

15. M. Grasselli and V. Patta, Attractor for a conserved phase-field system with
hyperbolic heat conduction, Math. Meth. Appl. Sci. 27 (2004), 1917 1934.

16. R.C. Grimmer, Resolvent operators for integral equations in a Banach space,
Trans. Amer. Math. Soc. 273 (1982), 333 349.



DIFFERENTIABILITY OF SOLUTIONS OF EQUATIONS 77

17. R.C. Grimmer and F. Kappel, Series expansions for resolvents of volterra
integrodifferential equations in Banch space, SIAM J. Math. Anal. 15 (1984),
595 604.

18. R.C. Grimmer and A.J. Pritchard, Analytic resolvent operators for integral
equations in Banach space, J. Differential Equations 50 (1983), 234 259.

19. G. Gripenberg, S-O. Londen and O. Staffans, Volterra integral and functional
equations, Cambridge University Press, Cambridge, 1990.

20. M.E. Gurtin and A.C. Pipkin, A general theory of heat conduction with finite
wave speed, Arch. Rat. Mech. Anal. 31 (1968), 113 126.
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