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ABSTRACT. We deal with Dirichlet boundary value prob-
lems for impulsive differential equations depending on a pa-
rameter λ. Under some assumptions, the existence of at least
three solutions is obtained by using a critical point theorem.

1. Introduction. In this paper, we are concerned with the existence
of three solutions for the following Dirichlet boundary value problems

(1.1)

−u′′(t) = λf(u(t)), t �= tj , t ∈ [0, 1],

Δu′(tj) = Ij(u(tj)), j = 1, 2, . . . , p,

u(0) = u(1) = 0

where 0 = t0 < t1 < · · · < tp < tp+1 = 1, f ∈ C(R,R), Ij ∈ C(R,R),
j = 1, 2 . . . , p, Δu′(tj) = u′(t+j ) − u′(t−j ), u′(t+j ) and u′(t−j ) denote
the right and the left limits, respectively, and λ ∈ [0,+∞) is a real
parameter.

In recent years, a great deal of work has been done in the study
of the existence of multiple solutions for impulsive boundary value
problems; we refer the reader to [1, 2, 4, 5]. These classical tools in
literature are fixed-point theorems in cones. It is well known that the
critical point theorem is an important tool in dealing with problems for
differential equations. We also note that, in the last few years, some
researchers have used variational methods to study the existence of
solutions for impulsive differential equations boundary value problems
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[6 11]. But few researchers have paid more attention to the existence
of three solutions for impulsive differential equation boundary value
problems by applying critical point theory.

In this paper, our main aim is to establish the existence of at least
three solutions for problem (1.1).

2. Preliminaries. To begin with, we introduce some notation.
Denote byX the Sobolev spaceH1

0 (0, 1), and consider the inner product

(u, v) =

∫ 1

0

u′(t)v′(t) dt

and the norm

||u|| =
(∫ 1

0

|u′(t)|2
)1/2

.

Hence, X is a separable, reflexive Banach space. For every u ∈ X , we
consider the functional ϕ : X → R defined by

ϕ(u) =
1

2
||u||2 +

p∑
j=1

∫ u(tj)

0

Ij(t) dt− λ

∫ 1

0

F (u(t)) dt,

where F (u(t)) =
∫ u

0
f(s) ds.

It is clear that ϕ is differentiable at any u ∈ X and

ϕ′(u)v =

∫ 1

0

u′(t)v′(t) dt+
p∑

j=1

Ij(u(tj))v(tj)− λ

∫ 1

0

f(t, u(t))v(t) dt

for any u ∈ X . Obviously, ϕ′ is continuous.

Lemma 2.1 [6]. If u ∈ X is a critical point of the functional ϕ, then
u is a classical solution of problem (1.1).

We define the norm in C([0, 1]) by ||u||∞ = maxt∈[0,1] |u(t)|.

Lemma 2.2. Let u ∈ X. Then ||u||∞ ≤ ||u||/2.
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Proof. For u ∈ X , then u(0) = u(1) = 0. Hence, for t ∈ [0, 1], we
have

u(t) =

∫ t

0

u′(s) ds = −
∫ 1

t

u′(s) ds,

which implies

2|u(t)| ≤
∫ 1

0

|u′(s)| ds ≤
(∫ 1

0

|u′(s)|2ds
)1/2

= ‖u‖,

which completes the proof.

Suppose that E ⊂ X . We denote E
ω
as the weak closure of E, that

is, x ∈ E
ω
if there exists a sequence {xn} ⊂ E such that f(xn) → f(x)

for every f ∈ X∗. To verify our main results, we need the following
result.

Theorem 2.1 [3, Theorem 2.1]. Let X be a separable and reflexive
real Banach space, and let Φ : X → R be a nonnegative continuously
Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on
X∗. J : X → R is a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact. Assume that there exists x0 ∈ X
such that Φ(x0) = J(x0) = 0 and that

(i) lim||x||→+∞(Φ(x)− λJ(x)) = +∞ for all λ ∈ [0,+∞);

Further, assume that there are r > 0, x1 ∈ X such that

(ii) r < Φ(x1);

(iii) sup
x∈Φ−1((−∞,r))

ω J(x) < r/(r +Φ(x1))J(x1).

Then, for each

λ ∈ Λ1 =

(
Φ(x1)

J(x1)− sup
x∈Φ−1((−∞,r))

ω J(x)
,

r

sup
x∈Φ−1((−∞,r))

ω J(x)

)
,

the equation

(1.2) Φ′(x)− λJ ′(x) = 0
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has at least three solutions in X and, moreover, for each h > 1, there
exists an open interval

Λ2 ⊆
[
0,

hr

r(J(x1)/Φ(x1))− sup
x∈Φ−1((−∞,r))

ω J(x)

)

and a positive real number σ such that, for each λ ∈ Λ2, (1.2) has at
least three solutions in X whose norms are less than σ.

3. Main results. Let 0 < a < 1 be such that {t1, . . . , tp} ⊂ [a, 1−a].

Theorem 3.1. Assume that the following conditions hold.

(C1) There exist two positive constants c, d with c < d/
√
2a, such that

max
x∈[−c,c]

F (x) < 2c2
{
2c2 +

d2

a
+

p∑
j=1

∫ d

0

Ij(t) dt

}−1

×
(
2a

d

∫ d

0

F (s) ds+ (1− 2a)F (d)

)
;

(C2) There exist positive constants ai, i = 1, 2, M > 0 and 0 < μ < 2
such that

F (u) ≤ a1|u|μ − a2, for |u| ≥ M ;

(C3)
∫ u

0
Ij(t)dt ≥ 0.

Furthermore, put

(3.1)

ϕ1 =
maxu∈[−c,c] F (u)

2c2
,

ϕ2 =
(2a/d)

∫ d

0
F (s) ds+ (1 − 2a)F (d)−maxu∈[−c,c] F (u)

(d2/a) +
∑p

j=1

∫ d

0 Ij(t) dt
,

and, for each h > 1,

(3.2) b =
2hc2

2c2[(2a/d)
∫

d

0
F (s) ds+(1−2a)F (d)]

(d2/a)+
∑

p

j=1

∫ d

0
Ij(t) dt

−maxu∈[−c,c] F (u)

.
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Then, for each

(3.3) λ ∈ Λ1 =

(
1

ϕ2
,
1

ϕ1

)
,

problem (1.1) admits at least three solutions in X and, moreover, for
each h > 1, there exist an open interval Λ2 ⊆ [0, b] and a positive real
number σ such that, for each λ ∈ Λ2, the problem (1.1) admits at least
three solutions in X whose norms in X are less than σ.

Proof. Let

Φ(u) =
1

2

∫ 1

0

(u′(t))2dt+
p∑

j=1

∫ u(tj)

0

Ij(t) dt, J(u) =

∫ 1

0

F (u(t)) dt.

Clearly, ϕ(u) = Φ(u) − λJ(u), and Φ is a nonnegative continuously
Gâteaux differentiable and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on
X∗, and J is a continuously Gâteaux differentiable functional whose
Gâteaux is compact.

Next, in view of assumptions (C2) (C3), we have, for any u ∈ X ,
|u| ≥ M and λ ≥ 0,

Φ(u)− λJ(u) =
1

2
||u||2 +

p∑
j=1

∫ u(tj)

0

Ij(t) dt− λ

∫ 1

0

F (u(t)) dt

≥ 1

2
||u||2 − λ[a1|u|μ − a2]

≥ 1

2
||u||2 − λ

[
a1
2μ

||u||μ − a2

]
.

From 0 < μ < 2, we obtain, for all λ ∈ [0,+∞),

lim
||u||→∞

(Φ(u)− λJ(u)) = +∞.

So, condition (i) of Theorem 1.1 is satisfied.

Now, we let

u1(t) =

⎧⎨
⎩

(d/a)t t ∈ [0, a)

d t ∈ [a, 1− a]

(d/a)(1− t) t ∈ (1− a, 1],

r = 2c2.
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It is clear that u1 ∈ X , and

Φ(u1) =
1

2
||u1||2 +

p∑
j=1

∫ u1(tj)

0

Ij(t) dt =
d2

a
+

p∑
j=1

∫ d

0

Ij(t) dt,

J(u1) =
2a

d

∫ d

0

F (s) ds+ (1− 2a)F (d).

By c < d/
√
2a, we have

Φ(u1) =
d2

a
+

p∑
j=1

∫ d

0

Ij(t) dt >
d2

a
> 2c2 = r,

which shows that assumption (ii) of Theorem 1.1 is obtained.

Next, we verify that assumption (iii) of Theorem 1.1 holds. From
Lemma 2.2, the estimate Φ(u) ≤ r implies that

|u(t)|2 ≤ 1

4
||u||2 ≤ 1

2
Φ(u) ≤ 1

2
r, for t ∈ [0, 1].

From the definiteness of r, it follows that

Φ−1(−∞, r) ⊆ {x ∈ X, |x(t)| ≤ c, t ∈ [0, 1]}.
Thus, for any u ∈ X , we have

sup
x∈Φ−1(−∞,r)

ω
J(u) = sup

x∈Φ−1(−∞,r)

J(u) ≤ max
u∈[−c,c]

F (u).

On the other hand, we get

r

r +Φ(u1)
J(u1) =

2c2

2c2 + (d2/a) +
∑p

j=1

∫ d

0 Ij(t) dt

×
(
2a

d

∫ d

0

F (s) ds+ (1− 2a)F (d)

)
.

Assumption (C1) implies that

sup
x∈Φ−1(−∞,r)

ω
J(u) <

r

r +Φ(u1)
J(u1),
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which shows that condition (iii) of Theorem 1.1 is satisfied.

Note that

Φ(u1)

J(u1)− sup
x∈Φ−1(−∞,r)

ω J(u)

≤ (d2/a)+
∑p

j=1

∫
d

0
Ij(t) dt

(2a/d)
∫

d

0
F (s) ds+(1−2a)F (d)−maxu∈[−c,c] F (u)

=
1

ϕ2
,

r

sup
x∈Φ−1(−∞,r)

ω J(u)
≥ 2c2

maxu∈[−c,c] F (u)
=

1

ϕ1
.

By a simple computation, it follows from condition (C1) that ϕ2 > ϕ1.
Applying Theorem 1.1, for each λ ∈ Λ1 = (1/ϕ2, 1/ϕ1), problem (1.1)
admits at least three solutions in X .

For each h > 1, we easily see that

hr

r(J(u1))/(Φ(u1))− sup
x∈Φ−1(−∞,r)

ω J(u)

≤ 2hc2

2c2[(2a/d)
∫ d

0
F (s) ds+(1−2a)F (d)]

(d2/a)+
∑

p

j=1

∫ d

0
Ij(t) dt

−maxu∈[−c,c] F (u)

= b.

Taking condition (C1) into account, it forces that b > 0. Then, from
Theorem 1.1, for each h > 1, there exist an open interval Λ2 ⊆ [0, b] and
a positive real number σ such that, for λ ∈ Λ2, problem (1.1) admits
at least three solutions in X , whose norms in X are less than σ. The
proof is complete.

4. Examples. Consider the following problem

(4.1)

−u′′ = λf(u), t ∈ [0, 1],

Δu′(t1) =
1

2
u1/3(t1), t1 =

1

2
,

u(0) = u(1) = 0,
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where

f(u) =

{
eu u ≤ 8,

u2/3 + e8 − 4 u > 8.

Then

F (u) =

{
eu − 1 u ≤ 8,

(3/5)u5/3 + (e8 − 4)u+ (59/5)− 7e8 u > 8.

Let a = 1/4, c = 1, d = 27; it follows that

max
u∈[−1,1]

F (u) = e− 1 < 20.2

.
=

2c2[(2a/d)
∫ d

0
F (s) ds+ (1− 2a)F (d)]

2c2 + (d2/a) +
∑p

j=1

∫ d

0 Ij(t) dt
,

1

ϕ1
=

2

e − 1
,

1

ϕ2

.
= 0.098,

which show that all the conditions of Theorem 3.1 are satisfied, so
problem (4.1) has at least three solutions for λ ∈ (0.1, 2/e− 1).
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