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ABSTRACT. In this paper we present new fixed point
theorems for weakly sequentially continuous mappings which
are convex-power condensing relative to a measure of weak
noncompactness. Our fixed point results extend and improve
several earlier works. As an application, we investigate the
existence of weak solutions to a Volterra integral equation.

1. Introduction. During the last four decades several interesting
studies relating to the existence of weak solutions to the Cauchy
differential equation in Banach spaces have been presented. These
studies were initiated by Szep [23] in 1971 and since then have been
addressed by many investigators. We quote the contributions by
Cramer, Lakshmikantham and Mitchell [8] in 1978 and more recently
by Bugajewski [4], Cichon [5, 6], Cichon and Kubiaczyk [7], Mitchell
and Smith [17], and O’Regan [18 20]. Motivated by the paper of
Cichon [6], O’Regan [18] discussed in detail the problem (which was
modeled off a first-order differential equation [6])

(1.1) x(t) = x0 +

∫ t

0

f(s, x(s)) ds, t ∈ [0, T ];

here f : [0, T ]×E → E and x0 ∈ E with E a real reflexive Banach space.
The integral in (1.1) is understood to be the Pettis integral. Our main
objective here is to establish existence results for the Volterra integral
equation (1.1) in the case where E is nonreflexive. Our approach relies
upon the concept of convex-power condensing operators with respect
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to a measure of weak noncompactness which we shall introduce in the
present paper. Recall that Sun and Zhang [22] introduced the definition
of convex-power condensing operator with respect to the Kuratowski
measure of noncompactness and proved a fixed point theorem which
extended the well-known Sadovskii’s fixed point theorem and a fixed
point theorem in Liu et al. [16]. In [25], Zhang et al. established
some fixed point theorems of Rothe and Altman types about convex-
power condensing operators with respect to the Kuratowski measure of
noncompactness. These results were applied to a differential equation
of one order with integral boundary conditions. In this paper we shall
use the concept of a convex-power condensing operator with respect to
a measure of weak noncompactness to prove some fixed point principles
which generalize the Arino-Gautier-Penot principle [2], Sadovskii’s
type principle for weakly sequentially continuous mappings [12, 14],
the Leray-Schauder type principle for weakly sequentially continuous
mappings [21] and many others. These fixed point principles will be
used to derive an existence theory for (1.1) in the case where E is
nonreflexive.

For the remainder of this section we gather some notations and
preliminary facts. Let X be a Banach space, let B(X) denote the
collection of all nonempty bounded subsets of X and W(X) the subset
of B(X) consisting of all weakly compact subsets of X . Also, let Br

denote the closed ball centered at 0 with radius r.

In our considerations the following definition will play an important
role.

Definition 1.1 [3]. A function ψ:B(X) → R+ is said to be a measure
of weak noncompactness if it satisfies the following conditions:

(1) The family ker (ψ) = {M ∈ B(X) : ψ(M) = 0} is nonempty and
ker (ψ) is contained in the set of relatively weakly compact sets of X .

(2) M1 ⊆M2 ⇒ ψ(M1) ≤ ψ(M2).

(3) ψ(co (M)) = ψ(M), where co (M) is the closed convex hull of M .

(4) ψ(λM1 + (1− λ)M2) ≤ λψ(M1) + (1 − λ)ψ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty weakly closed subsets of
X with M1 bounded and M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · such that
limn→∞ ψ(Mn) = 0, then M∞ := ∩∞

n=1Mn is nonempty.
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The family kerψ described in (1) is said to be the kernel of the
measure of weak noncompactness ψ. Note that the intersection set
M∞ from (5) belongs to kerψ since ψ(M∞) ≤ ψ(Mn) for every n and
limn→∞ ψ(Mn) = 0. Also, it can be easily verified that the measure ψ
satisfies

(1.2) ψ(Mw) = ψ(M)

where Mw is the weak closure of M .

A measure of weak noncompactness ψ is said to be regular if

(1.3) ψ(M) = 0 if and only if M is relatively weakly compact,

subadditive if

(1.4) ψ(M1 +M2) ≤ ψ(M1) + ψ(M2),

homogeneous if

(1.5) ψ(λM) = |λ|ψ(M), λ ∈ R,

and set additive if

(1.6) ψ(M1 ∪M2) = max(ψ(M1), ψ(M2)).

The first important example of a measure of weak noncompactness
has been defined by De Blasi [9] as follows:
(1.7)
w(M) = inf {r > 0 : there exists a W ∈ W(X) with M ⊆W +Br},

for each M ∈ B(X).

Notice that w(.) is regular, homogeneous, subadditive and set additive
(see [9]).

The following results are crucial for our purposes. We first state a
theorem of Ambrosetti type (see [15, 17] for a proof).

Theorem 1.2. Let E be a Banach space, and let H ⊆ C([0, T ], E) be
bounded and equicontinuous. Then the map t→ w(H(t)) is continuous
on [0, T ] and
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w(H) = sup
t∈[0,T ]

w(H(t)) = w(H [0, T ]),

where H(t) = {h(t):h ∈ H} and H [0, T ] = ∪t∈[0,T ]{h(t):h ∈ H}.

The following lemma is well-known (see for example [22]).

Lemma 1.3. If H ⊆ C([0, T ], E) is equicontinuous and x0 ∈
C([0, T ], E), then co (H ∪ {x0}) is also equicontinuous in C([0, T ], E).

In what follows, letX be a Banach space, C a nonempty closed convex
subset of X , F :C → C a mapping and x0 ∈ C. For any M ⊆ C, we
set

(1.8)
F (1,x0)(M) = F (M),

F (n,x0)(M) = F
(
co

(
F (n−1,x0)(M) ∪ {x0}

))
,

for n = 2, 3, . . . .

Definition 1.4. Let X be a Banach space, C a nonempty closed
convex subset of X and ψ a measure of weak noncompactness on X .
Let F :C → C be a bounded mapping (that is, it takes bounded sets
into bounded ones), x0 ∈ C and n0 a positive integer. We say that F
is a ψ- convex-power condensing operator about x0 and n0 if, for any
bounded set M ⊆ C with ψ(M) > 0, we have

(1.9) ψ(F (n0,x0)(M)) < ψ(M).

Obviously, F :C → C is ψ-condensing if and only if it is ψ- convex-
power condensing operator about x0 and 1.

2. Fixed point theorems.

Theorem 2.1. Let X be a Banach space and ψ a regular, and set
additive measure of weak noncompactness on X. Let C be a nonempty
closed convex subset of X, x0 ∈ C and n0 a positive integer. Suppose
F :C → C is ψ-convex-power condensing about x0 and n0. If F is
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weakly sequentially continuous and F (C) is bounded, then F has a fixed
point in C.

Proof. Let

F = {A ⊆ C, co (A) = A, x0 ∈ A and F (A) ⊆ A}.
The set F is nonempty since C ∈ F . Set M = ∩A∈FA. Now we show
that, for any positive integer n we have

P(n) M = co
(
F (n,x0)(M) ∪ {x0}

)
.

To see this, we proceed by induction. Clearly M is a closed convex
subset of C and F (M) ⊆ M . Thus, M ∈ F . This implies co (F (M) ∪
{x0}) ⊆M . Hence, F (co (F (M)∪{x0})) ⊆ F (M) ⊆ co (F (M)∪{x0}).
Consequently, co (F (M) ∪ {x0}) ∈ F . Hence, M ⊆ co (F (M) ∪ {x0}).
As a result co (F (M) ∪ {x0}) = M . This shows that P(1) holds. Let
n be fixed, and suppose P(n) holds. This implies F (n+1,x0)(M) =
F (co (F (n,x0)(M) ∪ {x0})) = F (M). Consequently,

(2.1) co
(
F (n+1,x0)(M) ∪ {x0}

)
= co (F (M) ∪ {x0}) =M.

As a result,

(2.2) co
(
F (n0,x0)(M) ∪ {x0}

)
=M.

Using the properties of the measure of weak noncompactness we get

ψ(M) = ψ
(
co

(
F (n0,x0)(M) ∪ {x0}

))
= ψ(F (n0,x0)(M)),

which yields that M is weakly compact. Since F :M → M is weakly
sequentially continuous, the result follows from the Arino-Gautier-
Penot fixed point theorem [2].

As an easy consequence of Theorem 2.1 we obtain the following
sharpening of [12, Theorem 12] and [14, Theorem 2].

Corollary 2.2. Let X be a Banach space and ψ a regular, set
additive measure of weak noncompactness on X. Let C be a nonempty
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closed convex subset of X. Assume F :C → C is a sequentially
weakly continuous map with F (C) bounded. If F is ψ-condensing,
i.e., ψ(F (M)) < ψ(M), whenever M is a bounded non-weakly compact
subset of C, then F has a fixed point.

Remark 2.3. Theorem 2.1 is also an extension of [21, Theorem 2.2]
and the Arino-Gautier-Penot fixed point theorem [2].

Lemma 2.4. Let F :X → X be convex-power condensing about x0
and n0 (n0 is a positive integer) with respect to a regular and set additive

measure of weak noncompactness ψ. Let F̃ :X → X be the operator
defined on X by F̃ (x) = F (x + x0) − x0. Then, F̃ is convex-power
condensing about 0 and n0 with respect to ψ. Moreover, F has a fixed
point if F̃ does.

Proof. Let M be a bounded subset of X with ψ(M) > 0. We claim
that, for all integers n ≥ 1, we have

(2.3) F̃ (n,0)(M) ⊆ F (n,x0)(M + x0)− x0.

To see this, we shall proceed by induction. Clearly,

(2.4) F̃ (1,0)(M) = F̃ (M) = F (M + x0)− x0 = F (1,x0)(M + x0)− x0.

Fix an integer n ≥ 1 and suppose (2.3) holds. Then

(2.5) F̃ (n,0)(M) ∪ {0} ⊆ co
(
F (n,x0)(M + x0) ∪ {x0}

)
− x0.

Hence,

(2.6) co
(
F̃ (n,0)(M) ∪ {0}

)
⊆ co

(
F (n,x0)(M + x0) ∪ {x0}

)
− x0.

As a result,

F̃ (n+1,0)(M) = F̃
(
co

(
F̃ (n,0)(M) ∪ {0}

))
⊆ F̃

(
co

(
F (n,x0)(M + x0) ∪ {x0}

)
− x0

)
= F

(
co

(
F (n,x0)(M + x0) ∪ {x0}

)
− x0

)
= F (n+1,x0)(M + x0)− x0.
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This proves our claim. Consequently,

ψ(F̃ (n0,0)(M))) ≤ ψ(F (n0,x0)(M + x0)− x0)

≤ ψ(F (n0,x0)(M + x0))

< ψ(M + x0) ≤ ψ(M).

This proves the first statement. The second statement is straightfor-
ward.

Theorem 2.5. Let X be a Banach space, and let ψ be a regular and
set additive measure of weak noncompactness on X. Let Q and C be
closed, convex subsets of X with Q ⊆ C. In addition, let U be a weakly
open subset of Q with x0 ∈ U and such that U is weakly open in C.
Suppose F :X → X is a weakly sequentially continuous and ψ-power-
convex condensing map about x0 and n0 (n0 is a positive integer). If,
moreover, F (Uw) is bounded and F (Uw) ⊆ C, then either

(2.7) F has a fixed point,

or

(2.8) there is a point u ∈ ∂QU and λ ∈ (0, 1) with u = λFu;

here ∂QU is the weak boundary of U in Q.

Proof. By replacing F,Q,C and U by F̃ , Q− x0, C − x0 and U − x0,
respectively, and using Lemma 2.4, we may assume that 0 ∈ U and F
is ψ-power-convex condensing about 0 and n0. Now suppose (2.8) does
not occur and F does not have a fixed point on ∂QU (otherwise we are
finished since (2.7) occurs). Let

M = {x ∈ Uw : x = λFx for some λ ∈ [0, 1]}.

The set M is nonempty since 0 ∈ U . Also, M is weakly sequentially
closed. Indeed, let (xn) be a sequence of M which converges weakly
to some x ∈ Uw, and let (λn) be a sequence of [0, 1] satisfying
xn = λnFxn. By passing to a subsequence, if necessary, we may assume
that (λn) converges to some λ ∈ [0, 1]. Since F is weakly sequentially
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continuous, then Fxn ⇀ Fx. Consequently, λnFxn ⇀ λFx. Hence,
x = λFx and therefore x ∈M . Thus, M is weakly sequentially closed.
We now claim thatM is relatively weakly compact. Suppose ψ(M) > 0.
Clearly,

(2.9) M ⊆ co (F (M) ∪ {0}).
By induction, note for all positive integers n we have

(2.10) M ⊆ co (F (n,0)(M) ∪ {0}).
Indeed, fix an integer n ≥ 1 and suppose (2.10) holds. Then

(2.11) F (M) ⊆ F (co (F (n,0)(M) ∪ {0}) = F (n+1,0)(M).

Hence,

(2.12) co (F (M) ∪ {0}) ⊆ co (F (n+1,0)(M) ∪ {0}).
Combining (2.9) and (2.12), we arrive at

(2.13) M ⊆ co (F (n+1,0)(M) ∪ {0}).
This proves (2.10). In particular, we have

(2.14) M ⊆ co (F (n0,0)(M) ∪ {0}).
Thus,

(2.15) ψ(M) ≤ ψ(co (F (n0,0)(M) ∪ {0})) = ψ(F (M)) < ψ(M),

which is a contradiction. Hence, ψ(M) = 0, and therefore Mw is
compact. This proves our claim. Now let x ∈Mw. SinceMw is weakly
compact, then there is a sequence (xn) in M which converges weakly
to x. Since M is weakly sequentially closed, we have x ∈ M . Thus,
Mw = M . Hence, M is weakly closed and therefore weakly compact.
From our assumptions we have M ∩ ∂QU = ∅. Since X endowed with
the weak topology is a locally convex space then there exists a weakly
continuous mapping ρ:Uw → [0, 1] with ρ(M) = 1 and ρ(∂QU) = 0
(see [11]). Let

T (x) =

{
ρ(x)F (x) x ∈ Uw,

0 x ∈ X \ Uw.
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Clearly T :X → X is weakly sequentially continuous since F is weakly
sequentially continuous. Moreover, for any S ⊆ C we have

T (S) ⊆ co (F (S) ∪ {0}).
This implies that

T (2,0)(S) = T (co (T (S) ∪ {0})) ⊆ T (co (F (S) ∪ {0}))
⊆ co (F (co (F (S) ∪ {0}) ∪ {0}))
= co (F (2,0)(S) ∪ {0}).

By induction,

T (n,0)(S) = T
(
co (T (n−1,0)(S) ∪ {0})

)
⊆ T

(
co (F (n−1,0)(S) ∪ {0})

)
⊆ co

(
F (co (F (n−1,0)(S) ∪ {0}) ∪ {0})

)
= co (F (n,0)(S) ∪ {0}),

for each integer n ≥ 1. Using the properties of the measure of weak
noncompactness we get
(2.16)
ψ(T (n0,0)(S)) ≤ ψ(co (F (n0,0)(S) ∪ {0})) = ψ(F (n0,0)(S)) < ψ(S),

if ψ(S) > 0. Thus, T :X → X is weakly sequentially continuous,
T (C) ⊆ C and T is ψ-power-convex condensing about 0 and n0. By
Theorem 2.1 there exists an x ∈ C such that Tx = x. Now x ∈ U since
0 ∈ U . Consequently, x = ρ(x)F (x) and so x ∈ M . This implies that
ρ(x) = 1 and so x = F (x).

Remark 2.6. Theorem 2.5 is a sharpening of [21, Theorem 2.3] and
[1, Theorem 2.3]. In Theorem 2.5, notice that ∂QU = ∂CU .

3. Existence results. In this section we shall discuss the existence
of weak solutions to the Volterra integral equation

(3.1) x(t) = x0 +

∫ t

0

f(s, x(s)) ds, t ∈ [0, T ];
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here f : [0, T ]×E → E and x0 ∈ E with E is a real Banach space. The
integral in (3.1) is understood to be the Pettis integral and solutions
to (3.1) will be sought in C([0, T ], E).

This equation will be studied under the following assumptions:

(i) for each t ∈ [0, T ], ft = f(t, .) is weakly sequentially continuous
(i.e., for each t ∈ [0, T ], for each weakly convergent sequence (xn), the
sequence ft(xn) is weakly convergent),

(ii) for each continuous x: [0, T ] → E, f(., x(.)) is Pettis integrable
on [0, T ],

(iii) there exists an α ∈ L1[0, T ] and θ: [0,+∞) → (0,+∞) a
nondecreasing continuous function such that |f(s, u)| ≤ α(s)θ(|u|) for
almost every s ∈ [0, t] and all u ∈ E, with∫ T

0

α(s) ds <

∫ ∞

|x0|

dx

θ(x)
,

(iv) there is a constant τ ≥ 0 such that, for any bounded subset S of
E and for any t ∈ [0, T ], we have

w(f([0, t]× S)) ≤ τw(S).

Theorem 3.1. Let E be a Banach space and suppose that (i) (iv)
hold. Then (3.1) has a solution in C([0, T ], E).

Proof. Let

C = {x ∈ C([0, T ], E) :|x(t)| ≤ b(t) for t ∈ [0, T ] and

|x(t) − x(s)| ≤ |b(t)− b(s)| for t, s ∈ [0, T ]},
where

b(t) = I−1

(∫ t

0

α(s) ds

)
and I(z) =

∫ z

|x0|

dx

θ(x)
.

Notice that C is a closed, convex, bounded, equicontinuous subset of
C([0, T ], E) with 0 ∈ C. Define the operator F on C by

(3.2) Fx(t) = x0 +

∫ t

0

f(s, x(s)) ds.
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Arguing exactly as in [18], we see that F is weakly sequentially
continuous and maps C into C. Now we show that there is an integer
n0 such that F is w-power-convex condensing about 0 and n0, where
w is the De Blasi measure of weak noncompactness. To see this, notice
that, for each bounded set H ⊆ C and for each t ∈ [0, T ],

w(F (1,0)(H)(t)) = w(F (H)(t))

= w

({
x0 +

∫ t

0

f(s, x(s)) ds:x ∈ H

})
≤ w(tco {f(s, x(s)):x ∈ H, s ∈ [0, t]})
= tw(co {f(s, x(s)):x ∈ H, s ∈ [0, t]})
≤ tw(f([0, t]×H [0, t]))

≤ tτw(H [0, t]).

Theorem 1.2 implies (since H is equicontinuous) that

(3.3) w(F (1,0)(H)(t)) ≤ tτw(H).

Since F (1,0)(H) is equicontinuous, it follows from Lemma 1.3 that
F (2,0)(H) is equicontinuous. Using (3.3), we get

w(F (2,0)(H)(t))

= w

({
x0 +

∫ t

0

f(s, x(s)) ds:

x ∈ co (F (1,0)(H) ∪ {0})
})

≤ w

({∫ t

0

f(s, x(s)) ds:x ∈ co (F (1,0)(H) ∪ {0})
})

= w

({∫ t

0

f(s, x(s)) ds:x ∈ V

})
,

where V = co (F (1,0)(H) ∪ {0}). Fix t ∈ [0, T ]. We divide the interval
[0, t] into m parts 0 = t0 < t1 < · · · < tm = t in such a way that
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Δti = ti − ti−1 = t/m, i = 1, . . . ,m. For each x ∈ V , we have

∫ t

0

f(s, x(s)) ds =

m∑
i=1

∫ ti

ti−1

f(s, x(s)) ds

∈
m∑
i=1

Δtico {f(s, x(s)):x ∈ V, s ∈ [ti−1, ti]}

⊆
m∑
i=1

Δtico (f([ti−1, ti]× V ([ti−1, ti]))).

Using again Theorem 1.2, we infer that, for each i = 2, . . . ,m, there is
an si ∈ [ti−1, ti] such that

(3.4) sup
s∈[ti−1,ti]

w(V (s)) = w(V [ti−1, ti]) = w(V (si)).

Consequently,

w

({∫ t

0

f(s, x(s)) ds:x ∈ V

})

≤
m∑
i=1

Δtiw(co (f([ti−1, ti]× V ([ti−1, ti]))))

≤ τ

m∑
i=1

Δtiw(co (V ([ti−1, ti])))

≤ τ
m∑
i=1

Δtiw(V ((si))).

On the other hand, if m→ ∞, then

(3.5)

m∑
i=1

Δtiw(V ((si)) −→
∫ t

0

w(V (s)) ds.

Using regularity, set additivity and convex closure invariance of the De
Blasi measure of weak noncompactness together with (3.3), we obtain

(3.6) w(V (s)) = w(F (1,0)(H)(s)) ≤ sτw(H),
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and therefore,

(3.7)

∫ t

0

w(V (s)) ds ≤ sτ
t2

2
w(H).

As a result,

(3.8) w(F (2,0)(H)(t)) ≤ (τt)2

2
w(H).

By induction, we get

(3.9) w(F (n,0)(H)(t)) ≤ (τt)n

n!
w(H).

Invoking Theorem 1.2, we obtain

(3.10) w(F (n,0)(H)) ≤ (τT )n

n!
w(H).

Since limn→∞ (τT )n/n! = 0, then there is an n0 with (τT )n0/n0! < 1.
This implies

(3.11) w(F (n0,0)(H)) < w(H).

Consequently, F is w-power-convex condensing about 0 and n0. The
result follows from Theorem 2.1.
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6. M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss.
Math. Differential Incl. 15 (1995), 5 14.
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12. J. Garćıa-Falset, Existence of fixed points and measure of weak noncompact-
ness, Nonlinear Anal. 71 (2009), 2625 2633.

13. R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81 86.

14. I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous
mapping, Discuss. Math. Differential Incl. 15 (1995), 15 20.

15. I. Kubiaczyk and S. Szufla, Kneser’s theorem for weak solutions of ordinary
differential equations in Banach spaces, Publ. Inst. Math. (Beograd) 46 (1982),
99 103.

16. L. Liu, F. Guo, C. Wu and Y. Wu, Existence theorems of global solutions for
nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl.
309 (2005), 638 649.

17. A.R. Mitchell and C.K.L. Smith, An existence theorem for weak solutions of
differential equations in Banach spaces, in Nonlinear equations in abstract spaces,
V. Lakshmikantham, ed., Academic Press, New York, 1978.

18. D. O’Regan, Weak solutions of ordinary differential equations in Banach
spaces, Appl. Math. Lett. 12 (1999), 101 105.

19. , Integral equations in reflexive Banach spaces and weak topologies,
Proc. Amer. Math. Soc. 124 (1996), 607 614.

20. , Operator equations in Banach spaces relative to the weak topology,
Arch. Math. 71 (1998), 123 136.

21. , Fixed point theory for weakly sequentially continuous mappings,
Math. Comput. Model. 27 (1998), 1 14.

22. J. Sun and X. Zhang, The fixed point theorem of convex-power condensing
operator and applications to abstract semilinear evolution equations, Acta Math.
Sinica 48 (2005), 339 446 (in Chinese).

23. A. Szep, Existence theorems for weak solutions of ordinary differential
equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197 203.

24. E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed point
theorems, Springer-Verlag, New York, 1986.

25. Guowei Zhang, Tongshan Zhang and Tie Zhang, Fixed point theorems of
Rothe and Altman types about convex-power condensing operator and application,
Appl. Math. Comput. 214 (2009), 618 623.



CONDENSING OPERATOR FIXED POINT THEOREMS 181

Department of Mathematical Sciences, Florida Institute of Technol-

ogy, 150 W. University Boulevard, Melbourne, FL 32901 and KFUPM

Chair Professor, Mathematics and Statistics Department, King Fahd

University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Email address: agarwal@fit.edu

Department of Mathematics, National University of Ireland, Galway,

Ireland

Email address: donal.oregan@nuigalway.ie
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