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ABSTRACT.We present several well-posed, well-conditioned
direct and indirect integral equation formulations for the so-
lution of two-dimensional acoustic scattering problems with
Neumann boundary conditions in domains with corners. We
focus mainly on Direct Regularized Combined Field Integral
Equation (DCFIE-R) formulations whose name reflects that
(1) they consist of combinations of direct boundary integral
equations of the second-kind and first-kind integral equations
which are preconditioned on the left by coercive boundary
single-layer operators, and (2) their unknowns are physical
quantities, i.e., the total field on the boundary of the scat-
terer. The DCFIE-R equations are shown to be uniquely
solvable in appropriate function spaces under certain assump-
tions on the coupling parameter. Using Calderón’s identities
and the fact that the unknowns are bounded in the neigh-
borhood of the corners, the integral operators that enter the
DCFIE-R formulations are recast in a form that involves in-
tegral operators that are expressed by convergent integrals
only. The polynomially-graded mesh quadrature introduced
by Kress [30] enables the high-order resolution of the weak
singularities of the kernels of the integral operators and the
singularities in the derivatives of the unknowns in the vicinity
of the corners. This approach is shown to lead to an efficient,
high-order Nyström method capable of producing solutions
of sound-hard scattering problems in domains with corners
which require small numbers of Krylov subspace iterations
throughout the frequency spectrum. We present a variety of
numerical results that support our claims.

1. Introduction. Numerical methods for the solution of acous-
tic two-dimensional homogeneous scattering problems which are based
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on integral equation formulations possess certain advantages over their
volumetric counterparts. These advantages include not only the ob-
vious reduction in dimensionality that is achieved from posing the
scattering problems on the one-dimensional boundary of the scatter-
ers, but also the built-in enforcement of radiation conditions through
choices of outgoing Green’s functions. Among the numerical meth-
ods that use boundary integral equation formulations, the ones that
employ Nyström discretizations are particularly attractive due to the
reduced number of evaluations of Green’s functions and the high-order
convergence rates that can be achieved. In a nutshell, in the case of
one-dimensional smooth boundaries, Nyström methods use global ap-
proximations of the unknowns and high-order quadrature rules to in-
tegrate weakly singular functions (i.e., singular but integrable) against
smooth densities. The case of non-smooth boundaries is more compli-
cated as the densities and/or their derivatives are singular and some
of the kernels of the boundary integral operators are no longer weakly
singular. These obstacles were overcome in the case of acoustic scat-
tering problems with Dirichlet boundary conditions [21] through the
use of integral equations whose solutions are Hölder continuous, so that
polynomially-graded meshes can resolve to high order the singularities
in the derivatives of the solutions. In this paper we present (a) several
well-posed, well conditioned integral equation formulations for the solu-
tion of two-dimensional acoustic scattering problems with sound-hard
boundary conditions for domains with corners and (b) a high-order
Nyström method to obtain rapidly convergent solutions of these in-
tegral equations. To the best of our knowledge, high-order, rapidly
convergent numerical methods based on well-conditioned boundary in-
tegral equations for the case of Neumann boundary conditions have not
been available in the literature, partly because of a host of additional
difficulties that we outline next.

In order to ensure that the solutions of the integral equation formu-
lations of scattering problems coincide with solutions to the differential
formulations of these problems, the former must be uniquely solvable.
A wide class of integral equation formulations typically referred to as
Combined Field Integral Equations (CFIEs) [13, 21] share the unique
solvability property. However, CFIE formulations for scattering prob-
lems with Neumann-boundary conditions (i.e., the sound-hard case)
involve hyper-singular operators which resemble, in spirit, differenti-
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ation and consequently the eigenvalues of the integral operators that
enter these formulations accumulate at infinity. The situation is further
complicated by singular behavior of the solutions of such equations in
the presence of corners: depending on the integral equation formula-
tion, the solutions or their derivatives may be singular (unbounded) in
a neighborhood of the corner [9, 25, 43, 45].

Our approach to designing a high-order Nyström method for the
solution of acoustic scattering problems with sound-hard boundary
conditions for domains with corners is based on a combination of
a suitable version of our recently introduced Regularized Combined
Field Integral Equations (CFIE-R) [8] and the polynomially-graded
mesh quadrature introduced in [30]. There are two notable differences
between the approach in [8] and the one introduced here which we will
comment on next.

First, our numerical scheme for the solution of scattering problems
with Neumann boundary conditions is based on direct integral equation
formulations that result from applications of Green’s formulas and pose
the scattering problem in terms of a physical unknown, that is, the total
field on the boundary of the scatterer. In the case of smooth scatterers
[8], we use both indirect and direct formulations for our solvers. The
key advantage of direct formulations in the context of scattering from
domains with corners is that the total field can be shown to be Hölder
continuous (and therefore bounded) in the neighborhood of corners [9,
43]. On the other hand, solutions to indirect Combined Field Integral
Equation formulations for domains with corners are unbounded in the
vicinity of corners (see subsection 2.2 for a detailed discussion on this).
Dealing with unbounded solutions of integral equations of the second
kind is a significant challenge for Nyström discretizations, which we
addressed recently in the context of Laplace’s equations [9]. Second, in
the smooth case we deal with the hypersingular operators in the CFIE-
R formulations via integration by parts techniques introduced in [31],
whereas in the case of domains with corners we bypass the evaluation of
hypersingular operators in the CFIE-R formulations using Calderón’s
identities.

We obtain Direct Regularized Combined Field Integral Equations
(DCFIE-R) by combining compositions of direct integral equations
of the first and second kind with suitably defined single layer oper-
ators that effectively act as regularizing operators. The regulariza-
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tion strategy is motivated by and directed towards (a) stabilizing the
differentiation effect of the hypersingular operators and (b) obtaining
uniquely solvable integral equations with superior spectral properties.
The unique solvability and favorable spectral property in part (b) are
established in the framework of Fredholm theory; to the best of our
knowledge, we believe that this is the first proof of such properties for
integral equations for sound-hard problems in domains with corners.
The proof of the Fredholm property of the operators in the DCFIE-R
formulations is based on the Fredholm property of boundary integral
operators associated to Laplace’s equations in Lipschitz domains [19,
27, 42] and the fact that the differences between the acoustic boundary
integral operators and their Laplace counterparts are compact [17, 37].
Based on the Fredholm property of DCFIE-R operators, we show that
the unique solvability property is a consequence of a certain coercivity
property enjoyed by the regularizing operators that we use. Further-
more, unlike the classical CFIE formulations, our approach bypasses
the evaluation of hypersingular operators in DCFIE-R formulations
through the use of Calderón’s identities. The methodology that we
present in this paper can be extended to the case of sound-hard scat-
tering problems in three dimensions, and the implementation of such
strategy is currently underway [3].

The idea of using regularizing operators in boundary integral equa-
tions for acoustic scattering from sound-hard obstacles was originally
proposed as a theoretical tool in [12, 21, 39] for the case of smooth
boundaries. Specifically, scattered fields are represented in the form of
combinations of single layer potentials and double layer potentials that
act on the regularizing operators, so that the resulting integral opera-
tors have bounded spectra. A variety of regularizing/preconditioning
strategies of a similar flavor have since been proposed in order to im-
prove the conditioning of boundary integral equations for sound-hard
scattering applications [2, 4, 5, 18, 33], yet none of these works di-
rectly addresses the case of domains with corners. In the case of Lip-
schitz domains, a different kind of regularizing technique was intro-
duced in [10, 11] with the goal of obtaining coercive boundary integral
formulations for acoustic scattering problems. In contrast with the
regularizing techniques introduced in [2, 4, 5, 12, 18, 21, 33, 39],
the regularizing operators proposed in [10, 11] act on the single layer



WELL-CONDITIONED BOUNDARY INTEGRAL EQUATIONS 325

operators, and the integral equations that are obtained are first-kind
integral equations.

Numerical implementation of the Direct Regularized Combined Field
Integral Equations follows the methodology of the Nyström algo-
rithms introduced in [30, 31]. Specifically, our algorithm is based on
global trigonometric approximations of densities, polynomial changes-
of-variables, and analytic integration of the most singular part of the
kernels of the acoustic integral boundary layer against Fourier harmon-
ics. The use of regularizing operators in conjunction with Calderón’s
identities entirely bypasses the need to evaluate hypersingular oper-
ators. Double-layer operators, on the other hand, whose kernels are
singular, are recast into a form that involves two parts: one with in-
tegrable quantities whose integrals can be evaluated very accurately
using the polynomial change of variables and another part which can
be evaluated exactly, just as in [30]. We present numerical results for
domains with convex and concave corners, various incident fields and
frequencies. The DCFIE-R formulations are well-conditioned and their
solutions exhibit high-order convergence under Nyström discretizations.

We believe that the formulations DCFIE-R introduced here can be
used in conjunction with the nearly-optimal approximation spaces in-
troduced in [15] to efficiently treat very high-frequency problems for
the case of convex polygonal domains with Neumann boundary con-
ditions. Furthermore, we believe that our strategy to derive DCFIE-
R formulations can be extended to produce well-conditioned integral
formulations for impedance boundary conditions throughout the fre-
quency spectrum, and we plan to investigate this further in a future
effort.

With regards to impedance boundary conditions, a high order bound-
ary element method based on Galerkin discretizations was presented in
[44] where the classical CFIE formulation was preconditioned by ILU
factorizations to improve the rate of convergence of GMRES solvers.
However, the results in [44] concern low frequencies, and it is not clear
whether the ILU preconditioner works as well for higher frequencies.

The paper is organized as follows. In Section 2 we introduce and
briefly derive our Direct Regularized Combined Field Integral Equa-
tions, in Section 3 we present the numerical algorithm, while numerical
results are presented in Section 4.
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2. Regularized combined field integral equations. We are
interested in the time-harmonic acoustic scattering problem for a two-
dimensional sound-hard obstacle that occupies a bounded domain D ⊂
R2, with boundary Γ which is a Lipschitz curve. Given an incident
field ui, defined throughout R2, we seek a scattered field us satisfying
the Helmholtz equation outside D,

(1) Δus + k2us = 0 in Dc = R2 \D, ∂us

∂n
= −∂u

i

∂n
on Γ,

together with the radiation conditions

(2) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|.

In the equations above, the normal derivative operator can be under-
stood in the sense of the Neumann trace, i.e., the operator

∂

∂n
: {u : u ∈ H1

loc(D
c), Δu ∈ L2

loc(D
c)} −→ H−1/2(Γ)

which satisfies ∂v/∂n = ∇v · n for smooth functions v ∈ C∞(Dc),
where n is the almost everywhere defined unit normal to the curve
Γ pointing into Dc. In practice, the given incident field also satisfies
the Helmholtz equation as well: Δui + k2ui = 0 in D, Dc or R2.
Existence and uniqueness of the solution to the scattering problem
(1) (2) has been shown to hold in {u : Δu ∈ L2

loc(D
c)}∩H1

loc(D
c) [36,

37] for boundary data ∂ui/∂n ∈ H−1/2(Γ). We note that, for most
applications of interest, the incident fields are such that ui is smooth
in a neighborhood of Γ and thus ∂ui/∂n ∈ L2(Γ).

We denote by Gk the outgoing free-space Green’s function

(3) Gk(z) =
i

4
H

(1)
0 (k|z|),

and by R1,R2 two regularizing operators to be defined later. By
construction, any function U of the form

(4)

U(z) =

∫
Γ

Gk(z − y) (R1φ) (y) ds(y)

+ iη

∫
Γ

∂Gk(z − y)

∂n(y)
(R2φ) (y) ds(y), z /∈ Γ,
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for some suitable density φ, satisfies the Helmholtz equation in R2\Γ as
well as the radiation condition (2). Were we to seek us in this form we
would see, by taking its Neumann trace and using the standard jump
conditions [22], that φ must satisfy the boundary integral equation
which we denote by ICFIE-R

(Aφ) (x) = −∂u
i(x)

∂n(x)
a.e. on Γ,(5)

A := (−I/2 +K ′
k)R1 + iηNkR2,(6)

where K
′
k denotes the Neumann trace of the acoustic single-layer

operator,

(7) (K ′
kφ)(x) = PV

∫
Γ

∂Gk(x − y)

∂n(x)
φ(y) ds(y), x on Γ,

and Nk denotes the Neumann trace of the double-layer potential on Γ,
whose kernel can be expressed as [21]

(8)
∂2Gk(x− y)

∂n(x)∂n(y)
= −∂

2Gk(x− y)

∂t(x)∂t(y)
+ k2Gk(x− y)n(x) · n(y).

Here and elsewhere ∂/∂t denotes the tangential derivative on Γ, where
t = (−n2, n1) for n = (n1, n2). We note that the classical CFIE [13]
amounts to taking Ri = I, i = 1, 2, in equation (5). We remark that
all integral equations in Section 2 hold almost everywhere on Γ, yet we
will omit mentioning this for each occurrence.

Alternatively, assuming that the incident field satisfies ui ∈ C∞(D)
and Δui+ k2ui = 0 in D, and taking into account the regularity of the
radiative solution us to the Helmholtz equation (1), i.e., us ∈ H1

loc(D
c)

and Δus ∈ L2
loc(D

c), the application of Green’s formulas [22, 24, 36]
yields

us(z) =

∫
Γ

(
∂Gk(z− y)

∂n(y)
us(y) −Gk(z− y)

∂us(y)

∂n(y)

)
ds(y),

(9)

0 =

∫
Γ

(
∂Gk(z− y)

∂n(y)
ui(y) −Gk(z− y)

∂ui(y)

∂n(y)

)
ds(y),(10)
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for z ∈ R2 \D. Combining (9) and (10), and recalling the boundary
condition in (1), we obtain

(11) us(z) =

∫
Γ

∂Gk(z− y)

∂n(y)
u(y) ds(y),

where u = u|Γ = us + ui is the Dirichlet trace of the total field u on
Γ. Taking the Dirichlet and Neumann traces of (11), together with the
standard jump-relations [21, 22, 36], we obtain the boundary integral
equations

(12)
u(x)

2
− (Kk u)(x) = ui(x) and − (Nk u)(x) =

∂ui(x)

∂n(x)
on Γ,

where Kk denotes double-layer potential on Γ defined as a Cauchy
principal value integral:

(13) (Kkφ)(x) = PV

∫
Γ

∂Gk(x− y)

∂n(y)
φ(y) ds(y) on Γ.

Taking a cue from the derivation of formulation (5), we combine
regularized versions of the equations in (12), resulting in

(Bu) (x) = (R1u
i
)
(x) + iη

(
R2

∂ui

∂n

)
(x) on Γ,(14)

B := R1(I/2−Kk)− iηR2Nk.(15)

We are primarily interested in the DCFIE-R (14) in the present work,
but for certain choices of regularizing operators R1,R2 the unique
solvability of both types of integral equations is linked via transposition
arguments. Indeed, provided R′

i = Ri, we have that∫
Γ

(Aφ)ψ ds = −
∫
Γ

(Bψ)φds for all φ, ψ ∈ L2(Γ),

which is to say that B is minus the transpose of A in L2(Γ) (and in all
other Sobolev spaces considered in this paper).

2.1. The unique solvability of ICFIE-R and DCFIE-R. The
unique solvability of integral equations (5) for suitable choices of the
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operators Ri is settled via Fredholm alternative type of arguments
[8, 13], typically in the functional space H−1/2(Γ), at least in the
case of smooth boundaries Γ. A key ingredient in the proof of the
Fredholm property of the integral operators in equations (5) is the
compactness of the double layer operators K ′

k. Such an argument is
not available in the case of Lipschitz curves Γ, yet by relying on the
techniques developed in a series of papers [19, 27, 42] we will prove
the Fredholm property of the aforementioned operators in suitable
functional spaces for certain choices of the operatorsRi. We note that,
in the case of Dirichlet boundary conditions for the Helmholtz equation,
the Fredholm property of the CFIE operators, and hence the unique
solvability and well-posedness of CFIE equations, was proved to hold in
Hs−1/2(Γ), |s| ≤ 1/2, using the same techniques mentioned above [17,
37]. Indeed, in the case of Dirichlet boundary conditions, a combined
field representation of the type (4) with R1 = I and R2 = (S0)

2 was
employed in [37], whereas the classical Ri = I was used in [17].

The classical results about the regularity properties of K ′
0 [19, 27,

42] and compactness arguments yield that K ′
k is a bounded operator

on L2(Γ) [37]. More generally, it can be shown [22, 26] that K ′
k :

H−1/2+s(Γ) → H−1/2+s(Γ) is a continuous operator for |s| ≤ 1/2.
Furthermore, using equation (8), the operator Nk can be expressed in
terms of a Cauchy principal value integral [22]. In particular, for a
density φ ∈ H1(Γ) (in fact it suffices that φ ∈ L2

1(Γ) = {ψ ∈ L2(Γ) :
∂ψ/∂t ∈ L2(Γ)}, a space introduced in [42]), the operator Nk can be
expressed in terms of a Hilbert transform

(16)

(Nkφ)(x) = k2
∫
Γ

Gk(x− y)(n(x) · n(y))φ(y) ds(y)

+ PV

∫
Γ

∂Gk(x− y)

∂t(x)

∂φ(y)

∂t(y)
ds(y),

and thus it can be seen to be a bounded operator from H1(Γ) (or
L2
1(Γ)) into L

2(Γ). More generally, Nk : H1/2+s(Γ) → H−1/2+s(Γ) is a
continuous operator for |s| ≤ 1/2 [22, 27].

We will show that, for certain choices of the regularizing operator
Ri, i = 1, 2, equations (5) are uniquely solvable in L2(Γ) (actually the
invertibility property holds in all of the spacesHs−1/2(Γ) for |s| ≤ 1/2).
We note that, for most applications of interest, the incident fields are
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such that ui is smooth in a neighborhood of Γ and thus ∂ui/∂n ∈ L2(Γ).
The regularizing operators Ri that we use are defined as

(17) (Rφ)(x) = (Sd
0φ)(x) =

∫
Γ

G0

(
x− y

d

)
φ(y) ds(y), x on Γ

where G0(z) = −1/2π log |z| is the free-space Green’s function for the
Laplace equation and d is such that diam (D) < d (note that it would
actually suffice to take d > Cap (Γ), where Cap (Γ) is the capacitance
of Γ [36]). The operators Sd

0 can be written in terms of single-layer
operators S0 corresponding to the Laplace’s equation

(18) (Sd
0φ)(x) = (S0φ)(x) +

log d

2π

∫
Γ

φ(y) ds(y).

Using the results in [22, 27], it can be shown that Sd
0 : H−1/2+s(Γ) →

H1/2+s(Γ) is a continuous operator for |s| ≤ 1/2. Using the regularizing
operators R defined above, the following result holds true:

Theorem 2.1. For the following choices of regularizing operators
and real, non-zero coupling parameters η, the operator A is invertible
on L2(Γ):

1) R1 = I, R2 = (Sd
0 )

2 and any real η 	= 0;

2) R1 = R2 = Sd
0 and any real η 	= 0;

3) R1 = I, R2 = Sd
0 , 0 < |η| < C < 1, where C = C(Γ).

We refer to the ICFIE-R formulations (5) coming from these choices
as ICFIE-R(0,2), ICFIE-R(1,1) and ICFIE-R(0,1), respectively.

Proof. We will first establish that A is Fredholm of index zero for
choices 1) 3) above. To this end, we use Calderón’s identity [14, 22,
24],

(19) N0S0 = −I
4
+ (K ′

0)
2

and equation (18) together with the fact that [32]

(20)

∫
Γ

∫
Γ

∂2G0(x− y)

∂n(x)∂n(y)
φ(y) ds(y) ds(x) = 0
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to express Nk ◦ Sd
0 as

(21) NkS
d
0 = (Nk −N0)S

d
0 − I

4
+ (K ′

0)
2.

In order to prove the Fredholmness of A we will use the following two
facts:

• K ′
k −K ′

0, S
d
0 and (Nk − N0) ◦ Sd

0 are compact operators in L2(Γ)
[24, 37];

• I/2±K ′
0 are Fredholm operators of index 0 on L2(Γ) [42].

In case 1) we have

(22)
A = (K ′

0 − I/2) + (K ′
k −K ′

0) + iη[(Nk −N0) ◦ Sd
0 ] ◦ Sd

0

− iη(I/2 +K ′
0) ◦ (I/2−K ′

0) ◦ Sd
0

which can be seen to be a compact perturbation of the Fredholm
operator K ′

0 − I/2 on L2(Γ). Thus, A is Fredholm in L2(Γ). In case 2)
we have

(23)
A = (K ′

0 − I/2) ◦ Sd
0 + (K ′

k −K ′
0) ◦ Sd

0 + iη[(Nk −N0) ◦ Sd
0 ]

− iη(I/2 +K ′
0) ◦ (I/2−K ′

0).

The first three operators on the right hand side of equation (23) are
compact operators in L2(Γ), while the latter operator is a composition
of Fredholm operators and thus Fredholm. Again, A is Fredholm on
L2(Γ). Finally, in case 3), we have

(24)

A = (K ′
k −K ′

0) + iη[(Nk −N0) ◦ Sd
0 ]

− (1 + iη/2)

(
I +

iη

1 + iη/2
K ′

0

)
◦ (I/2−K ′

0).

The first two operators on the right-hand side of equation (24) are
compact on L2(Γ). On the other hand, the operator I/2 − K ′

0 is
Fredholm, cf. the remarks above, while for |η| < ||K ′

0||−1
2 the operator

I + [(iη)/(1 + iη/2)]K ′
0 is invertible on L2(Γ). Thus, since the latter

operators commute, their composition is Fredholm and consequently A
is yet again Fredholm for option 3). We note that ||K ′

0||2 depends upon
the curve Γ alone, and bounds on its size were provided in [19].
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We will now show that the null-space of A is trivial for the choices Ri

as presented in cases 1) 3). Indeed, for a density φ in the null-space of
A we define U+ for z ∈ Dc and U− for z ∈ D via equation (4). Since U+

is a radiative Helmholtz solution in Dc satisfying ∂U+/∂n = Aφ = 0
on Γ, we must have U+ = 0 in Dc, and hence on Γ. The jump relations
for the Dirichlet and Neumann traces of U+ and U−, together with the
fact that ∂U+/∂n = U+ = 0 on Γ, combine to give us

−U− = iηR2φ and
∂U−

∂n
= R1φ on Γ.

Using Green’s identities, we obtain

(25) iη

∫
Γ

(R1φ)R2φ ds =

∫
Γ

U
− ∂U−

∂n
ds =

∫
D

(|∇U−|2−k2|U−|2) dx.

Note that choices 1) and 2) amount to iη||Sd
0φ||22 ∈ R, and thus

Sd
0φ = 0. In case 3), the kernel of the operator Sd

0 is positive due to the
fact that |x − y| < d on Γ × Γ, and hence the operator Sd

0 is coercive
[22, 36, 38]

∫
Γ
(Sd

0φ)φ ds ≥ 0 for all φ in H−1/2(Γ) ⊃ L2(Γ), with
equality if and only if φ = 0. Clearly, since η ∈ R and η 	= 0, equation
(25) implies that

∫
Γ
(Sd

0φ)φ ds = 0 for all choices 1) 3), and therefore
φ = 0. Consequently, A is injective, and thus integral equations (5) is
uniquely solvable on L2(Γ).

Remark 2.2. Similar arguments as in the proof of Theorem 2.1
yield that the operators on the left-hand side of (5) are invertible
in Hs−1/2(Γ) for all |s| ≤ 1/2. Indeed, the proof relies on the fact
that A is Fredholm of index 0 as an operator from Hs−1/2(Γ) to itself
for |s| ≤ 1/2. The latter statement is a consequence of compactness
arguments similar to those used in the proof of Theorem 2.1 and the
fact that I/2±K ′

0 is Fredholm of index zero in Hs−1/2(Γ) for |s| ≤ 1/2
[17, 42]. The injectivity of operator A in Hs−1/2(Γ) for |s| ≤ 1/2 can
be shown using classical arguments. Indeed, since L2(Γ) is dense in
H−1(Γ) and the operators A are Fredholm of index 0 in the spaces
Hs−1/2(Γ) for all |s| ≤ 1/2, a standard argument about Fredholm
operators [40] gives that the null-space of A, as an operator on H−1(Γ),
is actually included in L2(Γ). Since the argument in Theorem 2.1 shows
that the null-space of A is trivial in L2(Γ), it follows that operator
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A is injective and thus invertible on H−1(Γ), and by interpolation is
invertible in all of the spaces Hs−1/2(Γ) for |s| ≤ 1/2.

Remark 2.3. The results of Theorem 2.1 remain valid if the operators
Sd
0 are replaced by SiK , K > 0, that is, single layer operators cor-

responding to purely imaginary wavenumbers in the definition of the
operators Rj , j = 1, 2, in cases 1), 2) and 3). Indeed, using Calderón’s
identities (21) for SiK and the coercivity of SiK in H−1/2(Γ), the result
follows along the same lines as in the proof of Theorem 2.1. We note
that SiK are integral operators associated to the reaction-diffusion or
Yukawa differential operator u→ −Δu+K2u.

The following result concerns the unique solvability of equations (14)
in a wide range of Sobolev spaces. Indeed, for the same choice of the
regularizing operators Ri, i = 1, 2, as in Theorem 2.1, the following
result holds true:

Theorem 2.4. For the following choices of regularizing operators
and real, non-zero coupling parameters η, the operator B is invertible
on Hs+1/2(Γ) for |s| ≤ 1/2:

1. R1 = I, R2 = (Sd
0 )

2;

2. R1 = R2 = Sd
0 ;

3. R1 = I, R2 = Sd
0 , 0 < |η| < C < 1, where C = C(Γ, s).

We refer to the DCFIE formulations (14) coming from these choices as
DCFIE-R(0,2), DCFIE-R(1,1) and DCFIE-R(0,1), respectively.

Proof. The result follows from Theorem 2.1 and Remark 2.2 via
a duality argument. Indeed, for the choices of Ri in cases 1) 3), A
and B are, up to sign, transpose operators in the sense of the natural
duality between the spaces Hs−1/2(Γ) and the spaces H−s+1/2(Γ) for
|s| ≤ 1/2.

The following result is a consequence of Theorem 2.4.

Corollary 2.5. Suppose that the Dirichlet and Neumann traces
on Γ of the given incident field ui satisfy: ∂ui/∂n ∈ Hs−1/2(Γ)
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and ui ∈ Hs+1/2(Γ) for some |s| ≤ 1/2. Then equation (14) has a
unique solution u in Hs+1/2(Γ) for the same choice of the regularizing
operators Ri as in Theorem 2.4 and Remark 2.6.

Proof. From the regularity theory of the solutions of the Neumann
problem (1) it follows that the Dirichlet trace u ∈ Hs+1/2(Γ) and that
u satisfy equation (14) as a consequence of Green’s identities.

Remark 2.6. Using regularizing operators Ri = SiK , K > 0 instead
of Sd

0 in the definition of formulations (14), we will call the ensuing
integral equations DCFIE-RC. Based on the results in Remark 2.3,
the results in Theorem 2.4 hold for the formulations DCFIE-RC(0,1),
DCFIE-RC(1,1) and DCFIE-RC(0,2).

2.2. Remarks on the regularity of the solutions of ICFIE-
R and DCFIE-R. We note that the solution of (14) (DCFIE-R) is
the total field on the boundary, u = ui + us, for any of the choices
of regularizing operators given in Theorem 2.4. If we assume that
the Neumann data ∂ui/∂n is in Hε−1/2(Γ), then the scattered field
us, which is the solution to (1), has the following classical regularity
property us ∈ {u : Δu ∈ L2

loc(D
c), u ∈ H1

loc(D
c)} [36]. Using the

Gagliardo trace results in [22], we get that the Dirichlet trace of the
total field u = us + ui on Γ belongs to Hε+1/2(Γ) such functions are
at least bounded. We can make much stronger statements about the
regularity of u on Γ for common classes of incident fields ui:

• Plane-wave: ui(z) = eikz·d, where d is a constant unit vector;

• Point-source: ui(z) = H
(1)
0 (k|z− z0|), where z0 ∈ R2 \D.

Such incident fields satisfy the Helmholtz equation within D and are
smooth in a neighborhood of Γ. In particular, if Γ is piecewise smooth,
then ∂ui/∂n is smooth, except for jump-discontinuities at the corners
of Γ. Using the results of Wigley [43, Theorem 3.3], we describe the
leading asymptotic behavior of u in neighborhoods of the corners, which
is the same as the leading asymptotic behavior of us.

Theorem 2.7. Suppose that D has m separated corners at the
points xj , and that the measure of the angle at xj (measured in Dc) is
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βjπ > 0. Let rj = dist (x,xj). Then there is a constant κj such that

u(x) − u(xj) = ±κjr1/βj

j +O(rj) as x → xj along Γ. The sign on κj
is determined by the side of xj from which x approaches.

The situation is not as favorable for the solution φ of (5) (ICFIE-R),
where it is often the case that φ is unbounded near the corners, as
will be argued below. Expressed as the combined potential (4), the
Dirichlet and Neumann traces of the solution us of (1) satisfy

us = [Sk ◦ R1 + iη(I/2 +Kk) ◦ R2]φ on Γ,(26)

∂us

∂n
= [(−I/2 +K ′

k) ◦ R1 + iηNk ◦ R2]φ = −∂u
i

∂n
on Γ.(27)

Defining a function vi in D by the same combined potential, we find
that its Dirichlet and Neumann traces are

vi = [Sk ◦ R1 + iη(−I/2 +Kk) ◦ R2]φ = us − iηR2φ on Γ,(28)

∂vi

∂n
= [(I/2 +K ′

k) ◦ R1 + iηNk ◦ R2]φ = R1φ− ∂ui

∂n
on Γ.(29)

Assuming that R2 = R1, we have that R1φ = ∂vi/∂n+∂ui/∂n, where
vi satisfies the Helmholtz equation in D together with the impedance
boundary condition vi + iη(∂vi)/(∂n) = us − iη(∂ui)/(∂n). The same
sort of argumentation using [43, Theorem 3.3], albeit more involved
(cf. [9]), can be used to show that the leading asymptotic behavior
of ∂vi/∂n, and hence of R1φ, is ∂vi(x)/∂n ∼ R1φ ∼ r

σj

j near xj ,
where σj = min{1/βj, 1/(2 − βj)} − 1 < 0. In other words, R1φ is
generally unbounded near corners. If R1 = R2 = I (no regularization),
or R1 = R2 = Sd

0 (ICFIE-R(1,1)), this implies that φ is generally
unbounded near the corners. This sort of singular behavior for problems
with corners is well-documented, see for example [7, 9, 23, 25, 28,
29, 35, 43, 45].

3. Nyström discretization. We succinctly present a high-order
Nyström method for the discretization of integral equation (14), with
B recast according to formula (33). Without loss of generality, we
will assume that D has a single corner at x0 whose aperture measured
inside D is γ0, and that Γ\{x0} is C2 and piecewise analytic. Assuming
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that the incident fields ui are regular enough in a neighborhood of the
curve Γ so that ∂ui/∂n ∈ H−(1/2)+ε(Γ) for ε > 0, then the results
of Theorem 2.5 apply, and we can consider the integral equation (14)
whose solution u ∈ H(1/2)+ε(Γ). In this case, it follows from Sobolev
embedding results that the Dirichlet trace u on Γ of the total field is
actually Hölder continuous. This will enable us to express B in terms
of integral operators that involve integrable quantities only. Indeed,
following [21], we can employ the operator K̃0 defined for continuous
functions ψ as

(30) (K̃0ψ)(x) =

∫
Γ

∂G0(x − y)

∂n(y)
[ψ(y)− ψ(x0)] ds(y)

so that we can write the first part of equation (12) for all points x on
Γ:

(31)
1

2
[u(x)+u(x0)]− (Kk −K0)(u)(x)− (K̃0u)(x) = ui(x), x ∈ Γ.

Furthermore, using equation (31) together with the Calderón’s identi-
ties

(32) Sd
0Nk = Sd

0 (Nk −N0)− I

4
+ (K0)

2

we can express the operator B in the formulation DCFIE-R(0,1) in the
following manner

(33)

(Bu)(x) = 1

2
[u(x) + u(x0)]− ([(Kk −K0) + K̃0]u)(x)

+
iη

4
[u(x)− u(x0)]− iη([Sd

0 (Nk −N0) + (K̃0)
2]u)(x)

+
iη

2
[K̃0u](x0).

We make a couple of remarks about equation (33): first, the equation
holds for all points x on Γ and not just almost everywhere, and,
second, due to the Hölder continuity of u, the operators Kk − K0,
K̃0 and Nk − N0 are defined as convergent integrals. Though we do
not do so explicitly here, it is clear how to express B in the above
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fashion for DCFIE-R(0,2) and DCFIE-R(1,1) as well. We also give the
decomposition of B for the “complex version” DCFIE-RC(0,1)

(34)

(Bu)(x) = 1

2
[u(x) + u(x0)]− ([(Kk −K0) + K̃0]u)(x)

+
iη

4
u(x0) ((KiK −K0)1)(x)

+
iη

4
[u(x)− u(x0)] +

iη

2
([(KiK −K0) + K̃0]u)(x0)

− iη([SiK(Nk −NiK) + ((KiK −K0) + K̃0)
2]u)(x),

with similar decompositions for formulations DCFIE-RC(1,1) and
DCFIE-R(0,2). The remarks concerning equation (33) are in place
for equation (34).

Our approach uses both a high-order treatment of the singularities of
the integrable kernels of the integral operators in (33) along the lines
of [31], as well as a resolution of the singular nature of the higher-
order derivatives of total field u on the curve Γ in the neighborhood
of the corner x0 via the graded meshes introduced in [30]. Many
of the formulas and derivations presented here can be found in, or
constructed from, those references, but we collect them here for the
sake of completeness.

3.1. Parameterization of the operators. Assuming that the
boundary curve Γ \ {x0} is piecewise analytic and given by the 2π
periodic parametrization x(t) = (x1(t), x2(t)) so that |x′(t)| ≥ s0 > 0
and x(0) = x(2π) = x0, we start by expressing in parametric form the
kernels of the integral operators in (33). Following the notation given
above, we define r = r(t, τ) = x(t) − x(τ) and r = r(t, τ) = |r(t, τ)|.
For an arbitrary Hölder continuous density φ(x), x ∈ Γ, we define
ψ(t) = φ(x(t)). We consider only the case of non-zero wave numbers,
k 	= 0, and will look at parametric forms of each of the key integral
operators appearing in B for CFIE-R(0,1). Similar expressions appear
for the other real or complex regularizing pairs (R1,R2), but we will
not give them here for the sake of brevity.
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In parametric form, [Sd
0 (φ)](x(t)) can be expressed as

[Sd
0 (φ)](x(t)) =

∫ 2π

0

(
log d

2π
− log r2

4π

)
|x′(τ)|ψ(τ) dτ

(35)

=

∫ 2π

0

M0(t, τ)ψ(τ) dτ

=

∫ 2π

0

(
M01(t, τ) log r

2 +M02(t, τ)
)
ψ(τ) dτ.(36)

It is clear thatM01(t, t)=−|x′(t)|/(4π) andM02(t, t)= |x′(t)| log d/(2π).
Similarly, we have

(37)

[K̃0(φ)](x(t)) =

∫ 2π

0

r · ν(τ)
2π r2

(ψ(τ) − ψ(0)) dτ

=

∫ 2π

0

H0(t, τ) (ψ(τ) − ψ(0)) dτ.

Here and below, ν(τ) = n(x(τ))|x′(τ)| = (−x′2(τ), x′1(τ)). Though it
may not be immediately apparent, H0 is smooth on (0, 2π) × (0, 2π),
with H0(t, t) = [x′′(t) · ν(t)]/[4π|x′(t)|2] for t 	= 0, 2π [30]. However,
H0(t, τ) ∼ 1/r as t → 0 and τ → 2π, or as t → 2π and τ → 0, which
is why we integrate against ψ(τ) − ψ(0), because it vanishes to some
(fractional) power at τ = 0, 2π, so the product is uniformly integrable
for each t.

Let F (z) = (i/4)H
(1)
0 (k z) + (log z)/(2π). We have [1]

(38)

F (z) =

(
i

4
− γ + log(k/2)

2π

)
J0(kz)

+
1

2π

∞∑
m=1

(−1)mhm
(m!)2

(
kz

2

)2m

+
1− J0(kz)

4π
log(z2) ,

where hm =
∑m

j=1 j
−1 is the mth harmonic number, and γ ≈

0.5772156649 is the Euler-Mascheroni constant. For the difference of
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double-layer operators, we have

(39)

[(Kk −K0)φ](x(t)) =

∫ 2π

0

−F ′(r)
r · ν(τ)

r
ψ(τ) dτ

=

∫ 2π

0

H(t, τ)ψ(τ) dτ.

We decompose H(t, τ) as H(t, τ) = H1(t, τ) log r
2 +H2(t, τ), where

(40)
H1(t, τ) = k J1(kr)

r · ν(τ)
4π r2

,

H2(t, τ) = H(t, τ)−H1(t, τ) log r
2.

Here, we have H1(t, t) = H2(t, t) = 0.

Finally, we parametrize [(Nk −N0)φ](x(t)) using (8) as

(41)

[(Nk −N0)φ](x(t)) =
1

|x′(t)|
∫ 2π

0

L(t, τ)ψ(τ) dτ

+
1

|x′(t)|
∫ 2π

0

M(t, τ)ψ(τ) dτ.

The kernelM is given byM(t, τ) = k2ν(t)·ν(τ)F (r) =M1(t, τ) log r
2+

M2(t, τ), where

(42)
M1(t, τ) =

k2ν(t) · ν(τ)
4π

(1− J0(kr)),

M2(t, τ) =M(t, τ)−M1(t, τ) log r
2.

The diagonal terms are M1(t, t) = 0 and M2(t, t) = (k2/2)[(i/2) −
(γ + log(k/2))/π]|x′(t)|2. The kernel L is given by

(43) L(t, τ) = (F ′(r) − F ′′(r))
r · x′(t)

r

r · x′(τ)
r

− F ′(r)
x′(t) · x′(τ)

r
.

As before, we decompose L as L(t, τ) = L1(t, τ) log r
2+L2(t, τ), where

(44)

L1(t, τ) =
k

4π

(
J1(k r) − kJ0(k r) +

J1(k r)

r

)
r · x′(t)

r

r · x′(τ)
r

− kJ1(k r)

4πr
x′(t) · x′x′(τ),
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and L2(t, τ) = L(t, τ) − L1(t, τ) log r
2. The diagonal terms are

L1(t, t) = −k2/(4π) |x′(t)|2 and

L2(t, t) =
k2

2

(
i

2
− γ + log(k/2) + 1/2

π

)
|x′(t)|2.

Letting ψ(t) = u(x(t)) and g(t) be the parametrization of the right-
hand side in (14), we express the integral equation (14) for CFIE-R(0,1)
parametrically as

g(t) =

(
1

2
+
iη

4

)
ψ(t) +

(
1

2
− iη

4

)
ψ(0)−

∫ 2π

0

H(t, τ)ψ(τ) dτ

(45)

−
∫ 2π

0

(
1 +

iη

2

)
H0(t, τ)(ψ(τ) − ψ(0)) dτ

(46)

− iη

∫ 2π

0

M0(t, τ)

|x′(τ)|
(∫ 2π

0

(L(τ, z) +M(τ, z))ψ(z) dz

)
dτ

(47)

− iη

∫ 2π

0

H0(t, τ)

(∫ 2π

0

(H0(τ, z)−H0(0, z))(ψ(z)−ψ(0)) dz
)
dτ.

(48)

More specifically, g is given by

(49) g(t) = ui(x(t)) + iη

∫ 2π

0

M0(t, τ)
∂ui

∂ν
(x(τ)) dτ.

3.2. The quadrature rules. As we saw above, each of our integral
kernels has the generic form K(t, τ) = K1(t, τ) log r

2 +K2(t, τ), where
Kj is smooth on (0, 2π)× (0, 2π); and our densities, μ(t) = ψ(t)−ψ(0)
or μ(t) = ψ(t), can be thought of as generic Hölder functions, whose
Hölder-exponent is determined by the angle at the corner, as indicated
in Section 2. For a fixed t, then, we have two types of integrals
for which we must develop high-order quadratures: those which are
smooth in (0, 2π) but have singular derivatives at the endpoints, and
those which additionally have a logarithmic singularity at t. To
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handle both integrals we will use a combination of a graded-mesh
quadrature introduced by Kress [30], which is affected by a suitable
change-of-variables, and a quadrature due to Martensen [20, 34] which
incorporates certain types of periodic, logarithmic singularities into its
quadrature weights. Both quadratures have been analyzed in the cited
references and were designed to yield high-order quadrature rules in
precisely the contexts in which we will use them, so here we merely
describe these quadratures in enough detail to be able to implement
our method without need for outside reference.

We begin with the change-of-variable t = w(s) where

(50)

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π

v(s) =

(
1

p
− 1

2

)(
π − s

π

)3

+
1

p

s− π

π
+

1

2

where p ≥ 2. The function w is a smooth, increasing, bijection on
[0, 2π], with w(k)(0) = w(k)(2π) = 0 for 1 ≤ k ≤ p − 1. Using this
change-of-variable, we further decompose K as

(51)

K(t, τ) = K(w(s), w(σ))

= K1(w(s), w(σ)) log

(
4 sin2

s− σ

2

)
+ K̃2(s, σ).

We have

(52)

K̃2(s, σ) = K(w(s), w(σ)) −K1(w(s), w(σ)) log

(
4 sin2

s− σ

2

)
= K1(w(s), w(σ)) log

(
r2(w(s), w(σ))

4 sin2 s−σ
2

)
+K2(w(s), w(σ)),

with diagonal term K̃2(s, s) = 2K1(t, t) log(w
′(s)|x′(t)|) + K2(t, t).

With this further decomposition, we see that we need quadratures for

integrals of the forms
∫ 2π

0 f(σ) dσ and
∫ 2π

0 f(σ) log(4 sin2((s− σ)/2)) dσ,
where f is smooth in (0, 2π) and 2π-periodic in its values and a few of
its derivatives. The quadratures are of the forms:∫ 2π

0

f(σ) dσ ≈ π

n

2n−1∑
j=0

f(sj)
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and

∫ 2π

0

f(σ) log

(
4 sin2

s− σ

2

)
dσ ≈

2n−1∑
j=0

R
(n)
j (s)f(sj)(53)

for 0 ≤ s ≤ 2π, where sj = jπ/n and the weights Rj(s) are given by

(54) Rj(s) = −2π

n

n−1∑
m=1

1

m
cosm(s− sj)− π

n2
cosn(s− sj).

We note that Rj(si) = R|i−j|, where

Rk = −2π

n

n−1∑
m=1

1

m
cos

mkπ

n
− (−1)kπ

n2
.

We are now ready to express the quadrature for
∫ 2π

0
K(t, τ)μ(τ) dτ at

points t = ti = w(si), namely:

(55)

∫ 2π

0

K(ti, τ)μ(τ) dτ ≈
2n−1∑
j=1

(K1(ti, tj)Wij +K2(ti, tj)wj)μ(tj),

where the weights are given by

Wij =

(
R|i−j| +

π

n
log

(
r2(ti, tj)

4 sin2(si − sj)/2

))
w′(sj)

and

wj =
π

n
w′(sj).(56)

We note that the sum in (55) begins at j = 1 instead of j = 0
because Wi0 = w0 = 0. As suggested above, we have Wii = (R0 +
((2π)/n) log(w′(si)|x′(ti)|))w′(si) for i > 0.
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3.3. The Nyström linear system. The Nyström discretization of
(45) (49) is

Gm =

(
1

2
+
iη

4

)
u(n)m +

(
1

2
− iη

4

)
u
(n)
0

(57)

−
2n−1∑
j=1

(H1(tm, tj)Wmj +H2(tm, tj)wj)u
(n)
j

−
2n−1∑
j=1

(
H0(tm, tj)− iη

2
H0(0, tj)

)
wj(u

(n)
j − u

(n)
0 )

(58)

− iη

2n−1∑
j=1

(
M01(tm, tj)

|x′(tj)| Wmj +
M02(tm, tj)

|x′(tj)| wj

)(59)

+

2n−1∑
k=1

(L1(tj , tk)Wjk + L2(tj , tk)wk)u
(n)
k

− iη
2n−1∑
j=1

(
M01(tm, tj)

|x′(tj)| Wmj +
M02(tm, tj)

|x′(tj)| wj

)(60)

+

2n−1∑
k=1

(M1(tj , tk)Wjk +M2(tj , tk)wk)u
(n)
k

− iη

2n−1∑
j=1

H0(tm, tj)wj

( 2n−1∑
k=1

(H0(tj , tk)

−H0(0, tk))wk(u
(n)
k − u

(n)
0 )

)
.

(61)

Here we have u
(n)
m ≈ u(x(tm)) and load vector G given by

(62)

Gm = ui(x(tm))+iη

2n−1∑
j=0

(M01(tm, tj)Wmj+M02(tm, tj)wj)
∂ui

∂ν
(x(tj)).
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FIGURE 1. Teardrop (left) and boomerang (right), α = 1/2.

Discretizations of the integral equation formulations DCFIE-R(0,2)
and DCFIE-R(1,1) can be obtained in a similar manner. The discretiza-
tion of DCFIE-RC formulations, on the other hand, involves modifica-
tions of the quadrature rules presented above to the case of boundary
layers corresponding to purely imaginary wave numbers. For instance,
following [8], the single layer potentials related to wave numbers iK
are expressed as

(63) (SiKφ)(x(t)) =

∫ 2π

0

M̂(t, τ)|x′(τ)|φ(x(τ)) dτ,

and we use the following splitting of the kernel M̂(t, τ) = (i/4)H
(1)
0 (iKr):

(64)
M̂(t, τ) = e−Kr4

{
M̂1(t, τ) ln

(
4 sin2

t− τ

2

)
+ M̂2(t, τ)

}
+ (1 − e−Kr4)M̂(t, τ)

with M̂1(t, τ) = −(1/4π)J0(iKr); each of the terms in the above
splitting is amenable to the same quadrature rules as the ones developed
for the kernels with real wave numbers. This splitting procedure allows
one to treat the operators KiK and NiK in a similar manner.

4. Numerical results. We present in this section a variety of
numerical results that demonstrate the properties of the regularized
combined field integral equations (14) constructed in the previous
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FIGURE 2. Plots of decimal logarithms of the condition numbers of discretizations
of the formulations DCFIE-R(0,1) (top), DCFIE-R(1,1) (middle) and DCFIE-
R(0,2) (bottom) as functions of the wave number k and the coupling parameter
η for the teardrop (left) and boomerang (right) geometries with α = 1/2. The
results shown correspond to problems with 128 unknowns, and wave numbers
k = 1, 4, 8, 16, 32 and 32 coupling parameters for each formulation: η = j/(8k),
j = 1, 2 . . . , 32. The horizontal axis is in terms of the parameter j.
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sections. Solutions of linear systems (57) (62) are obtained by means
of the fully complex version of the iterative solver GMRES [14]. The
first set of results presented concern the various DCFIE-R formulations
that use the regularizing operators of the form Sd

0 , and the second set
of the results concern the DCFIE-RC(0,1) formulation that uses the
regularizing operators of the form SiK with K > 0. Of the three
possible formulations (14) stemming from the use of the regularizing
operators Sd

0 , DCFIE-R(0,1) entails (i) the smallest computational
time as it involves only two compositions of operators and (ii) the
smallest condition numbers. For the formulation DCFIE-R(0,1) we
used coupling parameters η = 1/k for the results in Tables 1, 4, 5,
6, and η = 8/k for the results in Table 2. Although the statement
of Theorem 2.5 requires that a “sufficiently small” coupling parameter
η should be used in DCFIE-R(0,1), we have found in practice that a
fairly wide range of coupling parameters, including the aforementioned
choice, leads to integral operators whose discrete approximations have
spectra bounded away from 0 (see Figure 2 for an illustration of the
affect of the coupling parameter η on the conditioning numbers of the
various formulations). Furthermore, we have found that these choices
of the coupling parameter yield good behavior of the iterative solvers.
We also used the same coupling parameter η = 1/k for the other
formulations DCFIE-R(1,1) and DCFIE-R(0,2). Most of the results
contained in the tables presented in this section were obtained by
prescribing a GMRES residual tolerance equal to 10−8; otherwise, we
used a GMRES residual tolerance equal to 10−12.

We will show results for two geometries having convex and con-
cave corners: the teardrop domain, with boundary parametrized by
x(t) = (2 sin(t/2),−β sin t); and the boomerang domain, with bound-
ary parametrized by x(t) = (−(2/3) sin(3t/2),−β sin t). Here β =
tan(απ/2), and απ is the acute aperture of the corner (see Figure 1).
For these configurations the diameter of the corresponding domains D
is equal to 2, and we chose d = 4 in the definition of the regularizing
operators Sd

0 .

For every scattering experiment we present:

• the maximum error incurrent in the total field u on Γ defined as

(65) E1 = max
0≤j≤2n−1

|u(n)j − urefqj |
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TABLE 1. Plane-wave incidence, geometries with interior/exterior apertures of π/2

using DCFIE-R(0,1) formulation with a coupling parameter η = 1/k.

k Unknowns Teardrop α = 1/2 Boomerang α = 1/2

Iter. E1 E2 Iter. E1 E2

1 32 12 7.6× 10−6 6.2× 10−7 13 9.7× 10−4 2.3× 10−4

1 64 11 5.1× 10−8 2.6× 10−10 15 6.1× 10−7 4.8× 10−8

1 128 10 4.2× 10−10 7.5× 10−12 13 2.3× 10−8 1.4× 10−10

4 32 13 8.4× 10−3 4.2× 10−3 16 3.0× 10−1 1.8× 10−1

4 64 13 3.1× 10−6 4.9× 10−8 17 3.3× 10−5 1.3× 10−7

4 128 13 1.5× 10−8 5.7× 10−10 15 3.4× 10−7 8.6× 10−10

8 64 17 2.7× 10−3 9.7× 10−4 21 4.9× 10−3 1.5× 10−3

8 128 17 6.9× 10−9 3.9× 10−10 19 2.1× 10−6 2.1× 10−9

16 128 27 7.0× 10−4 2.4× 10−4 29 2.8× 10−3 1.6× 10−3

16 256 25 5.3× 10−9 5.3× 10−10 26 2.4× 10−7 1.3× 10−8

32 256 40 5.3× 10−4 2.7× 10−4 42 9.8× 10−4 4.5× 10−4

32 512 40 1.9× 10−8 3.5× 10−9 41 4.2× 10−8 4.0× 10−9

64 512 48 2.0× 10−4 1.1× 10−4 54 3.6× 10−4 1.4× 10−4

64 1024 48 7.2× 10−9 1.3× 10−9 54 1.4× 10−7 3.0× 10−8

128 1024 80 8.9× 10−5 2.0× 10−5 94 4.8× 10−5 3.1× 10−5

128 2048 80 2.7× 10−7 6.5× 10−9 94 2.1× 10−7 1.8× 10−8

256 2048 136 2.1× 10−5 1.1× 10−5 167 2.3× 10−5 5.8× 10−6

256 4096 136 2.1× 10−7 2.3× 10−9 167 2.1× 10−7 3.0× 10−9

TABLE 2. Comparisons with reference solutions, geometries with interior/exterior

apertures of π/2.

k Unknowns Teardrop α = 1/2 Boomerang α = 1/2

DCFIE-R(0,2) E2 DCFIE-R(1,1)E2 DCFIE-R(0,2)E2 DCFIE-R(1,1)E2

1 256 1.9× 10−15 3.3× 10−14 9.7× 10−14 8.5× 10−14

4 256 3.4× 10−15 3.9× 10−15 4.2× 10−13 5.3× 10−13

8 256 6.3× 10−15 5.6× 10−15 4.9× 10−13 7.8× 10−13

16 512 1.5× 10−14 2.3× 10−14 3.5× 10−14 3.7× 10−14

32 1024 7.8× 10−14 5.6× 10−14 1.0× 10−13 9.9× 10−14

where the reference solution uref corresponds to a very refined dis-
cretization corresponding to 2qn discretization points, and
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• the maximum error amongst several directions x̂ = x/|x| in the
far-field pattern us∞(x̂),

(66) E2 = max |us,calc∞ (x̂)− us,ref∞ (x̂)|
where the maximum is taken over a uniform discretization of the unit
circle |x̂| = 1 comprised of 256 points. The (exact) far-field pattern is
defined by the relation

(67) us(x) =
eik|x|√|x|

(
us∞(x̂) +O

(
1

|x|
))

, |x| → ∞.

Once the solution u(n) of linear system (57) (62) is produced, the
far-field can be obtained immediately from equation (11)

(68) us,calc∞ (x̂) =
e−(iπ)/4

n
√
8

√
kπ

2n−1∑
j=1

x̂ · ν(tj)e−ikx̂·x(tj)u(n)j w′(sj).

The maximum far-field error is evaluated through the comparison of
numerical solutions us,calc∞ with reference solutions us,ref∞ solutions ob-
tained from very fine discretizations in the case of plane wave inci-
dences, and exact solutions in the case of point-source incidences.

For plane wave incidences, the reference solutions arising from very
fine discretizations were produced through an LU solution of the lin-
ear system (57) (62) obtained from discretization of the formulation
DCFIE-R(0,1). We also present in Table 2 the far-field errors between
the reference solutions obtained using very refined discretizations of
formulations DCFIE-R(0,1) and the ones obtained from the same dis-
cretizations with formulations DCFIE-R(1,1) and DCFIE-R(0,2). Be-
sides errors in the total field u on the boundary of the scatterer and
the far field errors, the tables display the number of iterations required
by the GMRES solver to a relative residual of 10−8; or of 10−12, if de-
noted by ∗. We used discretizations corresponding to 8 and 16 points
per wavelength, for frequencies in the medium to high-frequency range,
i.e., k = 2i, i = 3, . . . , 8 corresponding to acoustic scattering problems
of sizes ranging from 2.5λ to 81.6λ. In the range k = 2i, i = 3, . . . , 8
reference solutions were obtained using 24 points per wavelength. In
the low frequency regime, i.e., k = 1, 4, the reference solutions were ob-
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TABLE 3. Computational times needed by the various formulations.

Unknowns Times

DCFIE-R(0,1) DCFIE-R(0,2) DCFIE-R(1,1)

64 1.13 sec 1.15 sec 1.16 sec

128 3.72 sec 3.74 sec 3.74 sec

256 14.75 sec 14.79 sec 14.82 sec

TABLE 4. Plane-wave incidence, geometries with interior/exterior apertures of π/6

using DCFIE-R(0,1) formulation with a coupling parameter η = 1/k.

k Unknowns Teardrop Boomerang

Iter. E1 E2 Iter. E1 E2

1 32 15 4.2× 10−3 2.8× 10−4 19 5.2× 10−1 2.3× 10−3

1 64 15 1.5× 10−4 3.4× 10−6 22 6.8× 10−3 1.2× 10−4

1 128 14 1.5× 10−6 6.0× 10−9 23 4.1× 10−5 2.3× 10−7

1 256 11 2.7× 10−8 3.2× 10−11 24 2.2× 10−6 2.7× 10−9

4 32 17 1.4× 10−2 2.6× 10−3 19 1.1× 100 3.4× 10−2

4 64 17 4.8× 10−4 2.6× 10−5 25 2.3× 10−2 2.6× 10−4

4 128 16 4.4× 10−6 4.5× 10−8 27 4.1× 10−5 6.4× 10−7

4 256 13 1.7× 10−8 4.2× 10−11 29 1.5× 10−6 2.2× 10−9

8 64 21 1.1× 10−3 2.4× 10−4 28 7.0× 10−2 7.7× 10−4

8 128 20 9.3× 10−6 3.0× 10−7 30 3.4× 10−5 6.3× 10−7

8 256 18 2.7× 10−8 9.4× 10−11 32 1.5× 10−6 3.0× 10−9

16 128 27 9.6× 10−5 2.2× 10−5 34 4.3× 10−4 3.3× 10−5

16 256 24 5.0× 10−8 7.0× 10−10 36 1.9× 10−6 2.6× 10−8

32 256 38 1.4× 10−5 3.2× 10−7 49 8.1× 10−5 7.6× 10−6

32 512 35 1.6× 10−7 2.6× 10−9 51 1.9× 10−7 4.5× 10−9

tained by using n = 128, that is, 256 unknowns, in equations (57) (62).
For the case of plane-wave incidence, we assumed an incident field in
the form of a plane wave propagating along the x axis, i.e., its direction
of propagation is d = (1, 0). In all of the numerical examples, we used
p = 8 in the change of variables (50) for the teardrop geometry and
p = 4 for the boomerang geometry. The reason for using different
values of p is that the solutions u of (14) can be shown to be in the
Hölder space C0,2/3(Γ) for the boomerang geometry and C1(Γ) for the
case of the boomerang, and thus a higher exponent is needed in the
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change of variables (50) to resolve the stronger singularity of u in the
first case.

We start by presenting numerical results for plane-wave incidence
Table 1, 2 for the domains with interior/exterior apertures of π/2. As
can be seen, our solutions converge to high order throughout a wide
range of frequencies. Furthermore, the reference solutions exhibit very
high accuracy regardless of the formulation used. We note that similar
numbers of GMRES iterations are required if the same formulation (14)
were used for smooth curves [8].

The computational times entailed by a matrix-vector product for
each of the three formulations DCFIE-R are close to each other, due
to the fact that the evaluation of operator Sd

0 is fairly inexpensive
relative to all of the other acoustic integral operators involved in
DCFIE-R formulations. Nevertheless, the formulation DCFIE-R(0,1)
is slightly less expensive than the other two formulations since it
involves only two operator compositions. We illustrate in Table 3
the computational times required to build the matrix according to
equations (57) (62) and its analogues in each of the three DCFIE-R
formulations (the computational times are about the same for each of
the geometries under consideration). The computational times resulted
from a MATLAB implementation of our solver on a MacPro machine
with a 2 × 3GHz Quad-core Intel Xeon. The computational times
reported are only 1.2 times more expensive than those required for
the corresponding solvers for smooth geometries [8].

The formulation DCFIE-R gives rise to small condition numbers upon
discretizations, as illustrated in Figure 2. We present in Figure 2 con-
dition numbers of the three DCFIE-R as functions of the coupling pa-
rameter η for five wave numbers k = 1, 4, 8, 16, 32 using 128 unknowns
in each case, for the domains considered above with α = 1/2. Specifi-
cally, for each wave number and geometry, we considered 32 coupling
parameters η = i/(8k), i = 1, 2 . . . , 32, as this range of values of η
was found to lead to lower condition numbers. The second conclusion
that can be drawn from the results in Figure 2 is that the DCFIE-
R(0,1) formulation is well-conditioned in that given range of coupling
parameters η. We note that optimal choices of the coupling parameter
η for the classical CFIE in the case of Dirichlet boundary conditions
were demonstrated in [16] for geometries with corners, even in the case
k → 0 [6].
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TABLE 5. Point source incidence geometries with interior/exterior apertures of π/2

using DCFIE-R(0,1) formulation with a coupling parameter η = 1/k.

k Unknowns Teardrop Boomerang

Iter. E2 Iter. E2

1 32 16 6.9× 10−3 12 4.4× 10−5

1 64 14 5.3× 10−5 13 2.3× 10−8

1 128 14 2.4× 10−9 12 1.1× 10−10

1 256 19∗ 3.3× 10−15 16∗ 8.9× 10−15

4 32 18 4.0× 10−3 14 1.9× 10−4

4 64 18 3.0× 10−5 14 3.1× 10−7

4 128 18 1.3× 10−9 15 2.1× 10−10

4 256 24∗ 2.0× 10−14 19∗ 4.3× 10−14

8 64 24 4.0× 10−5 19 1.6× 10−4

8 128 22 1.9× 10−9 19 1.0× 10−10

16 128 32 2.4× 10−5 27 2.0× 10−4

16 256 30 9.6× 10−11 26 1.3× 10−9

32 256 46 5.7× 10−5 43 3.5× 10−5

32 512 46 6.3× 10−10 43 9.8× 10−11

The next set of results in Table 4 illustrates the high-order conver-
gence of our algorithm using the formulation DCFIE-R(0,1) for singular
geometries with more acute interior/exterior corners, i.e., α = 1/6 in
the definition of the teardrop and boomerang domains.

In order to further confirm the high-order accuracy of our solvers, we
present in the next set of numerical experiments, Tables 5 and 6, re-
sults obtained in cases when radiative point-source incident fields with
sources inside the obstacle were used as incident fields. Specifically, we
assumed the point-source to be located inside the scatterers close to the
corner at (0.1, 0). In these cases, the solution of the exterior Neumann
problem is the point-source itself which allows for direct evaluation of
far-field errors. For such incident fields, the left-hand side of equa-
tion (10) needs to be replaced by ui and thus equations DCFIE-R(0,1)
(14) should be modified so that the coefficient of the double layer op-
erator Kk is 1 rather than −1. Again, the high-order convergence of
our algorithm is demonstrated by the results in Tables 5, 6.
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TABLE 6. Point source incidence geometries with interior/exterior apertures of π/6

using DCFIE-R(0,1) formulation with a coupling parameter η = 1/k.

k Unknowns Teardrop Boomerang

Iter. E2 Iter. E2

1 32 21 5.0× 10−2 17 4.9× 10−3

1 64 31 9.6× 10−3 19 1.4× 10−4

1 128 37 2.7× 10−4 19 1.2× 10−7

1 256 36 3.4× 10−7 19 2.2× 10−10

1 512 44∗ 2.2× 10−13 27∗ 1.2× 10−14

4 32 22 2.1× 10−2 17 3.2× 10−3

4 64 34 4.8× 10−3 18 1.0× 10−4

4 128 41 1.3× 10−4 18 7.9× 10−8

4 256 42 1.7× 10−7 18 1.9× 10−10

4 512 50∗ 1.1× 10−13 27∗ 3.8× 10−15

8 64 34 2.8× 10−3 20 2.0× 10−4

8 128 44 8.1× 10−5 20 1.1× 10−7

8 256 44 1.1× 10−7 20 9.7× 10−11

16 128 58 7.5× 10−5 26 1.3× 10−6

16 256 58 5.0× 10−8 25 8.5× 10−11

16 512 58 3.6× 10−10 34∗ 1.6× 10−14

32 256 77 3.5× 10−8 37 1.5× 10−7

32 512 62 3.4× 10−10 37 5.8× 10−10

TABLE 7. Number of iterations using DCFIE-RC(0,1) with Sik/2, η = 1, plane-

wave incidence, GMRES residual 10−8.

k Unknowns Teardrop Iter. Boomerang Iter.

α = 1/2 α = 1/6 α = 1/2 α = 1/6

1 64 10 12 13 22

4 64 14 14 15 24

8 64 16 15 19 25

16 128 17 16 22 31

32 256 20 22 24 41

64 512 21 22 26 47

128 1024 25 26 27 53

256 2048 29 26 32 54
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In the next set of the results we present the number of iterations
and condition numbers that result from the implementation of DCFIE-
RC(0,1) that uses Sik/2 for regularizing operators. As can be seen
from the results in Table 7, these formulations result in significantly
smaller numbers of iterations especially for higher frequencies when
the gains in numbers of iterations are of order three to the same
GMRES residuals that their DCFIE-R(0,1) counterparts which use Sd

0

as regularizing operators. Furthermore, the accuracy levels achieved by
the DCFIE-RC(0,1) formulation using Sik/2 are comparable to those

corresponding to the same formulations but using Sd
0 . Given that a

matrix-vector product in the former formulation is about 1.6 times more
expensive than its counterpart in the latter formulation, computational
gains of about a factor of two can be garnered from the use of Sik/2 in
the DCFIE-RC(0,1) formulations for higher frequencies when iterative
solvers are used. The larger computational times required by a matrix-
vector product corresponding to the DCFIE-RC(0,1) formulation is
related to the larger computational times required by the evaluation
of the layer potentials NiK , SiK and KiK in equation (34) with respect
to their counterparts N0, S0 and K0 in equation (33).

In order to illustrate further the superior conditioning properties
of DCFIE-RC(0,1) formulations, we present in Figure 3 the decimal
logarithms of condition numbers resulting from the implementation
of this formulation for the boomerang geometries for the same wave
numbers as in Figure 2 and coupling parameters η = i/16, i =
1, 2 . . . , 32. Consistent with the results in Table 7, the DCFIE-RC(0,1)
formulations give rise to smaller condition numbers than those entailed
by the formulation DCFIE-R(0,1). For the convex teardrop geometries,
the condition numbers vary very slowly as functions of the wave
numbers for coupling parameters η in the range from 1 to 2: for the
α = 1/2 case the decimal logarithms of the condition numbers are
about 0.94, whereas those for the α = 1/6 case are around 1.5.

Finally, we conclude with an example in Figure 4 that shows the con-
dition numbers of the formulations DCFIE-RC(0,1) as functions of the
wave numbers of the incidence radiation. We computed these condition
numbers for 320 frequencies in the range k = 0.1, 0.2, . . . , 32 using dis-
cretizations involving 128 unknowns, the regularizing operators Sik/2

and coupling parameters η = 1. We plot the condition numbers for
the boomerang geometries: the case α = 1/2 is illustrated in the curve
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FIGURE 3. Plots of the decimal logarithms of condition numbers of the discretiza-
tions of the formulations DCFIE-RC(0,1) using the regularizing operators Sik/2 as
functions of the wave number k and the coupling parameter η for boomerang ge-
ometries with α = 1/2 (left) and α = 1/6 (right). The results shown correspond
to problems having 128 unknowns, wave numbers k = 1, 4, 8, 16, 32 and 32 coupling
parameters for each formulation: η = j/16, j = 1, 2 . . . , 32.

FIGURE 4. Plots of the decimal logarithms of condition numbers of the discretiza-
tions of the formulations DCFIE-RC(0,1) using the regularizing operators Sik/2 and
η = 1 as functions of the wave number k for boomerang geometries. We chose 320
wave numbers k = 0.1, 0.2, . . . , 32 and 128 unknown for each case, p = 4 in the
change of variables formula (50) for each boomerang geometry. The curve on the
bottom corresponds to the α = 1/2 case and the curve on the top corresponds to
the α = 1/6 case.

on the bottom, and the case α = 1/6 by the curve on top. For the
case of teardrop geometries, the condition numbers vary slowly with
the wave number; the values of the decimal logarithms of the condition
numbers are about 0.94 for the case α = 1/2 and around 1.5 for the
case α = 1/6.
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In summary, we have found that, for low and medium frequencies
(i.e., acoustic problems where the size of the scatterer is smaller
than 10λ) the formulation DCFIE-R(0,1) with coupling parameter
η = 1/k leads to rapidly converging solutions. For high frequencies
(i.e., acoustic problems where the size of the scatterer is larger than
10λ) the formulation DCFIE-RC(0,1) with regularizing operator Sik/2

and coupling parameter η = 1 possesses excellent spectral properties.
Consequently, we advocate the use of these formulations for solutions
of sound-hard scattering problems in two-dimensional domains with
corners.

5. Conclusions. We presented a class of Direct Regularized
Combined Field Integral Equations formulations for the solution of
scattering equations with Neumann boundary conditions for domains
with corners. These integral equation formulations are well conditioned
on account of the choice of the regularizing operators and the high-order
approximations of the singular solutions that we used. Highly accurate
results for a variety of configurations can be obtained from the use
of this formulation throughout a wide range of the acoustic frequency
spectrum. Thus, these features make our Direct Regularized Combined
Field Integral Equations a viable method of solution to the sound-hard
scattering problems for domains with corners.
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