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ABSTRACT. The goal of the paper is to prove that a
quadratic Hammerstein integral equation has solutions in the
class of real functions defined, bounded, continuous on the
real half-axis and having limits at infinity. The main tools
used in our investigations are the technique of measures of
noncompactness and the Darbo fixed point theorem. We
provide an example illustrating our theory.

1. Introduction. The principal goal of the paper is to study the
solvability of the quadratic Hammerstein integral equation

(1.1)  a(t) =p(t) + f(t, (1)) /0oo g(t, 7)h(r, z(7)) dr, ¢ >0.

We will conduct our investigations concerning the above equation in
the space of real functions which are defined, bounded and continuous
on the real half-axis Ry = [0,00). Moreover, we look for solutions of
equation (1.1) which have limits at infinity, i.e., we look for any solution
x = z(t) of equation (1.1) having a limit lim;_, ., 2(¢). Obviously that
limit is finite since the solution z(t) is a member of the above described
function space.

In order to realize our goal we will apply the technique of measures
of noncompactness and a fixed point theorem of Darbo type. More
precisely, we use such a measure of noncompactness in the mentioned
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function space to show that any fixed point of an operator associated
with equation (1.1), obtained with help of the Darbo fixed point
theorem, is a solution of equation (1.1) having the desired property.

It is worthwhile noticing that the quadratic integral equations of
Hammerstein type (1.1) are a generalization of the classical Hammer-
stein integral equation on bounded intervals of the form

(1.2) z(t) = p(t) —l—/ g(t,)h(r,z(7))dr, tE€]a,b]

(cf. [10, 15, 17, 18]). Also equation (1.1) generalizes the Hammerstein
integral equation on an unbounded intervals having the form

(1.3) z(t) = p(t) + /000 g(t,T)h(r,z(T))dr, t>0,

which was considered in several papers and monographs (cf. [1, 10,
12, 15, 16, 18], for example).

Let us point out that the above-mentioned integral equations (1.1),
(1.2) and (1.3) were investigated from miscellaneous points of view in
1, 10, 12, 14, 15, 18] and there the authors considered the existence
of solutions of equation (1.2) in the classical space consisting of real
functions being continuous or Lebesgue LP-integrable on an interval
[a,b]. In the papers [7, 8, 9] the authors studied the existence of
solutions of equations (1.1) and (1.3) which vanish at infinity or are
asymptotically stable (see also [16]).

The novelty of the present paper is that we consider the existence of
solutions of equation (1.1) in the class of functions being bounded and
continuous on R, and tending to limits at infinity. Thus, from this
point of view the result of this paper is new and original.

Let us notice that a result obtained in the paper [8] is a particular
case of that proved in this paper. Indeed, in [8] it was shown that
equation (1.1) has a solution in the class of functions tending to zero
at infinity.

It is also worthwhile mentioning that in our considerations we impose
different and more general assumptions than those utilized in [8].

In the last section of the paper we give an example illustrating our
main result and showing how the technique developed in this paper can
be applied in a concrete situation.
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2. Measures of noncompactness and Darbo fixed point
theorem. Assume that E is an infinite-dimensional real Banach space
with norm || - || and zero element 6. Denote by B(z,r) the closed ball
centered at x and with radius 7. We write B, to denote the ball B(6, ).
For a subset X of E we denote by X and Conv X the closure and
the convex closure of X, respectively. Moreover, we use the classical
symbols X +Y and AX to denote the usual operations on sets. Further,
let us denote by Mg the family of all nonempty and bounded subsets
of E and by g its subfamily consisting of all relatively compact sets.
Any function p : Mg — R4 will be called the set quantity in E.
Obviously, the concept of a set quantity plays a very important role in
nonlinear analysis and its applications (cf. [2, 3, 4, 6], for example).
If p is a set quantity in F, then the family ker y defined by putting

kerp={X € Mg : p(X) =0}

will be called the kernel of u.

In this paper we will use set quantities of special type which are called
measures of noncompactness. Let us recall the definition of this concept
presented in [6].

Definition 2.1. A set quantity p is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1° The family ker y is nonempty and ker p C 9g.

2° X C Y implies p(X) < u(Y).

3° u(X) = u(X).

4° p(Conv X) = pu(X).

5 p(AX + (1 =A)Y) < Au(X) + (1 = )p((Y) for A €[0,1].

6° If (X,,) is a sequence of closed sets from Mg such that X, 1 C X,
(n = 1,2,...) and if lim;, o p(Xy,) = 0, then the intersection set
Xoo =N, X, is nonempty.

Let us pay attention to fact that the intersection set X., occurring
in axiom 6° is a member of the kernel ker 41 [6]. In what follows we will
use following fixed point theorem. This theorem was formulated first
by Darbo [11] (see [2, 4, 6, 12]).
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Theorem 2.2. Let Q be a nonempty, bounded, closed and convex
subset of the Banach space E, and let Q : Q@ — Q be a continuous
mapping. Assume that there exists a constant k € [0,1) such that
p(QX) < ku(X) for any nonempty subset X of Q. Then Q has a fized
point in the set Q.

Remark 2.3. It is worthwhile mentioning that under the hypotheses of
Theorem 2.2 the set Fix @ of all fixed points of the operator @ in the set
Q belongs to the kernel ker y1 of the measure of noncompactness p [6].
This simple observation will be crucial in our further considerations.

3. Some set quantities in the space BC(R) and superposi-
tion operators. Now BC(R) consists of all real functions defined,
bounded and continuous on the real half-line R} = [0, c0) and equipped
with the standard norm

|z]| = sup{[z(¢)] : ¢ € Ry }.

For a function x € BC(R4) and for a fixed number T > 0, let us
define the quantity

Br(z) =sup{|z(t) —z(s)|: t > T,s > T}

Next, if X is a nonempty and bounded subset of BC(R;) (i.e.,
X € Mpe(r,)), let us put

Br(X) = sup{fr(z): z € X}
and

(3.1) B(X) = lim Br(X).
T— o0
Observe that the quantity Sr(x) represents the oscillation of the func-
tion z = z(t) on the interval [T, c0). Obviously S(z) = 0 if and only if
there exists a finite limit 1tlim z(t). It is a consequence of well-known
—00
facts from classical mathematical analysis. Moreover, if X € Mpc(r,),
then X € ker g if and only if for any € > 0 there exists 7" > 0 such that
|z(t) — z(s)| < e for all t,s > T and for each z € X. Then, passing in
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the inequality |z(t) — z(s)| < € with s to infinity, we get |x(t) —z4| < ¢
for any ¢ > T, where x, denotes the limit lim; ,, 2(t). Since = was
chosen arbitrarily in X this allows us to deduce that for any € > 0
there exists T > 0 such that |z(t) — z4| < € for each ¢ > T and for
each x € X. This assertion means that all functions from the set X
tend to their limits at infinity uniformly with respect to the set X or,
equivalently, that all functions from X tend to their limits with the
same rate.

In what follows we give a few facts concerning the properties of the so-
called superposition operator related to the quantity 8 defined above.
Assume that f : Ry xR — R is a given function. Then, we may assign
to every function z : Ry — R the function Fz defined by the equality

(Fz)(t) = f(tx(t), t=0.

The operator F' defined in this way is called the superposition operator
generated by the function f (cf. [3]).

We have the following result.

Theorem 3.1. Assume that the function f(t,z) = f: Ry xR =R
satisfies the following conditions:

(i) For any r > 0 the following equality holds

Th—I>n {sup{\f(t,x) - f(37$)| s > T,|LE‘ < T}} =0.

(ii) There ezists a nondecreasing function k(r) =k : Ry — Ry such
that

|f (@) = f(t,y)] < K(r)|z —y]

for each t € Ry and for all z,y € [—r,r].

Then, for any function z from the space BC(Ry) such that © € B,
the following inequality holds

B(Fz) < k(r)B(=),

where F is the superposition operator generated by the function f(t,x).
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Proof. Fix r > 0, T > 0 and take ¢t,s > T. Then, for an arbitrary
function z € B, we have:

(Fz)(t) — (Fz)(s)| < |f(t,x(t)) = f(s,2(t)| + |f(s,2(2)) — f(s,2(s))|
< [f(a(t) — f(s,2(8) + k(r)|(t) — z(s)]]-

Hence we obtain

Br(Fz) < sup{|f(t,z) — f(s,

z)
Now, keeping in mind assumption (i), from the above estimate we derive
<

B(Fz) < k(r)B(z)

and the proof is complete. o

|:t,8 > T,|z| <7} + k(r)sr(z).

Corollary 3.2. Let X be a nonempty subset of the ball B, in
the space BC(Ry). Then, under the assumptions of Theorem 3.1 the
following inequality is satisfied

B(FX) < k(r)B(X).

Remark 3.3. If we additionally assume that there exists a number
ro > 0 such that k(rg) < 1 (k(ro) is the Lipschitz constant appearing
in assumption (ii)) then in view of Corollary 3.2 we can say that the
superposition operator F' generated by f strictly improves the ultimate
oscillation of functions from an arbitrary nonempty set X, X C B,,.

Below we provide a few examples of functions f(t,z) generating su-
perposition operators corresponding to Theorem 3.1 and Corollary 3.2.

Example 3.4. Let f(t,z) have the form

f(t,2) = a(t)b(x),

where a : R4 — R is continuous and has a finite limit at infinity, while
b : R — R is locally Lipschitzian, i.e., there exists a nondecreasing
function k : R4+ — R4 such that

|b(x) = b(y)| < k(r)|z - y]
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for all z,y € [~r,r]. Then the function f satisfies the assumptions of
Theorem 3.1.

Indeed, it is easily seen that a = a(t) is bounded on R;. Thus, if
we put A = sup{la(t)| : ¢ € R4} then for each fixed 7 > 0 and for all
teRy, x,y € [-r,7] we have

[f(t2) = f(8 )| < la(B)[[b(z) = b(y)| < Ak(r)|z - yl.

On the other hand, in view of the existence of a finite limit lim;_, o, a(t)
and the estimate

|b(2)] < [b(z) — b(0)] + [b(0)| < k(|z])|z] + [b(0)]

it is easy to check that the function f satisfies assumption (i) of
Theorem 3.1.

Assuming the same hypotheses as above it is also easy to verify
that the function f(¢,z) = a(t) + b(x) satisfies the assumptions of
Theorem 3.1.

Example 3.5. Let f: R; x R — R be f(t,z) = arctantz.

Observe that this function does not satisfy assumption (i) of Theo-
rem 3.1. In fact, for a fixed z > 0, we have

sup{|f(t,z)—f(s,x)|: t,s > T} =sup{]| arctan tx —arctan sz|: t,s >T}

ﬂ'
=35~ arctan Tz,

where T' > 0. Hence, we get

sup{|f(t,z) — f(s,z)| : t,s > T\ [z <7}
> sup{|f(t,z) — f(s,2)|: t,s > T,0< z <r}
=5

as we claimed.

Example 3.6. Let f(t,z) = arctan(t + z) for t € Ry and z € R.
Then, for fixed T'> 0 and = € R we get

sup{|f(t,@) = f(s,@)] : t,5 > T} = £ —arctan(T + a).
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This yields
Tlim {sup{|f(t,z) — f(s,z)| : t,s > T,|z| <r}} =0
—00

which means that the function f satisfies assumption (i) of Theo-
rem 3.1. Obviously this function satisfies also assumption (ii) with
k(r) =1 for r > 0.
Thus, in view of Theorem 3.1 we deduce that for any function
z € BC(R4) we have
B(Fz) < (=),

where F' is the superposition operator generated by f.

Now we recall the definition of the measure of noncompactness in the
space BC (R ). Take an arbitrary nonempty and bounded subset X of
the space BC(Ry). Next, fix e > 0, T > 0 and choose € X. Denote
by w” (z,¢) the modulus of continuity of the function z on the interval
[0, 7] defined by the formula

w'(z,¢) = sup{|z(t) — x(s)| : t,s € [0, T], |t — 5| < €}
Further, let us put

wl(X,e) = sup{w’(z,6) ;2 € X}, wi(X)= lir%wT(X, €)
E—
and
wo(X) = lim wd (X).

T—o0

Finally, we define

(3.2) p(X) = wo(X) + B(X),

where 3 is the set quantity defined by formula (3.1).

The set quantity p defined above is a measure of noncompactness in
the space BC(R. ) in the sense of Definition 2.1 [6]. The kernel ker y
of this measure consists of all sets X € Mpc(r,) such that functions
belonging to X are locally equicontinuous on R, and tend to their
limits at infinity with the same rate (cf. the characterization of the
kernel ker 8 given at the beginning of this section). Other properties
of the measure of noncompactness p can be found in [5, 6].
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4. Main result. In this section we consider the quadratic Hammer-
stein integral equation (1.1). We assume the following:

(i) p € BC(Ry) and there exists the limit lim; o, p(t).

(ii) The function f : R4 x R — R is continuous and there exists a
nondecreasing function k; : Ry — R such that

[f(t2) = f(t: )| < ka(r)z -yl

for any t € Ry and for all z,y € [—r,r], where r > 0 is an arbitrarily
fixed number. Moreover, the function ¢ — f(¢,0) is a member of the
space BC(R,).

(iii) For any r > 0 the following equality holds
Thm {sup{\f(t,ac) o f(s,x)| : t,S 2 Ta |1“ S r}} = 0.
—00

(iv) The function g : R4 x Ry — R is continuous.

(v) The function A : Ry X R — R is continuous, and there exist
a continuous function a : Ry — R, a nondecreasing function k; :
R, — R, and a continuous and nondecreasing function b : R, — R
with 5(0) = 0 such that

|h(t, ) = h(t,y)| < a(t)kz(r)b(|z — yl)

for t € Ry and for z,y € [—r,7], where r > 0 is arbitrarily a fixed
number.

(vi) The functions 7 — a(7)|g(t, 7)|, 7 — |g(t, 7)h(7, 0)| are integrable
over Ry for any fixed t € R;. Moreover, the functions G,,Gp : Ry —
R defined by the formulas

Gutt) = [ " a(la(t, 7)) dr,
G(t) = /Ooo lg(t, 7)h(r, 0)] dr

are bounded on R.

(vii) The following equalities hold:

lim {sup{/ooo |g(t,7')—g(s,7')a(T)dT:t,sZT}} o,

T—o0

lim {sup{/ooo 196, 7) — g(s, ) |R(r,0) dr : 1,5 > T}} ~0.

T— 00
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(viii) The integrals

/0 " a()lglt, ) dr, / " lg(t, 7, 0)] dr

are uniformly convergent with respect to t € R [13], i.e., the following
equalities are satisfied

Tlgxlm{sup{/Tma(T)|g(t,r)dmtem}} o,
Tli_rgo{sup{/;o g(t,T)h(T,0)|dT:t€R+}} 0.

In what follows let us observe that taking into account assumption
(vi) we may define the finite constants G, and G}, by putting

G, =sup{G,(t) : t € R;},
Gp, =sup{Gp(t): t e R }.

Moreover, in view of assumption (ii) the constant F' = sup{|f(¢,0)] :
t € R} is also finite.

Now we formulate our last assumption.

(ix) There exists a positive solution 7y of the inequality
lp|| + rk1(r)ka(r)b(r) Gy + rky (7)Gh + ko(r)b(r)FGy + FGp < r

such that ky(ro)(k2(r0)b(r0)Ga + Gi) < 1.

Remark 4.1. Observe that if ry is a positive solution of the inequality
from assumption (ix) then we can write

’I“()kl (To)kg(ro)b(To)aa+T0k1 (To)@h S ro—Hp\|—k2(r0)b(r0)F§a—F@h.
This yields

b (o) ( (r0)b(70) G + Gin) < 1 — |[pl| + k2(ro)b(ro) FGa + F@h‘

To
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Consequently we deduce
k(7o) (k2(ro)b(ro)Ga + Gp) < 1.

Moreover, if we assume additionally that at least one of the terms
p(t), k2(ro)b(ro) f(¢,0)G4(t), f(t,0)Gh(t) does not vanish identically on
R, then the second inequality from assumption (ix) is automatically
satisfied.

The main result of the paper is contained in the following theorem.

Theorem 4.2. Under assumptions (i)—(ix) equation (1.1) has at
least one solution © = z(t) belonging to the space BC(R.) and tending
to a finite limit at infinity.

Proof. Consider the operator H defined on the space BC'(R.) by the
formula

(Hz)(t) = p(t) + f(t,x(t)) /000 g(t, T)h(r,z(7))dr, te€R,.

In view of our assumptions let us notice that the function Hz is well
defined.

In what follows we show that Hx is continuous on R for each fixed
function z € BC(R4).

To this end let us fix T > 0 and ¢ > 0. Next, take ¢,s € [0,T] such
that |t — s| < e. Then, invoking our assumptions we get

(Hz)(t) — (Hz)(s)| < [p(t) - p(s)|

+ f(t,a:(t))/ooo o(t, 7)h(r, 2(7)) dr
~ f(s,2(s)) / " g(t,m)h(r,z(r)) dr

|75 2(s)) / " gt r)h(r2(r)) dr

= (s a(s)) / " (s, )b 2(r)) dr
< W (p,) + [ F(tr2(t)) — £(s2(5))]
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x/ 19(t, D)1 A(r, (7)) — h(r, 0|+ |h(r, 0)[] dr

1 (s 2(s) \/ 9t 7) — 9(s,7)|
% ([ (r, 2(r)) — h(r, 0)| +|h(r, 0)[] dr

W' (p,e) +[1£ (& 2(t) — £(t,2(s))]
+ 17t 2(s) = f(s,2(s))l]

/ lg(t, 7)k2(|2(7))o(|2 (7)) + |h(7, 0) ] dr
+ [[f(s,2(s)) — f(5,0)[ + £ (5, 0)]
/ l9(t, [a(7) ks (|2(7))b(|2(7)])

+|A(r, 0[] dr
<wh(p,e) + [k ([lz])](t) — 2(s)] + wi (f,€)]

o0

{mnx||m| a(r)lg(t, 7)| dr
0

+ [Tl 0l dr + el ) +156.0)]

x {/Ooo ka(llz[)o(ll|)a()lg(t, T) — g(s, T)| d7

/ 196, 7) — g(s, )| |h (7, o)|dT}

< w'(p,e) + ka(llzlDk2(l]z])b(|2]))w (2, &)

<, a(r)lg(t, 7)| dr + ka(||])b(||z]wily (f,€)

x /Ooo a(r)lg(t, 7)| dr + ky(||z])w” (2, ¢)

< [ lott. k(0 dr -+ (£.2)

(oo}

x| gt T)R(, 0) | dr+||z| [k ([[z]]) k2 ([l b(]|2[])

S
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< [ atwate, ) = gt dr + el el
/ lg(t, 7)—g(s,7)[|h(7,0)|dT+k2(||2]|)b(||||) F
x/ a()\g(t,7) — g(s,7)|dr + F

/|gtr o(s,7)|[(r,0)| dr < w7 (p, <)

+ Ea (|lz]) R (|2 )b(| || ) Gaw (2, €)
+ k2 ([2|Nb(/[|) Gaw(ly (f,€)

+ k(21N Grw” (2, €) + Grwily (£,¢)
+ ka ([ )b([ ) ([l [k (||]]) + F)

x { | alster) — g(s.m)lar
+ [T alote )l + ot ar
+ (a2l + F)
{/ 19(t,7) = g(s,7)||R, (v, 0)| dr

n /T lg(t, ™) + lg(s, P IA(, o>|dr}

<w(p,e)+ka(l|z])) o (|2 ]Db(|[2]) Ga+ Gl (, €)
+ [ka(I[2])b(l[21)Ga + Ghlwijy) (f,€)
+ ka ([ Dbl (ks (Nl ]]) + F)wi (g,¢)

X/o a(r) dr + (|l [k (2]]) + F)wi (g,¢)
/ (7, 0) dr+ s ([|] o([[| ) ([ 1 ([[]]) + F)

X{/ \gt7'|d7'—|—/a |gs7'|d7'}
T

+ (kL (|2]]) + F)
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x { [ latton0)dr [ lg(e,mn0) dr},

T

where we denoted

wg(f,&‘) = sup{|f(t,x)ff(5,ac)\ :tas € [OaT]a |t o S‘SE,I € [70[705]}7
wlT(g,a) = SUP{|g(t7T) - 9(577—)| 17,1, 8 € [OvT]v |t - 8‘ < 6};
here a = ||z||.

Further, let us observe that taking into account the uniform continu-
ity of the function p(t) on the interval [0, T] and the uniform continuity
of functions f(t, z), g(¢,7) on the sets [0, T] x [—||z]|, ||z||], [0, T'] x [0, T7,
respectively, and assumption (viii), from estimate (4.1) we deduce that
the function Hz is continuous on the interval [0,T]. In view of the
arbitrariness of 7" this implies that Hx is continuous on R .

Now we show that the function Hz is bounded on Ry . To do this fix
arbitrarily t € R. Then, keeping in mind our assumptions, we obtain:

[e.°]

[(Hz)(t)| < |p(t)] + \f(t,:v(t))l/\g(taT)llh(va(T))ldT

0

< lpll + [If (¢ 2(®) = f(& 0)] + |£(£,0)]]
x /Ooo 9@, DI[IA(7, z(7)) = h(7,0)| + [R(7, 0)[] d7
< lpll + [ka (@) DI ()] + £ (2, 0)]]
></OOOI (&, T)lla(m)ka(Jz(T)Do(|2(7)]) + |A(7, 0)[] dT
(4.2) < lpll + [k (l|2]1) + F]
X/OOOI (&, T)l[a(r)k2(l|2]o(]z]]) + (7, 0)]] dr

= [Ipll + [l [k (] k2 (|2 b(][z]]) /oo a(r)lg(t, 7)| dr
0
+ Hﬂfllkl(llfv\l)/0 l9(t,7)h(7,0)| dr
+k2(|JCII)Z)(I%II)F/Oc>o a(t)lg(t, )| dr
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L F / gt 7)h(r,0) dr = |lpl
0

+ |2k ([l | DE2 (2] No(| | ) Ga () + [k (|| ) Ga(t)
+ k([ ])b(||2]|) F Ga(t)

+ FG(t) < |lpll + [k (l2])k2(l2] )o(l|z])Ga

+ ek (|G + ka2 (2]))b(| 2] ) FGa + FGh.

The above inequality implies that the function Hz is bounded on the
interval Ry. This fact in conjunction with the continuity of Hx on
R implies that Hx belongs to the space BC(R;), i.e., the operator
H transforms the space BC'(R}) into itself.

Moreover, combining estimate (4.2) with assumption (ix), we deduce
that there exists a positive number rq such that k;(ro)(k2(r0)b(r0)Ga +
Gp) < 1 and the operator H transforms the ball B, into itself.

In what follows we show that the operator H is continuous on the
ball B,,. To this end fix a number € > 0 and take z,y € B,, with
||z — y|| < e. Then for an arbitrarily fixed ¢ € R} we obtain:

\(Ha)(t) — (Hy)(0)] < \f(t, o) [ " (b, m)h(r,2(r)) dr
) / " (b, r)h(r 2(r)) dr

; ‘f(t,y(t)) / " (6, 7)h(r, (7)) dr

() / " gt m)h(ry(r) dr
< |f(t,2(t) — £t u(t))
x / l9(t, D) [[h(r,2(r)) — h(r,0)| + [h(r,0)]] dr
I (®) — F(6,0)] + 1t 0)l]
< [ lott. D htr,2(7)) = e y() dr
0
< i (ro)la(t) — u(1)|
< [T latt 7)ot ka(ro)bro) + (0l dr
0
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+ [k1(ro)[y()] + | £ (¢, 0)]]

X /Ooo l9(t, 7)|a(T)k2(ro)b(|z(7) — y(7)]) dr
< eki(ro)k2(ro)b(ro)
x /0 ~ a(7)lg(t, 7)| dr + 2k (ro)

y /Ooo 19(t, 7Y (7, 0| dr + roks (o) ka (ro)b(e)
y /0 = (gt )| dr + ka(ro)b(e) F

y /Ooo a(7)|g(t, 7| dr

S é’kl (To)kg (To)b('ro)aa =+ é’kl (To)gh
+ rok1 (T’o)kg(’l“())b(&)aa + kg(To)b(&)F@a.

From the above estimate the desired continuity follows.

Further, let us take a nonempty subset X of the ball B,,. Fix
arbitrarily € > 0, 7' > 0 and choose a function x € X and numbers
t,s € [0,T] such that |t — s| < e. Then reasoning in the same way as
in (4.1) and using the notation introduced in that evaluation, we get:

(Hz)(t) — (Hz)(s)| < w” (p,e)
+ k1 (To)(kg(?“o)b(?‘o)aa + @h)wT(ac, 8)
+ (k2(ro)b(ro)Ga + Gh)wy, (f,€)

T Ea(ro)b(ro) (roks (1) + F)wT (g, €) /0 o(7) dr

+ (roks (ro) + F)w¥ (g, ¢) / Ih(r,0)| dr
+ kz(’l‘o)b(’r‘o)(’f‘okl (7"0) + F)

X {/Oo a(r)\g(t,r)|dr+/oo a(r)|g(s,7-)|dr}

+ (roki(ro) + F)
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X {/Oo lg(t, 7)h(T,0)| dT +709(5,7-)h(7-, 0)|dr}.

T

In the same way as before, using the uniform continuity of the function
p(t) on the interval [0,7T] and of the functions f(¢,x), g(¢t,7) on the
sets [0, T'] X [—ro, ro], [0, T] X [0, T'], respectively, from estimate (4.3) we
derive the following inequality
wo (HX) < ki(ro) (k2(ro)b(ro) Ga + Gp)wg (X)
+ ka2(ro)b(ro) (roky(ro) + F)

X {/oo a(7-)|g(t,r)d7-+/TOo a(r)g(s,r)|d7-}

+ (roki(ro) + F)

<{ [ om0 dr+ [ lgtempin ol ar,
T T
Hence, employing assumption (viii), we derive the following estimate
(44) wo (HX) S kl (7’0)(]62 (To)b(T‘o)éa + @h)wo (X),

where the quantities wl and wq are defined in Section 3.

Next, take as before a nonempty set X C B,, and fix a number
T > 0. Then, for an arbitrarily fixed function x € X and for arbitrary
numbers ¢, s such that t > T, s > T, reasoning similarly as in (4.1) we
obtain:

(Hz)(t) — (Hz)(s)| < |p(t) — p(s)| + [| £ (£, 2(8)) = £ (2, 2(s))|
+ £t 2(s)) — f(s,2(s))]

(
X /Ooo l9(2, 7)[[a(7)ka(ro)b(ro) + |A(7,0)] dr
+[1f(s,2(s)) — f(5,0)| + | f(s,0)l]
X /Ooo l9(¢,7) = g(s, 7)[[a(7) ka(ro)b(ro)
+ |h(7,0)|] dT

< |p(t) = p(s)| + [k1(ro)|=(t) — z(s)|
+ £t () — f(s,2(s))]]



174 R.P. AGARWAL, J. BANAS, K. BANAS AND D. O’'REGAN

x {ka(ro)b(ro)Ga(t) + Gu(t)}
+ (roki1(ro) + F){ka(ro)b(ro)

x / Lot — (s, Pla(r) dr
- " lgltar) — g(s, ) ||A(r,0)| dr}.

Hence, taking the supremum with respect to s > T, ¢t > T and x € X,
and letting T — oo, in view of assumptions (i), (iii) and (vii) we get

(4.5) BHX) < ky(ro)(k2(ro)b(ro)Ga + Gr)B(X),

where the set quantity 5 was defined by formula (3.1).
Now, linking (4.4) and (4.5) we derive the following estimate

(4.6) n(HX) < k1 (ro)(k2(ro)b(ro)Ga + Gh)u(X),

where 4 is the measure of noncompactness defined by formula (3.2).

Finally, keeping in mind the second inequality appearing in assump-
tion (ix) and applying Theorem 2.2, from estimate (4.6) we infer that
the operator H has at least one fixed point in the ball B,, which is a
solution of equation (1.1). This completes the proof. O

Remark 4.3. Taking into account Remark 2.3 and the description of
the kernel ker p of the measure of noncompactness p given at the end
of Section 3, we conclude that all solutions of equation (1.1) belonging
to the ball B, tend to finite limits at infinity.

5. An example. In this section we give an example illustrating
the main result of the paper contained in Theorem 4.2. Consider the
quadratic Hammerstein integral equation
(5.1)

ot t2x2(t)/°°7'2(3 x?(7)+arctan 7+z(7) ‘I(T)Ddr
0

t:
2(t) 10(1+e’f)+041+t2 14+t 474

where « is a positive constant and t € R .
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Observe that equation (5.1) is a particular case of equation (1.1) if
we put p(t) = €' /10(1 + €'), f(t,z) = at?*z?/(1 + t?) and

2

67) = —————
g(’T) 1+t2+7'4’

h(t,z) = /22 + arctant + z+/|z|.

In what follows we show that functions involved in equation (5.1) satisfy
the assumptions imposed in Theorem 4.2. Indeed, assumption (i) is
satisfied since lim;_, o p(t) = 1/10. Further, let us note that

2

a—
1+ ¢2

ft,z) — fty) <a 2 — P < alz+yllz - yl.

This implies that the function f(¢,x) satisfies assumption (ii) with
ki(r) = 2ar. Moreover, we have that f(¢,0) = 0 which implies that
F=0.

Next, fix T > 0 and take arbitrary numbers t,s such that ¢t > T,

s > T. Without loss of generality we may assume that s < t. Then we
have:

t2 52
t.x) — <aril—— - 2%
|f(7x) f(5,$)|_a$ 1+t2 1+32
, t2 1

<ap?—— . . — .
=ary +t2 142
This implies that for any fixed r > 0 we get

Th_I)n {sup{\f(t,x) - f(37$)| 1,8 2> T,|LE‘ < T}} =0,

which means that assumption (iii) is fulfilled.

Obviously the function g = g(¢,7) is continuous on the set Ry x R
(cf. assumption (iv)).

Next, we verify assumption (v). Notice that we have the following
estimate

|h(t, z) — h(t,y)| < ‘Q/:ﬁ + arctant — /y2 + arctant

+ |ov/Iol = v/l

(5.2)
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Now, fixing r > 0 and assuming that |z| < r, |y| < r, we have the
following inequality:

‘x\/mfy\/m‘ < ‘x\/H—y\/H‘Jr ‘y\/mfy\/w
(5.3) < Vilz =yl +r Vel = VIl
< Vrle —yl + 1/l

Next, let us notice that we have the estimate

(5.4) ‘Q/:L‘Z + arctant — {/y% + arctant‘ < ¥(x —1y)2

The above estimate is a consequence of the following inequality

(5.5)

f/x2+a*\3/92+a‘ <{(z—y)?

which is satisfied for all z,y € R and for any fixed a, a > 0.

Since (as far as we know) inequality (5.5) is not standard we provide
the sketch of its proof.

In order to prove (5.5) it is sufficient to show that for all z,y € R
such that y < z we have

(5.6) Va2+a— Yy +a < /(a—y)2

To prove (5.6) fix arbitrarily y > 0. Put, for convenience, b = y. Then
(5.6) can be written equivalently in the form

(5.7) V(w+b)2+a— Y2 +a< Va2

for any z > 0, where a > 0 and b > 0 are arbitrarily fixed.

In what follows we prove inequality (5.7). To this end consider the
auxiliary function f: Ry — R defined by the formula

fl@)= Y (@+b)2+a— Va2 - Vb +a.

Then f(0) = 0 and, applying standard methods of differential calculus,
we can check that f'(z) < 0 for > 0. We omit details of calculations.
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Hence we derive that f(«) < 0 for z > 0 which proves (5.7) and shows
the validity of (5.5) and (5.4

)
Now, observe that linking (5.2), (5.3) and (5.4) we get

[h(t,@) = h(t,y)| < max{L,r} [(e = y)” + 2 — 9l + Iz — ] -

Thus assumption (v) is satisfied with k2(r) = max{l,r}, a(t) =1 and
b(r) = Vr2+r+/r.

In order to verify assumption (vi) let us consider the functions G,(t),
G (t) which are defined here by the following formulas

Galt) = / " a(m)lg(t, 7)) dr

o0 7_2
_/0 —1+t2+74dT’
Grlt) = [ lott,m)n(r,0) dr
0
oS} 2
= / T arctan 7 dr.
0

1+¢2+74

Obviously these functions are well defined. Moreover, using standard
methods of integral calculus we get:

s 1

Ga(t) = : < T
YAV VT2 T 42

G (t)<§/EL;< [T T
eV Ve T V2ae
This shows that assumption (vi) is satisfied. Also we obtain
— i — ™
Gy =—=, Gp < {-———=.
w2 TV 2402

Next, fix arbitrarily 7" > 0 and choose ¢t,s > T. Without loss of
generality we can assume that ¢ > s. Then, similarly as above we
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obtain:

/0 ot ) — gls,)a(r) dr

a(t)dr

oo 7_2 ,7_2
:/0 ‘1+t2+74_1+82+74
oo 7_2 ,7_2
:/ — dT
o \1+s24+74 1+t2+71

o [ 1 1 ]
T 42 Vit Vit

Hence, taking into account that

by 1 1 T 1
su — T<s<tp=—rc  —,
p{4\/§[€/1+s2 \‘71+t2] = } W AirT
we get

—00

(5.8) Tlim {sup { / lg(t,7) —g(s,7)|a(r)dr : t,s > T}} =0.
0
In the same way we have

/0 ot T) - g5, 7| [k, 0)] dr

o0 2 72 ,
:/0 ‘1+t2+74_1+82+7'4 Varctan T dr

T [ 72 72
< 3z _ d
Va2 )y T+e+r 142470

From the above estimate we conclude that

T.

(5.9) lim {sup{/ooo |g(t,7')g(s,T)|h(T,0)dT:t,52T}} =0.

T—o0

Combining (5.8) and (5.9) we infer that assumption (vii) is satisfied as
well.
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Also for a fixed T' > 0, analogously as above we have:

oo 00 7_2
t,7)|dr = —d
| et = [ e
2
1 { 11<¢% %H)
——In

- 4 2 2 T2 2T
2v2V1+t A+ 32 +1

aen (1)
(

-+ arctan

sea*))

Hence we obtain that

Tli_{réo{sup{/;oa(Tﬂg(t,TﬂdT te R+}} 0.

Similarly we can prove the second equality from assumption (viii).

Finally we check that assumption (ix) is satisfied. Indeed, taking into
account the above obtained estimates we see that the inequality from
assumption (ix) is satisfied provided is satisfied the following inequality

1 ™ 2 3
— + ——=oar"max{l,r Vr2+r+/r —|—\/j—ozr <
10 2v2 { }( */—> 222

It is easily seen that if we take @ = 4/21 then the number ry = 1
satisfies the above inequality. Moreover, in this case we have

k1(ro)(k2(r0)b(ro)Go +Gh) < 281 <%+§/§4%> =0.87855--- < 1

Thus assumption (ix) is satisfied.

Let us note here that we can choose other values of ry if we fix another
value of a. For example, putting o = 9/20 we can easily see that the
number rg = 1/2 satisfies both inequalities from assumption (ix).
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