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ABSTRACT. A fast multilevel augmentation method (MAM)
was proposed recently by the same authors for solving a class
of nonlinear boundary integral equations. In this paper, we
develop accelerated quadrature formulas for computing the
integrals involved in the MAM and approximate iteration for
solving the resulting nonlinear system. Specifically, we em-
ploy a product integration scheme for computing the singular
integrals which appear in the matrices involved in the MAM
and introduce an approximation technique in the Newton it-
eration for solving the resulting nonlinear systems to avoid
repeated computation in generating their Jacobian matrices.
The use of these two techniques results in a modified MAM
which speeds up its computation. We show that the mod-
ified MAM preserves the optimal convergence order of the
original one while reducing computational costs. Numerical
results are presented to demonstrate the approximation ac-
curacy and computational efficiency of the proposed modified
MAM, with a comparison to those of the original one and a
known algorithm of Atkinson and Chandler.

1. Introduction. Boundary value problems of the Laplace equation
are commonly used mathematical models for many important appli-
cations, such as acoustics, elasticity, electromagnetics, fluid dynamics
(see, for example, [20, 23, 24, 27] and the references cited therein).
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These boundary value problems may be transferred into integral equa-
tions defined on the boundary. When the boundary conditions are
nonlinear (cf. [7 9, 21]), the resulting integral equations are also non-
linear.

The linearization approach (cf. [1 3, 5, 6, 25, 26]) is a popular
numerical method for solving nonlinear boundary integral equations.
In [1] several numerical methods for solving equations of this type are
reviewed. The drawback of the linearization method is that it consumes
high computational costs. A typical Newton iteration method requires
generating the Jacobian matrix in the discretization subspace and
updating it at each iteration step. This involves a large amount of
integral evaluations.

Aimed at reducing computational costs of the linearization method, a
fast multilevel augmentation method (MAM) was introduced in [10] for
solving nonlinear boundary integral equations. The numerical solutions
obtained from this method have an almost optimal convergence order
and a nearly linear computational complexity order. The efficiency
of the algorithm comes from two sources. One is that it inverts the
nonlinear operator in a much smaller subspace rather than in the whole
discretization subspace. Actually, outside the fixed subspace, we only
need to solve linear systems. The other is that it truncates the matrices
resulting from the discretization to sparse matrices. Since the entries
of the matrices are defined by integrals, the truncation process avoids
evaluating most of the integrals. Numerical experiments show that
the algorithm runs much faster than the classical numerical schemes.
Specifically, we compared in [10] the algorithm with a nice algorithm
of Atkinson and Chandler [4] and observed obvious advantages in
computational efficiency when a large discretization scale is used. For
more information regarding the MAM for solving linear and nonlinear
equations, readers are referred to [12, 14, 16 18].

Although in the MAM most of integral evaluations are avoided
by using the truncation strategy, evaluating the remaining integrals
still occupies a majority of the running time of the algorithm. We
observe that most computational effort is spent in two key steps of the
algorithm: generating the representation matrices of integral operators
and updating the Jacobian matrices of the nonlinear equations. To
overcome these computational challenges, we suggest in this paper
two techniques to reduce the computational costs of the MAM. For
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computing the entries of the representation matrix of the weakly
singular integral operator, we employ a product integration scheme.
That is, we decompose the integral kernel into a singular term and
a smooth term. The singular term is integrated exactly by explicit
formulas, while the smooth term is integrated approximately by a
quadrature of high accuracy. Integrating the weakly singular kernel
in this way is remarkably efficient. In [4] the Nyström method was
applied to solve the nonlinear boundary integral equation. A nice idea
used in that paper is that, by choosing an appropriate quadrature
rule to discretize the integral operators, the Jacobian matrix was
expressed by linear operations of the representation matrices of the
integral operators. In such a way, one can avoid numerical evaluation
of integrals during updating the Jacobian matrix. Inspired by this
idea, we propose in this paper to project the function which defines
the nonlinear operator onto the approximation subspace so that the
generation of the corresponding Jacobian matrix does not involve any
integral evaluation. Numerical experiments show that it significantly
reduces the running time for solving nonlinear equations. Employing
the above two techniques, the run time of the MAM is speeded up
remarkably.

The main purpose of this paper is to improve upon the computational
performance of Algorithm 2 in [10] by using an efficient numerical in-
tegration method in numerical evaluation of the singular integrals and
adopting an appropriate approximation technique in implementing the
Newton iteration scheme for solving the nonlinear systems. The per-
formance of Algorithm 2 in [10] was compared with that of the algo-
rithm developed in [4], which will be called Algorithm AC throughout
this paper. Since the computational complexity of Algorithm AC is of
quadratic order while that of Algorithm 2 in [10] was of nearly linear
order, for a large scale discretization of the nonlinear integral equation,
Algorithm 2 in [10] was more efficient than Algorithm AC. However,
we observed in our experiments that, when the nonlinear integral equa-
tion is solved numerically in a small scale, Algorithm AC is faster than
Algorithm 2 in [10]. We find that two techniques used in Algorithm AC
make it computationally efficient for a small scale discretization of the
nonlinear integral equation. The first one is product integration in
numerical evaluation of the singular integrals. The second one is the
approximation method in the Newton iteration scheme for solving re-



548 X. CHEN, Z. CHEN, B. WU AND Y. XU

lated nonlinear systems so as to update the Jacobian matrix very fast.
The above comparisons and observations motivate us to modify Algo-
rithm 2 in [10] in light of the ideas from Algorithm AC.

This paper is organized in five sections. In Section 2 we review
the fast multilevel augmentation methods originally developed in [10],
and in Section 3 we describe two techniques for the modified MAM
and show that the modified MAM requires only a linear (up to a
logarithmic factor) number of multiplications. We prove in Section 4
that the modified MAM preserves the approximation accuracy of the
original MAM. In Section 5 we present numerical results to confirm
the approximation accuracy and the computational efficiency of the
proposed algorithms with a comparison to the original MAM and to
the known method of Atkinson and Chandler.

2. Fast multilevel augmentation methods. We review in this
section the multilevel augmentation method developed in [10] for solv-
ing the nonlinear boundary integral equation which is a reformulation
of the nonlinear boundary value problem of the Laplace equation. We
first describe the nonlinear boundary value problem of the Laplace
equation. Let D be a simply connected bounded domain in R2 with a
C2 boundary Γ. We consider solving the following nonlinear boundary
value problem

(2.1)

{
Δu(x) = 0, x ∈ D,

(∂u/∂nx)(x) = −g(x, u(x)) + g0(x), x ∈ Γ,

where nx denotes the exterior unit normal vector to Γ at x.

We now reformulate the boundary value problem (2.1) as a nonlinear
boundary integral equation. We assume that the boundary Γ has a
parametrization x = (ξ(t), η(t)), t ∈ [0, 1], and let χ :=

√
(ξ′)2 + (η′)2.

It is known (cf. [4, 25]) that equation (2.1) can be reformulated as a
nonlinear integral equation

(2.2) u(t)−
∫ 1

0

K(t, τ)u(τ) dτ −
∫ 1

0

L(t, τ)χ(τ)g(τ, u(τ)) dτ

= −
∫ 1

0

L(t, τ)χ(τ)g0(τ) dτ, t ∈ [0, 1],
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where, for t, τ ∈ [0, 1],

K(t, τ) :=

⎧⎨⎩ (1/π)η
′(τ)(ξ(τ)−ξ(t))−ξ′(τ)(η(τ)−η(t))

(ξ(t)−ξ(τ))2+(η(t)−η(τ))2 , t �= τ ,

(1/π)η
′(t)ξ′′(t)−ξ′(t)η′′(t)
2[ξ′(t)2+η′(t)2] , t = τ

and

L(t, τ) :=
1

π
log

√
(ξ(t) − ξ(τ))2 + (η(t) − η(τ))2, t �= τ.

It is easily verified that, when Γ is of Cs with s ≥ 2, the kernel K
has continuous derivatives up to order s − 2. Throughout this paper,
we assume that s is sufficiently large so that K is sufficiently smooth.
Specifically, there exists a positive constant Λ such that

(2.3) |Dα
t D

β
τK(t, τ)| ≤ Λ, t, τ ∈ [0, 1]

for positive integers α and β satisfying α+ β ≤ s− 2. We observe that
kernel L is weakly singular and its singularity points are located at
{(t, τ) ∈ [0, 1]× [0, 1] : t− τ = 0, 1,−1} (cf. [10]). Accordingly, for each
t ∈ [0, 1], L(t, ·) ∈ C∞([0, 1]\{t}), and there exist positive constants θ
and σ ∈ (0, 1) such that

(2.4) |Dα
t D

β
τL(t, τ)|

≤ θ ·max{|t− τ |−(σ+α+β), |t− τ + 1|−(σ+α+β), |t− τ − 1|−(σ+α+β)}

for α+ β ≤ s and t, τ ∈ [0, 1] with t− τ �= −1, 0, 1.
We next rewrite equation (2.2) in an operator form. To this end, we

introduce two integral operators K,L : L∞(0, 1) → L∞(0, 1) defined
respectively by

(Kw)(t) :=
∫ 1

0

K(t, τ)w(τ) dτ,

(Lw)(t) :=
∫ 1

0

L(t, τ)w(τ) dτ,

t ∈ [0, 1],

and the nonlinear operator

(Ψu)(t) := g(t, u(t))χ(t), t ∈ [0, 1].
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In these notations, equation (2.2) is rewritten as

(2.5) u− (K + LΨ)u = f,

where the right hand side function is defined by

f := −L(g0χ).
Due to the nonlinearity of the operator Ψ, equation (2.5) is a nonlinear
integral equation.

We next recall the multiscale collocation method for solving the
equation. For n ∈ N0 := {0, 1, . . .}, let πn denote the mesh which
divides the interval [0, 1] uniformly into μn pieces for a given integer
μ > 1, and let Xn be the piecewise polynomial space of order r with
respect to the mesh πn for a fixed positive integer r. Note that the
sequence Xn, n ∈ N0, is nested in the sense that

Xn ⊂ Xn+1, for all n ∈ N0.

The collocation points are chosen from a subset G of [0, 1] which
contains r distinct points. We require G to be refinable with respect
to the family of contractive mappings Φμ := {φe : e ∈ Zμ}, where the
index set Zμ := {0, 1, . . . , μ− 1}, and

φe(x) :=
x+ e

μ
, x ∈ [0, 1], for e ∈ Zμ.

The interested reader may refer to [11] for the concept of the refinable
set. For n ∈ N0, let Pn denote the interpolatory projection from C[0, 1]
onto Xn with the set of interpolation points:

Gn :=

{
j + s

μn
: j ∈ Zμn , s ∈ G

}
.

Making use of the notations introduced above, we define the collocation
scheme for solving (2.5) as finding un ∈ Xn to satisfy

(2.6) un − Pn(K + LΨ)un = Pnf.

According to Theorem 2.1 of [10], equation (2.6) is uniquely solvable
for sufficiently large n, and there exist positive constants c1 and c2 such
that

c1‖u∗ − Pnu
∗‖∞ ≤ ‖u∗ − un‖∞ ≤ c2‖u∗ − Pnu

∗‖∞,
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where u∗ ∈ C[0, 1] denotes an isolated solution of (2.5).

Solving equation (2.6) numerically encounters two difficulties: the
density of the coefficient matrices and the nonlinearity of Ψ. The mul-
tilevel augmentation method developed in [10] successfully addresses
these issues. By using multiscale basis functions and multiscale col-
location functionals, we are able to compress the dense matrices to
sparse matrices. This leads to a fast numerical algorithm. Moreover,
we invert the nonlinear operator only in a fixed lower frequency scale
without losing the approximation accuracy of the numerical solution.
In this way, we solve equation (2.6) approximately with the optimal
approximation order and nearly linear computational costs.

We now recall multiscale bases for Xn and the corresponding multi-
scale collocation functionals, which were originally introduced in [13,
22]. The nestedness of the sequence Xn allows us to decompose Xn+1

as a sum of Xn and its orthogonal complement Wn+1, that is,

Xn+1 = Xn ⊕⊥ Wn+1, n ∈ N0.

Since Xn are spaces of piecewise polynomials of order r, the elements of
Wn naturally have vanishing moments of order r. We next describe the
construction of the corresponding collocation functionals. Generally
speaking, for each n ∈ N0, Ln is the linear subspace of (L∞(0, 1))∗,
spanned by the point evaluation functionals at the points from Gn.
Note that a point evaluation functional on L∞(0, 1) can be viewed as
an extension of the point evaluation functional on C[0, 1]. We assume
that V0 consists of the point evaluation functionals corresponding to
the points in set G0 and V1 consists of linear combinations of point
evaluation functionals with the points in G1 having vanishing moments
of order r. For i > 1, the elements of Vi are obtained from those of V1

through compositions of affine mappings from Φμ. See [13] for details
of the construction of these functionals. It is not difficult to observe
that

dim (Ln) = dim (Xn).

Let w(0) := dim (X0) and w(i) := dim (Wi) for i > 0. We choose the
bases for the subspaces such that

X0 = span {w0j : j ∈ Zw(0)}, L0 := span {0j : j ∈ Zw(0)}
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and

Wi = span {wij : j ∈ Zw(i)}, Vi := span {ij : j ∈ Zw(i)}, i > 0.

By introducing the index set

Jn := {(i, j) : i ∈ Zn+1, j ∈ Zw(i)},
we have that

Xn = span {wij : (i, j) ∈ Jn}, Ln = span{ij : (i, j) ∈ Jn}, n ∈ N0.

With the bases and collocation functionals described above, we have
the matrix representations for the operators K and L. Specifically, for
n ∈ N0, we define the matrix

Kn := [Ki′j′,ij : (i
′, j′), (i, j) ∈ Jn], with Ki′j′,ij := 〈i′j′ ,Kwij〉

and

Ln := [Li′j′,ij : (i
′, j′), (i, j) ∈ Jn], with Li′j′,ij := 〈i′j′ ,Lwij〉 .

Matrices Kn and Ln will be compressed according to the regularity
of the kernels K and L. Note that the kernel K is smooth and L is
weakly singular, and their regularities are described in (2.3) and (2.4),
respectively. Accordingly, as in [10], we adopt the following truncation
strategies.

(T1) For each n ∈ N0, the matrix Kn is truncated to a sparse matrix

K̃n := [K̃i′j′,ij : (i
′, j′), (i, j) ∈ Jn],

where for (i′, j′), (i, j) ∈ Jn,

K̃i′j′,ij :=

{
Ki′j′,ij , i′ + i ≤ n,

0, otherwise.

(T2) We denote by dist (·, ·) the distance of two point sets. For (i, j) ∈
Jn, we let Sij := supp (wij). For each n ∈ N0 and (i′, j′), (i, j) ∈ Jn,
we set

L̃i′j′,ij :=

⎧⎨⎩
Li′j′,ij , dist (Si′j′ , Sij) ≤ εni′i or

dist (Si′j′ , Sij) ≥ 1− εni′i,

0, otherwise,
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FIGURE 1. The distribution of nonzero entries of K̃7 (left) and L̃7 (right).

in which the truncation parameters εni′i are chosen by

(2.7) εni′i := max{aμ−n+b(n−i)+b′(n−i′), ρ(μ−i + μ−i′)}
for some constants b, b′, a > 0 and ρ > 1. The truncated matrix of Ln

is defined by
L̃n := [L̃i′j′,ij : (i

′, j′), (i, j) ∈ Jn].

When n = 7 and we use piecewise linear basis functions, we show in
Figure 1 the matrices K̃7 and L̃7. It has been proved in [10, Lemma

3.1] that the number of nonzero elements of both K̃n and L̃n is of
O(nμn).

We now describe the multilevel augmentation method developed in
[10]. For a fixed k ∈ N0 and any positive integer l, we define the index
set Jkl := Jk+l\Jk, that is, Jkl = {(i, j) : i ∈ Zk+l+1\Zk+1, j ∈ Zw(i)}.
For each n ∈ N0, we let

En := [〈i′j′ , wij〉 : (i′, j′), (i, j) ∈ Jn].

For a fixed k ∈ N0 and an l > 0, we set

EH
kl := [〈i′j′ , wij〉 : (i′, j′), (i, j) ∈ Jkl],

K̃H
k,l−1 := [K̃i′j′,ij : (i

′, j′) ∈ Jkl, (i, j) ∈ Jk+l−1],

and

L̃H
kl := [L̃i′j′,ij : (i

′, j′) ∈ Jkl, (i, j) ∈ Jk+l].
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FIGURE 2. The distribution of nonzero entries of K̃H
4,3 (left) and L̃H

4,3 (right).
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FIGURE 3. The distribution of nonzero entries of EH
4,3.

Let k = 4, l = 3; we show in Figures 2 and 3 the distribution of
nonzero entries of K̃H

4,3, L̃
H
4,3 and EH

4,3 in J7 × J7 matrices in order to
understand the MAM algorithm.

Each v ∈ Xk+l has the unique representation

v =
∑

(i,j)∈Jk+l

(v)ijwij .

We call v := [(v)ij : (i, j) ∈ Jk+l]
T the representation vector of

function v.

Algorithm 1: The fast multilevel augmentation method. Let
k be a fixed positive integer. Given m ∈ N0, we carry out the following
computing steps:
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Step 1: Solve the nonlinear system

(2.8)

〈
i′j′ , (I − (K + LΨ))

( ∑
(i,j)∈Jk

(uk)ijwij

)〉
= 〈i′j′ , f〉 ,

(i′, j′) ∈ Jk

for the solution uk := [(uk)ij : (i, j) ∈ Jk]
T . Set uk,0 := uk and l := 1.

Step 2: Compute the representation vector ûk+l of ûk+l :=
Pk+lΨuk,l−1 and, generate the following vector::

f̂kl := [〈i′j′ , f〉 : (i′, j′) ∈ Jkl]
T .

Compute

(2.9) f̃kl := f̂kl + K̃H
k,l−1uk,l−1 + L̃H

klûk+l.

Solve the linear system

(2.10) EH
klu

H
kl = f̃kl

for uH
kl := [(ukl)ij : (i, j) ∈ Jkl]

T , and define uH
kl :=

∑
(i,j)∈Jkl

(ukl)ijwij .

Step 3: Solve the nonlinear system
(2.11)〈

i′j′ , (I − (K + LΨ))

( ∑
(i,j)∈Jk

(ukl)ijwij + uH
kl

)〉
= 〈i′j′ , f〉 ,

(i′, j′) ∈ Jk

for uL
kl := [(ukl)ij : (i, j) ∈ Jk]

T , and define uL
kl :=

∑
(i,j)∈Jk

(ukl)ijwij

and ukl := uL
kl + uH

kl.

Step 4: Set l← l + 1 and go back to Step 2 until l = m.

Several remarks on the computational performance of Algorithm 1
are in order. Computational costs of Algorithm 1 can be divided into
three parts. Part 1 is for generating the matrices K̃k+l and L̃k+l, Part 2
is for computing (2.9) and solving (2.10) and Part 3 is for solving the
resulting nonlinear systems, including (2.8) and (2.11). It takes much
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more time to generate matrix L̃k+l than to generate matrix K̃k+l, since
the kernel L is weakly singular. We observe from numerical experiments
that, although Parts 1 and 3 both have high costs, when l is small Part 3
dominates the total computing time for implementing the algorithm,
while when l increases Part 1 grows faster than Part 3.

3. The modified MAM algorithm. In this section we address
two computational issues of the MAM Algorithm. The use of accel-
erated quadratures and the Newton method reduces its running time
significantly.

3.1. Product integration of singular integrals. Two integration
strategies were proposed in [10] for evaluating the nonzero entries of K̃n

and L̃n. Numerical experiments show that the generation of L̃n requires
much more computing time than that of K̃n due to the singularity
of kernel L. The quadrature rule proposed in [10] for computing the

entries of L̃n uses graded meshes according to a general class of singular
kernels, and it is suitable for the class of singular kernels. We observe
that kernel L has a special structure which allows us to develop a more
efficient quadrature method than the Gaussian quadrature method
used in [10]. In this subsection, we shall develop a special product
integration method for the specific kernel L so that the computing
time for calculating the nonzero entries of the matrix L̃n is significantly
reduced.

The product integration method has been widely used in the liter-
ature for computing singular integrals. For example, it was used in
[4, 19] to discretize singular integral operators. Along this line, con-
crete formulas of product integration were given in [3] (see [3, pages
116 119]). These formulas were developed in the context of single scale
approximation and were proved efficient for computation in that con-
text. In the current multiscale approximation context, we shall es-
tablish product integration formulas suitable for the use of multiscale
bases.

We now study the typical integral involved in the entries of matrix
L̃n. The nonzero entries of matrix L̃n involve integrals of the form

Iij(s) :=

∫
Sij

L(s, t)wij(t) dt, for (i, j) ∈ Jn, s ∈ [0, 1],
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where wij are multiscale piecewise polynomial basis functions. As
suggested by [3, 4, 19], kernel L can be decomposed as

(3.1) L(s, t) =
1

π
[B0(s, t) +B1(s, t)]

with

B0(s, t) := log

∣∣∣∣
√
(ξ(s)− ξ(t))2 + (η(s)− η(t))2

(s− t)(s− t− 1)(s− t+ 1)

∣∣∣∣
and

B1(s, t) := log |s− t|+ log |s− t− 1|+ log |s− t+ 1|.
The above decomposition in fact extracts the singularity of L. Specif-
ically, B1 possesses all the singularity features of L and B0 is smooth.
Kernel B0 is easy to integrate numerically with a little computational
cost, while the singularity of B1 brings difficulty to its numerical inte-
gration. However, we observe that the expression of B1 is very specific,
which allows us to integrate it exactly with explicit formulas. The
quantities Iij can be written as the sum of two terms

(3.2) Iνij(s) :=
1

π

∫
Sij

Bν(s, t)wij(t) dt, ν = 0, 1.

We first compute the term I1ij . To this end, we re-express the
multiscale basis functions wij . Note that, for j ∈ Zw(0), w0j is a
polynomial of order r. Hence, it can be written as

w0j(t) =
∑
γ∈Zr

aγt
γ .

For i > 0 and j ∈ Zw(i), wij is a piecewise polynomial of order
r. According to the construction of the basis function wij , for all
(i, j) ∈ Jn, the support Sij can be divided into μ pieces Ωκ = (aκ, bκ),
κ ∈ Zμ, on each of which wij is a polynomial of order r. Thus, we write
wij as

wij(t) =
∑
γ∈Zr

aκ,γt
γ , t ∈ Ωκ, κ ∈ Zμ.
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The above discussion of the basis functions motivates us to define the
following special integrals. For γ ∈ Zr, α ∈ Σ := {0, 1,−1} and for
a, b ∈ [0, 1] with a < b, we set

I(a, b;α, γ) :=

∫ b

a

log |s− t− α|tγdt.

In this notation, we have that

∫
S0j

B1(s, t)w0j(t) dt =
∑
α∈Σ

∑
γ∈Zr

aγI(0, 1;α, γ)

(3.3)

and

∫
Sij

B1(s, t)wij(t) dt =
∑
κ∈Zµ

∑
α∈Σ

∑
γ∈Zr

aκ,γI(aκ, bκ;α, γ).

(3.4)

The integral I(a, b;α, γ) can be computed exactly. We derive below
the formula for the integral.

Lemma 3.1. If γ ∈ Zr, α ∈ Σ and a, b ∈ [0, 1] with a < b, then

I(a, b;α, γ)=
1

γ + 1

[
(tγ+1−(s−α)γ+1)log |s−t−α|−

γ+1∑
j=1

(s−α)γ−j+1tj
]∣∣∣∣b
a

.

Proof. The formula in this lemma may be proved by integration by
parts.

Using the integration formula in Lemma 3.1, we are able to compute
the integrals (3.3) and (3.4) exactly.

It remains to compute the term I0ij . For this purpose, we describe a
Gaussian quadrature rule on interval [a, b]. For each positive integer j,
we denote by gj the Legendre polynomial of degree j, and by τ j� ,  ∈ Zj
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the j zeros of gj in the order −1 < τ j0 < · · · < τ jj−1 < 1. We transfer
these zeros to the interval [a, b], by letting

τ̂ j� :=
a+ b

2
+

b− a

2
τ j� ,  ∈ Zj .

The points τ̂ j� are the j zeros of the Legendre polynomial of degree j
on the interval [a, b]. Given a continuous function h defined on [a, b],
the j-point Gaussian quadrature rule is given by

G(h, [a, b], j) :=
∑
�∈Zj

ωj
�h(τ̂

j
� ),

where

ωj
� :=

∫ b

a

∏
i∈Zj

i�=�

t− τ̂ ji
τ̂ j� − τ̂ ji

dt.

This quadrature formula will be used to compute I0ij . We summarize

below the integration strategy for computing the nonzero entries L̃i′j′,ij

of L̃n.

(QL) For a nonzero entry L̃i′j′,ij of L̃n, we compute I0ij and I1ij sep-

arately. For computing I0ij we divide the support Sij of wij uniformly
into N intervals I�,  ∈ ZN , where N is a positive integer such that the
diameter of each of the intervals is less than or equal to μ−κr and wij

is a polynomial on I�. The integral I0ij is computed by the formula∑
�∈ZN

G(B0(s, ·)wij , I�, (2κ)−1n�).

The integral I1ij is expressed in terms of equations (3.3) and (3.4) and
computed by using Lemma 3.1.

We now estimate the computational costs for generating the matrix
L̃n. For each pair of i and j, computing I1ij requires only a fixed number
of functional evaluations and multiplications. Moreover, computational
costs for computing I0ij may be estimated as in [10, Lemma 3.1]. We
then have the following result.

Lemma 3.2. For any n ∈ N0, the numbers of functional evalua-
tions and multiplications needed for generating the matrix L̃n are both
O(nμn).
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3.2. Approximate iteration for solving nonlinear systems.
Algorithm 1 requires solving two nonlinear systems (2.8) and (2.11).
These equations are solved by using the Newton method. In each
iteration step of the Newton method, we need to compute the entries
of the Jacobian matrix. Specifically, for equation (2.8), the Newton
iteration scheme has the following steps:

• Choose an initial guess, u
(0)
k .

• For m = 0, 1, . . . , compute

F(u
(m)
k ) := (Ek −Kk)u

(m)
k − f̂

(m)
k

with

f̂
(m)
k :=

[〈
i′j′ , f + LΨ

(
u
(m)
k

)〉
: (i′, j′) ∈ Jk

]T
,

u
(m)
k :=

∑
(i,j)∈Jk

(u
(m)
k )ijwij ,

and compute the Jacobian matrix

J(u
(m)
k ) := [Ji′j′,ij : (i

′, j′), (i, j) ∈ Jk]

with

Ji′j′,ij := Ei′j′,ij −Ki′j′,ij −
〈
i′j′ ,L(wijΨ

′(u(m)
k ))

〉
.

• Solve Δ
(m)
k from the equation J(u

(m)
k )Δ

(m)
k = −F(u(m)

k ),

• Compute u
(m+1)
k := u

(m)
k +Δ

(m)
k .

It is easily seen that the evaluation of both F(u
(m)
k ) and J(u

(m)
k ) in-

volves computing integrals, which requires high computational costs.
Solving equation (2.11) numerically also involves computing the inte-
grals.

When evaluating F(u
(m)
k ), we need to compute the integrals

(3.5)
〈
i′j′ ,LΨ

(
u
(m)
k

)〉
.

These integrals come from the integral operator L. For different steps
of the iteration, we are required to compute different integrals and,
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as a result, the computational cost is large. Note that for some

Ψ̃(u
(m)
k ) ∈ Xk, we can write it as

Ψ̃
(
u
(m)
k

)
=

∑
(i,j)∈Jk

cijwij

and

(3.6)
〈
i′j′ ,LΨ̃

(
u
(m)
k

)〉
=

∑
(i,j)∈Jk

cijLi′j′,ij .

Comparing (3.6) with (3.5), we observe that, although they both
involve integral evaluations, (3.6) makes use of the values of the entries
of the matrix Ln, which have been previously obtained so that we do

not have to recompute them. However, in general, Ψ(u
(m)
k ) /∈ Xk. We

cannot write Ψ(u
(m)
k ) as a linear combination of the basis function wij .

For this reason, we propose to project Ψ(u
(m)
k ) into Xk. Specifically, we

do not solve (2.8) directly and, instead, we solve ũk from the nonlinear
system
(3.7)〈
i′j′ , (I − (K + LPkΨ))

( ∑
(i,j)∈Jk

(ũk)ijwij

)〉
= 〈i′j′ , f〉 , (i′, j′) ∈ Jk.

When we solve equation (3.7) by the Newton iteration method, we
are required to compute the terms〈

i′j′ ,LPkΨ

( ∑
(i,j)∈Jk

(ũk)ijwij

)〉
, (i′, j′) ∈ Jk

and their partial derivatives with respect to the variables (ũk)ij , (i, j) ∈
Jk. To this end, we suppose that

PkΨ

( ∑
(i,j)∈Jk

(ũk)ijwij

)
=

∑
(i,j)∈Jk

(ûk)ijwij .

Then each (ûk)ij is a function with respect to the variables (ũk)ij , (i, j) ∈
Jk. In fact, if we let

F :=

⎡⎣〈i′j′ ,Ψ

( ∑
(i,j)∈Jk

(ũk)ijwij

)〉
, (i′, j′) ∈ Jk

⎤⎦T

,
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then we have ûk = E−1
k F. Therefore, it follows that〈

i′j′ ,LPkΨ

( ∑
(i,j)∈Jk

(ũk)ijwij

)〉
=

∑
(i,j)∈Jk

Li′j′,ij(ûk)ij .

In a similar manner, we compute the partial derivatives of the above
quantities with respect to the variables (ũk)ij , (i, j) ∈ Jk. Making use
of the above observations, we describe the Newton iteration scheme for
solving (3.7) as follows.

Algorithm 2: The Newton iteration method for solving (3.7).
Set m := 0, fk := [〈ij , f〉 : (i, j) ∈ Jk]

T , and choose an initial guess

ũ
(0)
k and an iteration stopping threshold δ.

Step 1: Let ũ
(m)
k :=

∑
(i,j)∈Jk

(ũ
(m)
k )ijwij , and set

G(ũ
(m)
k ) :=

[〈
i′j′ ,Ψ

′(ũ(m)
k )wij

〉
: (i′, j′), (i, j) ∈ Jk

]
.

Solve F
(m)

k from EkF
(m)

k = G(ũ
(m)
k ), and compute the Jacobian matrix

J̃(ũ
(m)
k ) := Ek −Kk − LkF

(m)

k .

Step 2: For g
(m)
k :=

[〈
ij ,Ψ(ũ

(m)
k )

〉
: (i, j) ∈ Jk

]T
, solve û

(m)
k from

Ekû
(m)
k = g

(m)
k . Compute

F̃(ũ
(m)
k ) := (Ek −Kk)ũ

(m)
k − Lkû

(m)
k − fk.

Step 3: Solve Δ
(m)
k from J̃(ũ

(m)
k )Δ

(m)
k = −F̃(ũ(m)

k ), and compute

ũ
(m+1)
k := ũ

(m)
k +Δ

(m)
k .

Step 4: Set m← m+ 1 and go back to Step 1 until ‖Δ(m)
k ‖∞ < δ.

It is worth noticing that, in Algorithm 2, we need not evaluate
any additional integrals but make use of the matrix Lk. This saves
tremendous computational effort and, thus, makes the algorithm very
fast. We shall see from numerical examples in Section 5 that (3.7) is
solved much faster than (2.8).
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Equation (2.11) can be approximated in a similar manner. Specifi-
cally, in Step 3 of Algorithm 1, we replace (2.11) by
(3.8)〈

i′j′ , (I − (K + LPk+lΨ))

( ∑
(i,j)∈Jk

(ũkl)ijwij + ũH
kl

)〉
= 〈i′j′ , f〉 ,

(i′, j′) ∈ Jk.

The Newton iteration scheme for solving (3.8) can be likewise developed
and will be referred as Algorithm 2′.

We describe below the MAM algorithm with employing the above
two techniques.

Algorithm 3: MAM with an accelerated quadrature and the
Newton method. Let k be a fixed positive integer. Given m ∈ N0,
we carry out the following computing steps:

Step 1: Use Algorithm 2 to solve the nonlinear system (3.7) and
obtain the solution ũk := [(ũk)ij : (i, j) ∈ Jk]

T . Let ũk,0 := ũk and
l := 1.

Step 2: Follow Step 2 of Algorithm 1 to generate f̃kl and solve
EH

klũ
H
kl = f̃kl to obtain ũH

kl := [(ũkl)ij : (i, j) ∈ Jkl]
T and define

ũH
kl :=

∑
(i,j)∈Jkl

(ũkl)ijwij .

Step 3: Use Algorithm 2′ to solve the nonlinear system (3.8) and
obtain the solution ũL

kl := [(ũkl)ij : (i, j) ∈ Jk]
T . Define ũL

kl :=∑
(i,j)∈Jk

(ũkl)ijwij and ũkl := ũL
kl + ũH

kl.

Step 4: Set l← l + 1 and go back to Step 2 until l = m.

When solving the nonlinear systems (3.7) and (3.8), we are required

to generate matrices K̃n and L̃n. The truncated matrix K̃n is evaluated
by the same strategies as those with Algorithm 1, which was described
in [10]. The truncated matrix L̃n is evaluated by using the quadrature
method (QL). The next theorem gives an estimate of the computational
cost required for Algorithm 3.

Theorem 3.3. Let k be a fixed positive integer. For any m ∈
N0, the number of functional evaluations and multiplications used in
Algorithm 3 is O((k +m)μk+m).
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Proof. The computational cost of Algorithm 3 is composed of two
parts. One is the cost for generating the matrices K̃k+m and L̃k+m.
The other is that for carrying out the computing steps listed in the
algorithm. Lemma 3.2 has shown that the computational cost of
generating L̃k+m is O((k + m)μk+m). Moreover, we cite the result
of Lemma 3.1 of [10] which ensures that the cost for generating matrix

K̃k+m is also O((k +m)μk+m).

To estimate efforts of the computing steps in Algorithm 3, we only
need to compare Algorithm 3 with Algorithm 1. We observe that
Algorithm 3 replaces (2.8) and (2.11) by (3.7) and (3.8), respectively.
We have shown that the modifications reduce computational cost.
Therefore, the computational cost for carrying out the computing steps
of Algorithm 3 is less than that of Algorithm 1. It is stated in [10] that
the number of functional evaluations and multiplications in Algorithm 1
is O((k +m)μk+m). Thus, the theorem is proved.

We remark that, although Algorithm 3 has the same order of com-
putational costs as Algorithm 1, the constant involved in the order of
computational costs is improved.

4. Convergence analysis. Since in Algorithm 3 we replace (2.8)
and (2.11) by (3.7) and (3.8), respectively, it is necessary to analyze
the effect of these modifications on the resulting numerical solutions.
We estimate in this section the error of numerical solutions generated
by Algorithm 3.

Let K̃n : Xn → Xn be the operator corresponding to the truncated
matrix K̃n, that is,

K̃i′j′,ij =
〈
i′j′ , K̃nwij

〉
, for all (i′, j′), (i, j) ∈ Jn.

According to [10], the difference between operators Kn and K̃n is
estimated in the following lemma.

Lemma 4.1. If u∗ ∈W r,∞[0, 1], then there exists a positive constant
c1 such that, for all n ∈ N0 and all v ∈ Xn,

(4.1) ‖(Kn − K̃n)v‖∞ ≤ c1(n+ 1)2μ−rn‖v‖∞.
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Moreover, if

(4.2) ‖v − u∗‖∞ ≤ cμ−r(n−1)‖u∗‖r,∞
for some positive constant c, then there exists a positive constant c2
such that, for all n ∈ N0,

(4.3) ‖(Kn − K̃n)v‖∞ ≤ c2(n+ 1)μ−rn‖u∗‖r,∞.

We define L̃n : Xn → Xn as the operator such that

L̃i′j′,ij =
〈
i′j′ , L̃nwij

〉
, for all (i′, j′), (i, j) ∈ Jn.

The strategy (T2) for truncating the matrix Ln is the same as that in

[10], while the strategy (QL) for evaluating the nonzero elements of L̃n

is different from that of [10]. We define the matrix blocks

Li′i := [Li′j′,ij : j
′ ∈ Zw(i′), j ∈ Zw(i)],

L̃i′i := [L̃i′j′,ij : j
′ ∈ Zw(i′), j ∈ Zw(i)], i′, i ∈ Zn+1.

The difference between Ln and L̃n that results from both the truncation
and quadrature errors has the bound

‖Li′i − L̃i′i‖∞ ≤ cmax{μ−rn, (εni′i)
−(2r−σ′)μ−r(i′+i)}.

By definition (2.7) of the truncation parameters εni′i, we conclude that

‖Li′i − L̃i′i‖∞ ≤ c(εni′i)
−(2r−σ′)μ−r(i′+i).

This bound is the same as the one given in [10]. They can be used

for the following estimation of the difference between Ln and L̃n. This
may be found in [10].

Lemma 4.2. Suppose that u∗ ∈ W r,∞[0, 1]. Let σ′ ∈ (0, 1),
η := 2r − σ′, and set b = 1, b′ ∈ (r/η, 1) in (2.7). Then there exists a
positive constant c1 such that, for all n ∈ N0 and all v ∈ Xn,

(4.4) ‖(Ln − L̃n)v‖∞ ≤ c1(n+ 1)μ−σ′n‖v‖∞.
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Moreover, if v satisfies (4.2) for some positive constant c, then there
exists a positive constant c2 such that

(4.5) ‖(Ln − L̃n)PnΨv‖∞ ≤ c2(n+ 1)2μ−(r+σ′)n‖u∗‖r,∞.

In the next lemma, we estimate the error between the outputs of
Algorithms 1 and 3.

Lemma 4.3. If u∗ ∈W r,∞[0, 1], then there exists a positive constant
c such that, for a sufficiently large integer k and for all l ∈ Zm+1,

‖ũkl − ukl‖∞ ≤ c(k + l + 1)μ−r(k+l)‖u∗‖r,∞.

Proof. We prove this lemma by induction on l. For the case l = 0,
we need to prove the solution ũk of

(4.6) ũk − Pk(K + LPkΨ)ũk = Pkf

satisfies

(4.7) ‖ũk − uk‖∞ ≤ c(k + 1)μ−kr‖u∗‖r,∞.

Following a standard argument, we may show that the solution of
equation (4.6) has the bound

‖ũk − u∗‖∞ ≤ cμ−kr‖u∗‖r,∞.

Thus, by the triangle inequality we establish the estimate (4.7).

We now assume that the result of this lemma holds for l − 1 and
consider the case l. Note that Step 3 of Algorithm 3 is the same as
Step 3 of Algorithm 1. According to Algorithms 1 and 3, we obtain
that

(4.8) uH
kl − ũH

kl = uA + uB,

where
uA := (Pk+l − Pk)K̃k+l(uk,l−1 − ũk,l−1)]
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and
uB := (Pk+l − Pk)L̃k+lPk+l(Ψuk,l−1 −Ψũk,l−1).

Since the projections are uniformly bounded and it follows from (4.3)
of Lemma 4.1, we have that

(4.9) ‖uA‖ ≤ c(k + l + 1)μ−r(k+l)‖u∗‖r,∞
By Lemma 4.2 and the induction hypothesis, this leads to

(4.10) ‖uB‖∞ ≤ c(k + l + 1)μ−r(k+l)‖u∗‖r,∞.

From equations (4.8) (4.10), we conclude that

(4.11) ‖uH
kl − ũH

kl‖∞ ≤ c(k + l + 1)μ−r(k+l)‖u∗‖r,∞.

It remains to estimate ‖ũL
kl − uL

kl‖. Subtracting (2.11) from (3.8)
yields the equation

ũL
kl − uL

kl = Pk[(K + LPk+lΨ)ũkl − (K + LΨ)ukl].

Let B := (K + LPk+lΨ)′ and

R(ũkl, ukl) := (K + LPk+lΨ)ũkl − (K + LPk+lΨ)ukl − B(ũkl − ukl).

We then conclude that

ũL
kl−uL

kl = (I−PkB)−1Pk[B(ũH
kl−uH

kl)+R(ũkl, ukl)+L(Pk+l−I)Ψukl].

Following the analysis given in Lemma 4.4 of [10], we establish the
estimate

‖ũL
kl − uL

kl‖∞ ≤ c′‖ũH
kl − uH

kl‖∞
for some positive constant c′, which completes the proof for the case l.

The above lemma leads to the following error estimate of the approx-
imate solutions generated by Algorithm 3.

Theorem 4.4. If u∗ ∈ W r,∞[0, 1], then there exists a positive
constant c such that, for a sufficiently large k and all m ∈ N0,

‖u∗ − ũkm‖∞ ≤ c(k +m+ 1)μ−r(k+m)‖u∗‖r,∞.
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5. Numerical experiments. In this section, we present numeri-
cal results which compare approximation accuracy and computational
efficiency of the proposed algorithm with those of the original MAM
algorithm. All programs are run on a workstation with 3.38G CPU
and 96G memory.

We consider boundary value problem (2.1) with g(x, u(x)) := u(x) +
sin(u(x)). Let D be the elliptical region x2

1 + (x2/2)
2 < 1. For

comparison purposes, we choose the solution of (2.1) as u0(x) :=
ex1 cos(x2) with x = (x1, x2). Correspondingly, we have that

g0(x) := g(x, u0) +
∂u0(x)

∂nx
.

The corresponding solution of boundary integral equation (2.5) is given
by

u∗(t) := ecos(2πt) cos(2 sin(2πt)).

In all experiments presented in this section, we choose μ = 2 and
Xn as the space of piecewise cubic polynomials with the knots at j/2n,
j = 1, 2, . . . , 2n− 1. It is easy to compute dim (Xn) = 2n+2. The basis
functions of X0 and W1 are given by

w00(t) = −1

6
(5t− 2)(5t− 3)(5t− 4)

w01(t) =
1

2
(5t− 1)(5t− 3)(5t− 4),

w02(t) = −1

2
(5t− 1)(5t− 2)(5t− 4),

w03(t) =
1

6
(5t− 1)(5t− 2)(5t− 3),

w10(t) =

{
85
32 − 725

12 t+ 575
2 t2 − 1475

4 t3, t ∈ [0, 12 ],

− 235
32 + 575

12 t− 175
2 t2 + 575

12 t
3, t ∈ (12 , 1],

w11(t) =

{
1145
288 − 1775

24 t+ 1675
6 t2 − 4975

18 t3, t ∈ [0, 1
2 ],

− 7495
288 + 3625

24 t− 525
2 t2 + 2525

18 t3, t ∈ (12 , 1],

w12(t) =

{
805
288 − 375

8 t+ 475
3 t2 − 2525

18 t3, t ∈ [0, 12 ],

− 19355
288 + 8275

24 t− 550t2 + 4975
18 t3, t ∈ (12 , 1],

w13(t) =

{
95
96 − 50

3 t+ 225
4 t2 − 575

12 t3, t ∈ [0, 12 ],

− 13345
96 + 1775

3 t− 3275
4 t2 + 1475

4 t3, t ∈ (12 , 1].
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The corresponding collocation functionals are

00 = δ1/5, 01 = δ2/5, 02 = δ3/5, 03 = δ4/5,

10 =
2

5
δ1/10 − 3

2
δ2/10 + 2δ3/10 − δ4/10 +

1

10
δ6/10,

11 =
3

10
δ2/10 − δ3/10 + δ4/10 − 1

2
δ6/10 +

1

5
δ7/10,

12 =
1

5
δ3/10 − 1

2
δ4/10 + δ6/10 − δ7/10 +

3

10
δ8/10,

13 =
1

10
δ4/10 − δ6/10 + 2δ7/10 − 3

2
δ8/10 +

2

5
δ9/10.

The basis functions wij and collocation functionals ij for i > 1 can
be constructed recursively from w1j and 1j (cf. [13]). For general
information on basis functions and collocation functionals of this type,
the reader is referred to [11, 13, 22].

Experiment 1. In this experiment we compare the computational
efficiency of the proposed quadrature algorithm for generating the
matrices L̃n with that of the algorithm presented in [10]. Note that we
use the same truncation strategy in this paper and in [10] and different

techniques for numerically evaluating the nonzero elements of L̃n.

The numerical results are presented in Table 1. In columns 2, 3
and 4, we list, respectively, the dimension of L̃n, the time (“Tn”) for

generating L̃n using the strategy in [10] and the time (“T ′
n”) using the

algorithm proposed in this paper. The computing time is measured
in seconds. We observe from the numerical results that the computing
time for both strategies increases linearly with respect to the dimension
of the matrices, but the proposed algorithm consumes much less than
the one presented in [10]. Roughly speaking, the new method uses only
1/20 of the computing time of the old method.

Experiment 2. In this experiment, we use the multilevel augmen-
tation methods with initial level k = 4 to solve the boundary integral
equation (2.5). The purpose of this experiment is to test how much
the proposed technique for solving the nonlinear systems speeds up the
solution process. To this end, we run Algorithms 1 and 3 separately,
and add up the time used in solving the nonlinear systems. Note that,
in Algorithm 1, we need to solve (2.8) once and (2.11) m times, while,
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TABLE 1. Computing time for generating L̃n.

n dim (L̃n) Tn T ′
n

4 64 2.4 0.1

5 128 5.7 0.2

6 256 12.5 0.5

7 512 27.1 1.2

8 1024 56.2 2.7

9 2048 116.6 5.9

10 4096 241.0 12.8

11 8192 500.5 27.8

12 16384 1017.5 60.5

TABLE 2. Total time for solving the related nonlinear system

m Tm T ′
m

0 24.9 0.016

1 37.0 0.046

2 44.7 0.078

3 53.7 0.093

4 63.8 0.140

5 74.7 0.203

6 85.2 0.382

7 99.1 0.757

8 113.2 1.592

in Algorithm 3, we need to solve (3.7) once and (3.8) m times. In
Table 2, Tm denotes the total time spent in Algorithm 1 for solving the
nonlinear systems, while T ′

m denotes that in Algorithm 3. Obviously,
we see that, in Table 2, T ′

m is much less than Tm.

Experiment 3. We illustrate in this experiment the approximation
accuracy and the total computational effects of Algorithm 3, with a
comparison to those of Algorithm 1 and Algorithm AC (the algorithm
of Atkinson and Chandler presented in [4]).

In Table 3, we report the numerical results of Algorithms 1 and 3.
For any m, we denote by u4,m and ũ4,m, respectively, the numeri-
cal solutions resulting from Algorithms 1 and 3. Moreover, we let
TM and T ′

M denote the total times for implementing Algorithms 1
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TABLE 3. Comparison of the accuracy and running time of Algorithms 1 and 3.

m d4+m ‖u∗ − u4,m‖∞ ‖u∗ − ũ4,m‖∞ TM T ′
M

0 64 4.107e-3 5.079e-3 85 0.2

1 128 3.079e-4 3.007e-4 89 0.4

2 256 2.152e-5 2.225e-5 112 0.8

3 512 1.491e-6 1.527e-6 146 1.7

4 1024 8.204e-8 8.624e-8 203 3.7

5 2048 5.041e-9 5.313e-9 309 7.9

6 4096 2.865e-10 2.970e-10 519 16.9

7 8192 1.795e-11 1.882e-11 880 36.1

8 16384 1.023e-12 1.101e-12 1961 76.8

TABLE 4. Numerical results of Algorithm AC.

N ‖u∗ − uN‖∞ TN

128 1.780e-5 3

256 1.071e-6 11

512 6.559e-8 52

1024 4.076e-9 226

2048 2.695e-10 836

4096 9.870e-11 3877

8192 6.751e-11 16473

and 3, respectively. We observe in Table 3 that u4,m and ũ4,m have
nearly the same accuracy, while T ′

M is significantly less than TM . This
indicates that, although Algorithms 1 and 3 have the same order of
computational costs, the techniques proposed in this paper effectively
reduce the absolute computational costs.

For comparison, we list in Table 4 the numerical results of Algorithm
AC, which is a Nyström method. We let N be the number of unknowns,
uN the numerical solution, and TN the running time of the program.

As is pointed out in [10], we cannot compare Algorithms 1 and AC in
the same discretization scale since Algorithm 1 is a multiscale method
and Algorithm AC is a single scale quadrature method. However,
we may utilize a “numerical errors versus computing time” figure to
compare these methods. We use the data in Tables 3 and 4 to generate
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FIGURE 4. Comparison of Algorithms 1, 3 and Algorithm AC on numerical
performance.

Figure 4. For convenience of display, we take logarithm on both
numerical errors and computing times. It is seen that, for any accuracy
level, Algorithm 3 uses the least time among the three algorithms.
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