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ABSTRACT. The paper is devoted to integral formulations
for the scattering of plane waves by diffraction gratings under
oblique incidence. For the case of coated gratings Maxwell’s
equations can be reduced to a system of four singular integral
equations on the piecewise smooth interfaces between different
materials. We study analytic properties of the integral opera-
tors for periodic diffraction problems and obtain existence and
uniqueness results for solutions of the systems corresponding
to electromagnetic fields with locally finite energy.

1. Introduction. In this paper we study an integral equation for-
mulation for the numerical simulation of diffraction by optical grat-
ings under oblique incidence, the so-called conical diffraction. We ex-
tend an approach developed in [14] for classical TE and TM diffraction
problems which turned out to be very efficient for solving diffraction
problems in certain scenarios with unfavorably large ratio period over
wavelength, profile curves with corners and gratings with thin coated
layers. A description of the method together with numerical tests for
complicated situations is given in [16].

The electromagnetic formulation of conical diffraction by gratings,
which are modeled as infinite periodic structures, can be reduced to
a system of two Helmholtz equations in R? coupled by transmission
conditions at the interfaces between different materials of the diffraction
grating. Using integral equation methods this transmission problem
can be transformed to a system of integral equations over the interfaces.
We consider here the case of coated gratings, where the interfaces
between different materials are separated (see Figure 1 in Section 4).
The integral equations are derived by a combination of direct and
indirect methods. Due to the oblique incidence the approach leads
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to two integral equations on each interface which contain besides
the boundary integrals of the single and double layer potentials also
singular integral operators, the tangential derivative of single layer
potentials.

The aim of the present paper is to study the basic analytic properties
of the derived equations. We analyze mapping properties of the inte-
gral operators for periodic diffraction on nonsmooth interfaces and for-
mulate conditions for the equivalence of the integral equation systems
with the conical diffraction problem. We establish the strong ellipticity
of the integral formulation for all relevant physical parameters, which
allows to deduce solvability and uniqueness results and to study the
convergence of numerical methods. For the sake of clarity the results
are established for the 4 x 4 systems of singular integral equations cor-
responding to practically important single-coated gratings, but it will
be clear that they are valid for diffraction gratings with any number of
coatings, as long as the interfaces between them do not touch.

Grating problems can be treated very efficiently using integral equa-
tion methods, if the distribution of the optical materials is rela-
tively simple and the interfaces between them are sufficiently regular.
Many different, quite sophisticated formulations for solving the classical
diffraction problems have been proposed and implemented, cf., e.g., [8,
10, 14, 15]. However, a rigorous mathematical and numerical anal-
ysis, comparable to standard boundary integral methods, cannot be
found in the literature. The mathematical papers dealing with integral
formulations of grating problems are mainly concerned with perfectly
reflecting gratings or the study of the fundamental solution and radia-
tion conditions, see [1, 2, 12] and the references therein.

The outline of the paper is as follows. Section 2 is devoted to the coni-
cal diffraction by periodic structures, where we report on the differential
equation formulation and known results. Quasiperiodic potentials for
Helmholtz equations and integral operators of periodic diffraction on
nonsmooth curves are discussed in Section 3. In Section 4 we derive two
systems of singular integral equations for conical diffraction by coated
gratings, which are analyzed in Section 5. In particular, it is shown
that the integral equations are equivalent to the differential formula-
tion for gratings with non-overhanging profiles or metallic substrate.
The analysis of numerical methods for solving the integral equations,
which is based on the strong ellipticity, will be discussed elsewhere.
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2. Conical diffraction. We consider the scattering of a time-
harmonic plane wave incident on a general periodic structure in R3,
which is assumed to be infinitely wide and invariant in one spatial
direction. The structure is characterized by the optical index v of the
non-magnetic grating materials, which is supposed to be a piecewise
constant function not depending on z and periodic in z in the Cartesian
coordinates (z,y,z). The optical index is defined by v = /e/ep =
cy/p€, where ¢, p are the permittivity, respectively permeability of free
space, ¢ is the dielectric coefficient of the material and ¢ denotes the
speed of light. Note that standard optical materials satisfy Rev > 0,
Imv > 0. The periodic structure separates two regions with constant
optical index, thus the function v is constant if y is outside a bounded
interval.

The structure is illuminated by an electromagnetic plane wave
ew!(E', H'). If the period d of optical gratings under consideration
is comparable with the wavelength A = 2m¢/w of the incoming field,
then the mathematical model has to rely on Maxwell’s equations. We
look for solutions £™¢(E, H) possessing locally a finite energy, that is,

(2.1) E, H, VxE, VxHe (I}.(R*)’.

Specified to the case of oblique incidence the following differential
problem has been derived in [6]:

For notational convenience we will change the length scale by the
factor 2w /d, so that the grating becomes 2m-periodic: e(z + 2m,y) =
e(z,y). We introduce the piecewise constant function

and denote by k4 the values of k above, respectively below, the grating
structure. We suppose that k; > 0 since the structure is illuminated
from above. The incoming plane wave has the form

(EY,H') = (p,s) g'(>e~Putr2),

(23) (a, B,7) = ky(sinf cos @, cosf cos d,sin @), |0],]|d] < 7/2,

where the angle ¢ characterizes the oblique incidence. In order to be a
solution of Maxwell’s system above the grating structure the coefficient
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vectors p, s and the wave vector k = («, —3,~) are connected by certain
compatibility relations.

Denote Z = v;+/go/p, where v, is the optical index of the material
above the grating, introduce

E(z,y,2) = E(z,y)e""*, H(z,y,z) = ZB(z,y) e, q=2""s,

and assume that everywhere k%(z,y) # 2. It is shown in [6] that
the condition of locally finite energy (2.1) is satisfied only if the z-
components of E and H are H!-regular. Moreover, the time-harmonic
Maxwell equations for E and H lead to Helmholtz equations for the
z-components E,, B, € HL. _(R?) of E and B

(2.4) (A+k*—~y)E, =(A+k* -+ B, =0

in each of the domains in which k(z,y) is constant. The Helmholtz
equations are coupled by transmission conditions at the interfaces
between different materials

[EZ] = [BZ] =0,
(2.5) k?0,E, _ vk+ 0-B. 0, B, _ Y0 E;
K-y LR =2 R k(B2 =) )
Here 0,, O, are the derivatives in the direction of the normal v =
(v1,v2), respectively of the tangential vector 7 = (—vq,v1), to the

interface in the (z, y)-plane, 0, = v10; + v202, 0; = —v201 + 1102, and
[-] denotes the jump of the boundary values if crossing the interface.

The z-components of the incoming field Ei(z,y) = p,e@®=Fv),
Bi(z,y) = q.€(®*=PY)  are a-quasiperiodic functions, i.e., satisfy the
relation u(z + 27m,y) = ¢*™*“u(x,y). Therefore, E., B, have to be a-
quasiperiodic, too. Moreover, the scattered field has to satisfy below
and above the inhomogeneous grating structure a radiation condition
which is known as outgoing wave condition

(e o]

(B, B.)(z,y) — (BY, BO)(z,y) = Y (B, Bf)elenthuv),
y — +00,
(2.6) (B, B.)(@,y) = > (E,,By)elneFuv)

Yy — —00,
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with the so-called Rayleigh coefficients EX, BX € C, and

an=a+n, BE=,/k2 -~2—a2 with0<argf:<m, necZ.

The Rayleigh coefficients EX, B for 8 € R are the main characteris-
tics of diffraction gratings. They indicate the efficiency and the phase
shift of the finite number of propagating modes, i.e., of the outgoing

plane waves

Z (Ef,Bf)em"z“BﬁyH”Z, ly| = oo.
pEer

Since the wave vectors of the propagating reflected or transmitted
modes lie on the surface of a cone whose axis is parallel to the z-
direction, one speaks of conical diffraction.

Under the assumption, that the interfaces between different materials
are Lipschitz and that the material parameters of the grating fulfill the
condition

(2.7) arg (k*(z,y) —~°) € [0, )

the following existence and uniqueness results for the conical diffraction
problem have been proved in [6]:

— The conical diffraction problem (2.4)—(2.6) has at least one solution
(E., B.) which is H!-regular near the interfaces.

— If for some grating material Im k£ > 0, then this solution is unique.

— Suppose that the optical index of the materials are real and fixed
for all frequencies w. If k2 > a? 4+ +2, then for all but a countable set
of frequencies w;, w; — 0o, the solutions are unique.

3. Integral representations. Here we collect analytic properties
of the integral representation for solutions and of boundary integral
operators for quasiperiodic Helmholtz equations.

3.1. Quasi-periodic potentials. Suppose that X is the intersection
of the interface between two different materials and the (z,y)-plane. In
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the following we assume that X is non self-intersecting and given by a
regular parametrization

(3.1)

i.e., the functions X,Y have piecewise continuous derivatives and

o’ ()] = V(X' ()2 + (Y'(1))2 > 0.

Concerning the smoothness of ¥ we will restrict for simplicity to the
two cases:

— Y is smooth, i.e., X,Y € O,

— X is a piecewise C? curve with corners such that the angle between
adjacent tangents is strictly between 0 and 2.

As in classical potential theory one tries to represent quasiperiodic
solutions of the Helmholtz equation Au+k?u = 0 outside ¥ for constant
k with argk € [0, 7) by the single and double layer potentials

5 [ H (01P - Q)pl@) dog

and

3 | Q0o H (P~ Q) dog, P ¢,

respectively, with an a-quasiperiodic density ¢ on X, i.e., p(z+2m,y) =
e?™iay(z, y) for (z,y) € X. Here Hél) is the Hankel function of the
first kind, dog denotes the integration with respect to the arc length
and v(Q), Q@ € X, indicates the normal to ¥ pointing downward.
Using the quasiperiodicity of ¢ the above potentials are transformed
to integrals over one period I of the interface X, i.e., all points of X
connecting a given left boundary point o(t9) = (X (t), Y (to)) with the
right boundary o(to + 1) = (X (o) + 27,Y (¢9)). In the following we
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suppose X (0) = 0 and take 0(0) = (0,Y(0)) as the left boundary of T
The single and double layer potentials are defined by

Veg(P) =2 / Vi (P - Q) 9(Q) dog,
(3.2) T
Krp(P) =2 / Q) By(@)¥ra(P - Q) dog,

with the fundamental solution
(3.3)

Uy, o(P) = % S HY (k\/(X —2mn)? + Y2>e2”"°‘, P=(X)Y),
n€Z

which converges uniformly to a smooth function over compact sets
in R?\ U,{(27n,0)} if k* # a2 for all n € Z. Moreover, setting
Brn = /k? — a2 with Im ,, > 0 Poisson’s summation formula leads to
the representation

7 1 . .
4 Tpa(P) = = 3 - eianXtithly],
(3.4) k,a(P) p 3 5. e

For the deviation of (3.3), (3.4), convergence properties and fast sum-
mation methods, see e.g., [2, 9, 10].

The function ¥y, , is a-quasiperiodic and satisfies the radiation con-
dition (3.8) below. Note that

(3.5) Vimita(P) = Vi o(P) foral meZ,
(3.6) Uy o(P) =V ,(—P) forall PR

)

Since a-quasiperiodic functions are also (« + m)-quasiperiodic in view
of (3.5) we restrict the range of a. In the following we will always
assume that |a| < 1/2 and that all 3,, # 0.

The potentials (3.2) provide a-quasiperiodic solutions of the Helmholtz
equation

(3.7) Au+ ku=0

outside the profile curve ¥ which satisfy the radiation condition (3.8).
And conversely, any solution admits an integral representation using
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the potentials (3.2). To give a precise formulation we denote by
G4,G_ C R? the domains above and below X, respectively.

Lemma 3.1. Suppose that in one of the domains G or G_ the
a-quasiperiodic function u has the following properties:

(i) w is locally a H'-function with Au belonging locally to Lo;

(ii) w satisfies the Helmholtz equation (3.7) almost everywhere and
the radiation condition

(3.8) u(w,y) = Y upei @ TEY oy >

n=—oo

where H is such that ¥ C {|y| < H} and the + and — signs correspond
to the cases G, respectively G_.

Then u can be represented in the given domain G+ by
1
(3.9) u= :i:E (Vp(?,,u - Kpu),

with the normal v pointing into G_.

Proof. Consider a bounded domain 2 with piecewise C? boundary
such that

\Ilkya(P_Q)_H(()l)(IqP_QDa P,QEQ,

is smooth. It follows from the corresponding result for the potentials
with the kernel H(gl) and Green’s formula, cf. e.g., [4], that any -
quasiperiodic function u satisfying (i) and (3.7) admits the representa-
tion

(3.10)
u(P) = [ (10(P~Q)0.1(Q) ~u(Q) o) ¥1a(P~ Q) drg, P,

where v is the outward normal to Q. To apply (3.10) we choose H and
a smooth function ¢(y), ¥y € R, satisfying g(0) = 0 and g(y) = 0 for
ly| > H such that

I'C Dy ={(z,y) : 9(y) <z < g(y) +2m, |yl < H}.
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The curve I' divides Dy into the subdomains D}iI = Dy NG4. The
boundary dDZ is piecewise C2 and consists of T', (0,27) x {H} and

(9(),v), (9(y) + 2m,y), y € (0,+H). Applying (3.10) in DF; we see
that for quasiperiodic u the integrals over the boundary parts (g(y),y)
and (g(y) + 2m,y) cancel. Moreover, formula (3.4) allows to calculate
explicitly the boundary integrals over the straight lines (0,27) X £H
for u satisfying (3.8). In a neighborhood of the line y = £ H we have

w(@Q) = Y upel ), Q= (a,y),
n€eZ
and, if Q = ($,:i:H) and P = (X’ Y) c D}'tl’ then by (34)
1 ) )
U o(P — - uln(X—cc)—Hﬂn(H:FY)'
0u(Q) ¥k,al Q) ir T%;E

It can be checked easily that for P € D;;

/<02> i (94,0 (P-Q)0,u(Q)~u(Q) Dy) ¥ra(P~Q) ) dog = 0. ©

3.2. Boundary integral operators. In the following we transfer
results for integral operators of the Helmholtz equation on closed curves
(cf. e.g., [B, 17]) to our slightly different situation. First we note that
the fundamental solution ¥y, can be decomposed as

(3 11) v (P) eia(stinX) ) 1
: «(P) = 0g
* p(P)

27
where p is a distance function which is periodic in X,

+ f(P),

X Y
(3.12) PA(P) = 4(sim2 5+ sinh? 5),

and f(P) is C if p(P) # 0 with second derivatives, bounded by
constant times |log p(P)| if p(P) — 0. This follows from the main
singularity of the 2m-periodic function

—ia _ i (1) —i —27n
e Ko (P) = 1 ZE;HO (k\/(X—27m)2+Y2>e (X~2mn)
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at the points (27n,0), n € Z, and the series expansion of the Hankel
function Hél) = Jo + 1Yy (see e.g., [17]), which gives

2i 2 2
Hél)(z) = %(1 - %Fo(z2)> logg + <1 + ;ZC> + 22 Fy(2%),

z2€C\ (—0,0],

where C = 0.5772... is the Euler-Mascheroni constant and the func-
tions F} are analytic with F;(0) # 0. Moreover, from (3.11)

ele(X=sinX) (5in X sinh V)
2 p*(P)

(3.13) V¥a(P)=— +9(P),

and the first order derivatives of g are bounded by constant times
|log p(P)| if p(P) — 0. Hence the kernels of the single and double
layer potentials can be expanded as

(3.14)
7 P B eia(Xfwfsin(Xfw)) ) 1 P
k7a( _Q)_ 271_ ng(P—Q)+f( _Q)7
eia(szfsin(sz))
0@ ¥Yka(P—Q) = .
" v(Q) - (sin(X — z),sinh(Y — y))
P*(P - Q)
(3.15) +v(Q) 9(P - Q),

where P = (X,Y) € R%, Q = (z,y) € . Recall that the functions
f(P) and g(P) are a-quasiperiodic in X and C* if p(P) # 0 with
[Vaf(P)| < c|log p(P)| and |Vg(P)| < c|log p(P)| for small p(P). Here
V; denotes the vector of partial derivatives of order j.

Let us define the Sobolev spaces
(3.16)  HZ'A(T) = {e"**Wp(a(1), ¢(a(-)) € Hy'/?(0,1)},

where H,;(0,1), s € R, denotes the Sobolev space of 1-periodic func-

tions on the real line. Clearly, Hé/z(f‘) is the trace space of a-
quasiperiodic functions u € HL (G4). Using the expansions (3.14)

and (3.15) it can be shown similarly to [5] that for ¢ € H;1/2(1"),
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(VS Hé/2(F) and P ¢ ¥ the potentials Vro(P) and Kry(P) satisfy
the assumptions of Lemma 3.1. Moreover, the limits of the potentials
for P € G+ tending in non-tangential direction to a point at I'; which
we indicate by the upper sign +, respectively —, are determined by the
limits of the classical single and double layer potentials of the Lapla-
cian plus the contribution of integral operators with continuous kernels.
Therefore the single layer potential is continuous across I'

Vit o(P) = Vi o(P) =2 / Ui o(P - Q) p(Q)dog, PeT.

To indicate that this operator maps into the set of a-quasiperiodic
functions on I we introduce the notation

V) o(P) =2 /F Vio(P — Q) ¢(Q)dog, PET.

The double layer potential has a jump if crossing I':
(3.17)

(Kry) " (P) = KM w(P) —9(P), (Kr¢) ™ (P) = K9(P) + y(P)

with the boundary double layer potential

(c) .7
(3.18) Ky 9 (P) := 2/F¢(Q) 9u(Q)¥k,a(P — Q) dog
+ (6(P)—-1)yp(P), Pel.

Here §(P) € (0,2) denotes the quotient of the angle in G at P € T’
and 7, i.e., §(P) = 1 outside corner points of I'. The normal derivative

of the single layer potential exists outside corners and has the limits
(3.19)

(0, Vre) " (P) = LY o(P)+o(P), (8, Vi) (P) = LM o(P)—p(P),

where we denote

LD o(P) =2 /F 0(Q) 8y ¥ha(P — Q)dog, PeT.

From (3.19) we derive
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Corollary 3.1. Suppose that the function u given in G4 (G-)
satisfies the conditions of Lemma 3.1. Then Vrd,u(P) — Kru(P) =0
in the opposite domain P € G_ (P € Gy).

The integral formulation of conical diffraction will contain also oper-
ators of the form

3:20) WO 00)(P) =2 [ ValP-Q)2p(Qdog, PET.

where ¢ is the restriction of an a-quasiperiodic function to I'. Formal
integration by parts gives

/F Vio(P — Q) 0,0(Q) dog = /F (@) 910y Una(P — Q) dog,

where we use the quasiperiodicity
p(0(1)) = %%(0(0)), Upa(P —0o(1)) = e T o(P — 0(0))

at the end points ¢(0) and o(1) of I. The integral on the right is
defined as the principal value integral

(3.21) /aT(Q)\IIk,a(P - Q) ¢(Q) dog
r
= hm 87- \I’ a P_ dU )
3 Jorir) (@) ¥k, Q) p(Q) dog

where I'( P, §) denotes the subarc of I with the mid point P and the arc
length 26. The existence of the limit follows from (3.13) which yields
eia(X—cv—sin(X—:c))

2
7(Q) - (sin(X — z),sinh(Y — y))
p?(P —Q)
+7(Q) - 9(P - Q).

Thus for small p(P — @) the non-integrable term behaves like

0r(0)¥k,a(P — Q) =

X

1
F@lep—gp
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and the integral operators with the tangential and normal derivative of
the logarithmic kernel are connected with the Cauchy singular integral
by the formula

1 [ pt)ydt i 1
o e RGeS Q|

—l/rw(Q)f? ylog ——:

™

(3.22)

doo,
P—Q ¢

where t = z + 4y and z = X +4Y € I'. This formula holds for
any piecewise Ljapunov curve T', cf., e.g., [11, Section 64]. Hence,
introducing the singular integral

HD (P =2 /F 2(Q) 0y Via(P — Q) dog,

the single layer potential of the tangential derivative (3.20) can be
expressed as

(3.23) V(0.0)(P) = —H\Y o (P).

3.3. Mapping properties. Recall that I' as one period of the
interface X is given by I' = {o(t) : t € [0,1)}, cf. (3.1). We study
the properties of the boundary operators in Sobolev spaces of a-
quasiperiodic functions on I' defined by

H (D) = {e*Wp(a(t), p(o(-) € Hy(0,1)},

cf. (3.16), where s € [—1, 1] if the profile curve X has corners, or s € R
for smooth X.

Performing the conformal mapping e, z € C, the open curve I is
transformed to the closed curve

r= {e_Y(t)(cos X(t),sinX(t)) : t € [0,1]},

which has the same smoothness as I'. Moreover, if ¥ has corners,
then the angles in G at corner points of ¥ and interior angles at the
corresponding corner points of I' coincide. Obviously, the mapping

9*p(P) := "X p(J(P))
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with

(3.24) 9:T>5P=(X,Y) —e Y(cos X,sinX) €T

generates an isomorphism 9* : H*(T') — H2(T').

The mapping properties of Vl(ﬁ)’ nga), lCl(aa) and ,Cl(na) are easily ob-
tained from those of the boundary integral operators for the Laplacian
on the simple closed curve I

vetr) =+ [ot@) (log 12 + <) oo
Hop(P) = % /FJP(Q) 0r(q) log ﬁ dog,
Ko(P) = % /FsO(Q) 9(@) log ﬁ doq,
Ly(P) = % A@(Q) 0,(p) log ﬁ doq.

The parameter c in the kernel of V is chosen such that V : H~1/2 (f) —
HY 2(1~1) is positive definite and therefore invertible. Here v is the
exterior normal to I'. The operator L is the adjoint of the double layer
potential K with respect to the Ly duality form on I’

(3.25) (o, ¥) = /Fwﬂdo,

therefore we write L = K'. The adjoint of H is obviously given by the

singular integral
(3.26)

1 1
H'o(P) = p /FQD(Q) O-(P) logmdaQ =0,Vy(P), PeT.

We list some properties of these operators needed for the following.

Lemma 3.2. For 0 < s <1 and 0 <t <1 the operators

V:H*"YT) — H*()
K, H: H{(T') — HY(T)
K',H' : HY(T) — HY(T)

)

’
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are bounded. If T is smooth, then V : H*Y(I') — H*(I') is invertible,

H,H' : H*(') — H*(T') are Fredholm with index 0 for all s € R, and

K,K': H¥(I') — H'(') are bounded for all s,t € R. Moreover, the
following relations hold:

(i) KV =VK', HV = -V H';
(i) HK = —KH, K2 — H> = I.

Proof. The mapping properties of V and K are well known even
for closed Lipschitz curves, see for example [3]. Since H = —V 9, the
boundedness of 9, : Hs(f) — Hs_l(f), 0 < s <1, imply the mapping
properties of H and H'. The first of the commutator relations (i) is
well known, see e.g., [5], whereas the second follows from the definition

of H and (3.26). Finally, (ii) is a consequence of

(3.27) S=-K+iH, where S¢(z)= 2% /~ i(g)cf, zeTl,
.

see (3.22), and the equality S? = I, which holds almost everywhere on
any closed piecewise Ljapunov curve (cf. e.g., [11]). o

Lemma 3.3. The boundary integral operators for the quasiperiodic
Helmholtz equation on a piecewise C? curve I' map boundedly

VI HEYD) — HE(D),
1Y, K HEY(T) — HL(D),
L H4(T) — H; YD),

« (e}

for s € (0,1), t €[0,1). In the case s =t = 1/2 the operators Vr(‘a) and
Hl(ﬂa) are Fredholm with ind Vl(«a) = ind ’Hi«a) = 0. If the profile curve ¥
is smooth, then
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W Hy 1 (D) — Hy(D),
K™, £ 2 Hy(T) — Hy™(T)

and

HE - H(T) — HE(T),

are bounded for all s € R.

Proof. Obviously

9V (") o(P)
1

_ = eia(sz) o 1 ¢ ’ o

where P = (X,Y) €T and |¢#(Q)| = e Y for Q = (z,y). Introduce the
multiplication operator

(3.28) Mg(P) =¥ p(P), P=(X,Y)€T,
which is invertible in H~(T'). Then it is evident from (3.14) that

Vi o(P) = 9*V (9*) My (P)

= [ (2eatr - @ = < (10w e i +¢) )@

(e

+ (L= ) log (P — Q) — <) + /(P - Q) )#(Q) dog.

Since the kernel is C* if p(P—Q) # 0 one has only to study its behavior
for p(P — Q) — 0. From (3.12), the relations
(3.29)

[9(P)=9(Q)* = 4e~¥ ¥ (sin2 %ﬂinh? %) =e " VpH(P-Q)
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and o
V(1 —e***X)log p(P)| < c|log p(P)|

we derive that
Vi (P) — 9V (9*) M p(P)

iaX -

S /F (- -5+ (P @) e (@) dog,

where the periodic function f satisfies |V f(P)| < c|log p(P)| as p(P) —
0. Hence Vl(f)‘) — 9*V(9*) "' M maps the space H,'(I') boundedly into
H}(T) (cf. [17]), which implies that

(3.30) V) _ 9V (9*) M : HSYT) — HE(T)

is compact for s € (0,1). Additionally, for smooth I" the f(P) is C*®
for p(P) # 0, hence the mapping (3.30) is compact for all s. Thus, the

assertions for Vl(f‘) follow from Lemma 3.2.
The assertions concerning ]Cl(f‘), H%a) and E%a) follow from the com-
pactness of the differences
K — 9 K(07) 1, Y —9*H(w*) L HY(T) — HL(T),
(3.31) £ — MY K (9*) "M : H,Y(T) — H,Y(T),
0<t<l,

which can be shown similarly. For example, by (3.15), respectively
(3.24),

(@) _ 1 eia(X—z—sin(X—z)) v(Q) - (sin(X — z),sinh(Y —y))
Kr (P)_ﬂ'/p( p*(P—Q)

Q) g(P - Q))so(Q) dog,

9K (9") " p(P)
/em(xﬂ) v(@3(Q)) - (9(P) - 9(Q))
r [9(P) = 9(Q)?

p(Q) 19'(Q)] dog.
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For v(Q) = (vaz,vy) the normal to [ at 9(Q) is given by v(9(Q)) =
(—vgsinz — vy cosz, vy cosz — vy sinz), and consequently

/(@) - (sin(X — 2),simh(¥ )
= v sin(X — ) + v, sinh(Y —y),

v(3(Q)) - (9(P) = (@)Y (Q)|
—e V¥ (l/z sin(X — z) + vy (e¥ ™Y — cos(X — x)))
Hence by (3.29),

v(Q) - (sin(X — z),sinh(Y —y))
PA(P — Q)

v(9(Q)) - (3(P) —H@)) | o
o) —o@p 0@
_, sinh(Y —y) — e¥ =Y + cos(X — x)
! p*(P - Q)
—, cos(X — z) — cosh(Y — y) _

P2(P - Q) 2’

and we derive
Ko (P) = " K(9") "o (P)
1 ia(X —z)
1 [ (@ ar- @) - = o) ar
etaX o sl v(Q) - (sin(X — z),sinh(Y — y))
tasin(z—X) _
m /F(e 1) p*(P — Q)

x e~ta® 0(Q) dog.

+

Analogously,

HWDp(P) — 9" H(9") " p(P)
1 eia(sz)Ty

_;/F<T(Q)-9(P—Q)— 5 >¢(Q)d0cz
_ /F(eiasin(z—X) —1)

" 7(Q) - (sin(X — z),sinh(Y — y))
p*(P - Q)

eiaX

+

e " p(Q)dog
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with 7(Q) = (7, 7y). The components of the vector function

_ tasin(z—X) (Sln(X — ZU), Slnh(Y - y))
(t-e ) pH(P - Q)
insin(X — (sin(X — z),sinh(Y — y))
a (X -2) p*(P - Q)
+0(p(P - Q))

generate compact operators in H! (T'). This follows from the relation

sin(X — z),sinh(Y — y))
PP - Q)
= (sin(X — z),sinh(Y — y))9x log p(P — Q)
= dx (sin(X — z),sinh(Y — y))log p(P — Q))
— (cos(X —z),0)log p(P — Q),

sin(X — z) (

which shows that (X! — 9*K(9*) V), (MY — 9*H@W*) V) €
H!¢(T) for any ¢ > 0 if ¢ € Lo(T).

Since for v(P) = (vx,vy)
v(P)- (sin(X —x),Y —y) v(d(P))- (¥(P) - ¥(Q))

_ / -Y+y
2P Q) p@) o @l

one can write

LM o(P) - M9 K'(9%) " My (P)
1 eia(X—a:)

:_Acmngw—QH_—jrﬂﬂw@Mm

™
iaX

_ e / (eiasin(z—X) _ 1)
r

y v(P) - (sin(X — z),sinh(Y — y))
p*(P-Q)

efiaa: ‘P(Q) dO’Q,

which is compact in H;*(T). O
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From Lemmas 3.1 and 3.2 we obtain

Corollary 3.2. The operator Vl(ﬁ‘) : H,;l/z(l") — Hal/z(F) is
invertible if and only if the homogeneous Dirichlet problem in both of
the domains G4 and G_

(3.32) Au + k*u =0, ulx = 0 and u satisfies (3.8),

have only the trivial solution.

Remark 3.1. Two well-known sufficient conditions for the unique
solvability of (3.32) in G4 (and consequently in G_) are

e Im#k? > 0;

e the profile curve ¥ is non-overhanging, i.e., the y-component of the
normal satisfies v, (P) <0 for all P € X, cf. [13, Section 2.4], [7].

3.4. Transposed operators. In the following we consider also
equations with adjoint operators. It is useful for a physical interpre-
tation that the kernel functions of the adjoints satisfy the radiation
condition (3.8). Note that the spaces H:(I') and H_} (') are dual with
respect to the bilinear form

(3.33) o], = /F o do,

and we will consider transposed operators with respect to (3.33).
Hence, if A : H3(I') — H!(T), then the transposed A’ : H_! (') —
HZ;(T'). From (3.6) we obtain the following connections between the

—
integral operators associated with ¥y , and ¥ _,,.

Lemma 8.4, () = Vi), (€)' = £, (€)' = K6,
[0 1 —Q

(1) o(P) = — /F Or(r) Ui, —a(P = Q) 9(Q) dog = 0, V(" p(P).

4. Integral equation formulations for coated gratings.

4.1. Geometry. Here we apply the integral representations to the
solution of the conical diffraction problem (2.4)—(2.6) for the special
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FIGURE 1. Cross section of a coated grating.

case of single-coated gratings, which consist of a substrate (the domain
Go xR) with a periodically corrugated surface which is overcoated with
some optical material filling the domain G; x R (cf. Figure 1).

The structure is illuminated in Gy X R by a plane wave which is
reflected and, possibly, transmitted in a finite number of outgoing plane
waves. We assume that in the (z,y)-plane the interfaces are given by
two simple, nonintersecting curves ¥; and X, either C'™° or piecewise
C?, the open arcs I'j, j = 1,2, denote one period of the corresponding
profile curve. The wavenumber of the material inside G; x R is denoted
by k; and the z-components of the illuminating field are u® (z,y)e™?,
v (z,y)e"’* with

u(z) (CE, y) — pzei(a-‘rm)z—i,@’y, ,U(z) (ZU,y) _ qzei(a-l—m)z—zﬂy’

where o + m = kgsinfcos¢ with |a] < 1/2 and m € Z, f =
ko cosfcos ¢, v = kasin g, |6], 6] < 7/2.

Assuming k3 = k7 —y* # 0 we look for solutions (E.,B.) of the
conical diffraction problem (2.4), (2.6) with the transmission conditions
(2.5) imposed on the curves I'; and I';. We formulate this as
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Problem D(®): Denote
U + u® in Gs,

Ez(l‘a y) = ux in Gla
Uo in Go,
vy + v in Gy,

B.(z,y) = { n in Gy,
Vo in Go,

we seek a-quasiperiodic functions u;,v; € HL (G;) such that

(4.2)
H 2, — . 2, —
in G; Auj + kjuj = Av; + Kjv; =0
(4.3)
k2 0, u k2 0,u vk Kk2—K?
Up = U1, Ong o — IH% L= 2’23(;% 1) 87"(}17
on I'y (2 2)
_ Oyvo _ Oyvi _ _ Y (Kg—K]
Vo = V1, h.% n% - kzngﬂf 87-’11/1,
(4.4)
i k2 0, u k2 8, (u +u(i) ko (k2 —K2
Uy = U2 +’U/(l), 152 L= (ng ) =1 2"22;2 2) a‘rvla
on Ty 1 2 12
_ i)  Oyv 8, (va+v®)  A(k2—k3)
v = V2 + 'U(Z)a H—’;’l - ] = - kz,li%ng 67“17
> (2)
o~ ~ 7 a— 2
(uz,v2)(z,y) = E (Uzn, V2n )€’ @™ Pn"Y) for y > H,
n=—oo
(4.5) .
~ ~ 4 _p(0)
(UOaUO)(xay) = E (UOnaUOn)el(anz B’y for y < —H.
n=-—o00
Here we assume that ﬁﬁf) = m? — a2 #0 for all n.

4.2. Integral equations. As proposed in [14] we represent the
unknown functions using single-layer potentials and Green’s formula
alternately in consecutive subdomains G;. Then the transmission
conditions lead to integral equations over I'; for the densities of the

single-layer potentials.
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To start with we use Lemma 3.1 to represent

1 .
Uy = 5( - Vplyoa,qu + K[‘lyouo) in Gy,

1 .
U = §(VF2120,/U,2 — KF272U,2) m Gz.

By Vr,,,; we denote the single layer potential defined on I';,, with the
fundamental solution V¥, , where argr; € [0,7). Correspondingly
K, ; is the double layer potential over I';,, with the normal derivative
of W, o as kernel function. The solution in G is sought by single-layer
potentials

(4.6) up = Vp, 1w1 + Vi, 1we

with certain auxiliary densities w; € H;l/z(f‘j), j = 1,2. Taking the
limits on the curves I'; the jump relations (3.17) and (3.19) lead to
(4.7)
2ug|pr, = —Vi1,000u + (I + Ki1,0) o,
(4.8)
uilr, = Viiwr + Vigawe, Ouuilr, = (I + Li1,1)wr + Li21we,
(4.9)
u1|r, = Vor,1w1 + Vag1wa,  Ouuilr, = Lo 1w — (I — Laz1)wo,
(4.10)
2ua|r, = Va2 20,us + (I — Ka2.2) ua.

Here we use the notation

Vim j9(P) = V& 0(P) =2 / Ve, P — Q) Q) dog,

m

(4.11)
PeTly,

the operators Ky, ; = ICEBY j and Loy = ‘ngw), ; are defined analo-
gously. To simplify the notation of the integral operators we will omit
the upper index («) in this section.

Analogously we represent v; as

1
vy = 5( — Vi, 00,00 + K,y ov0),

4.12 1
(4.12) vy = §(Vr2,23uvz — Kr, 202),

vy = Vr, 111+ Ve, 172
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with 7; € Ha_l/Z(Fj), which imply the equations (4.7)—(4.10) with u
replaced by v and w replaced by 7.

By substituting (4.8) into (4.7) and taking into account the interface
conditions (4.3) for u; and 0,u;, one obtains

k2
A_%VH’O (I 4 Ly1p)wi + Ly2,1w2)

k‘2
+ n_g(I — ’Cn,o) (V11,1w1 + V1271w2)
0

ko (k2 — K2
+ wvn,o 0-v1 =0.

Kok1

Now we use (3.23) to introduce the singular integral
(4.13)

7‘[1701)1 (P) = *V1170 87—1}1 (P) = 2/ U1 (Q) 8.,—Q \I’noﬂ(PfQ) dO'Q, Pely.
I

Hence, by relation (4.8) specified for v;|r, the last equation transforms
to

k2
(4.14) H—;V1170((I + L11,1)w1 + L121w2)
1

k2
+ ﬁ—g (I = K11,0) (Vi1,1w1 + Vizawa)
0
ka(rk2 — K2
- w Hio(Vi1am + Vizam2) =0.

Kok

Based on relation (4.7) for vy and using (4.3) for v; and 9,v; we get a
second equation on I'y

1
(4.15) ?Vn,o((f + L11,1)71 + L12,172)
1

1
+ — (I = Ki1,0) V11171 + Vi2172)

Ko
v(k§ — K1)

+
22
kok§Ky

Hi,o0(Vit,1w1 + Vig1we) = 0.
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Concerning the equations on the upper profile I's we note that
Lemma 3.1 gives

u(’) = (KF272u(i) — Vp%g('),,u(i)) in GO U 21 U Gl,

DN | =

and therefore (4.10) implies
V2272 8u(u2 + u(z)) — (I + K2272)(UQ + ’U,(Z)) = —2u(i).

By using (4.9) and the transmission condition (4.4) this equation is
transformed to

]{?2
(4-16) :;V22,2 (521,1101 - (I - [,22’1)11)2)
1
k3
2 (I + Ka22,2) (Var,1w1 4 Vaz 1ws)
2
vka (k] — K3)

o) Hao (Vo1,171 + Va2 172)
Kik3

2k2 .
_ _22 u®
K3

?

where the last term on the left follows from (4.9) for v;|r, and from
the definition
(4.17)

Ha 201 (P) = —Va2,20,v1(P) = 2/ 01(Q) Ory ¥rya(P — Q) dog.

>

The equation corresponding to the remaining jump condition on I';
reads as

1
(4.18) ?ng (L2117 — (I = L221)T2)
1
1
— — (I + Ka2,2) (V21,171 + Va2,172)

k3
(ki — K3)
— ———F—5— Haa(V V.
kK2R3 2,2(Va1,1w1 + Va2, 1w2)
2 .
= "3 ’U(l).
Ky
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The equations (4.14), (4.15), (4.16) and (4.18) form a system of
singular integral equations for the unknowns w; and 7;. The first two
equations are given on I';, whereas the last two are imposed on I's.

Remark 4.1. In the case v = 0, i.e., incidence parallel to the (z,y)-
plane, the two equations (4.14), (4.16) describe the TE polarization
and (4.15), (4.18) the TM polarization case. These equations have been
introduced in [14]. It is shown that they are optimal with respect to the
numerical expense compared with other integral equation formulations.
Some issues of the implementation and fast solution of the integral
equations with v = 0 using spline and polynomial collocation methods
are discussed in [16].

4.3. Structure of the system. After multiplying (4.15), (4.18)
with k2 and suitable ordering of the unknowns we write (4.14), (4.15),
(4.16) and (4.18) as an equation with a 4 x 4 operator matrix

(4.19) AW =al®)

where we denote

All A12 A13 A14

Al — Agp Agy Az Aoy
Az1 Azx Azz Az |’
Ay Ay Ay Ay
w1 ) 0
T1 « 2k2 0

W=l | 2= o
T2 ’U(Z)

Here the sign («) indicates that all integral operators appearing in
A are connected with the fundamental solutions Uy, and u® =

poetlatm)z=ify () — ¢ eilatm)z—ify e remark that as long as

(a+n)? < k3 the system (4.19) with () = peilatma—iB Py (@) —

qzei(a+n)z—iﬂ£2)y has the physical interpretation of the diffraction of

a plane wave with the wave vector (a + n, 7,6’,(12),7), since ﬂ,(f) =
k3 — (@ +n)% > 0.
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The 2 x 2 diagonal blocks A;; and Az of A(®) have the elements

k2 ko

All = N_%Vll,o(l—i_ E]_Ll) + n_%(l - Kll,o)vll,lv
. o o 'ykz(nafnf)

All : A12 = 7A21 = — n%nf %l,Ovll,lv

k2 k3
A22 = _%Vll,O(I + E]_Ll) + _%(I - ’Cll O)Vll 1
(4.20)
Ass = —g(I+ Ka2,2)Va2,1 + 2V22 2(I = La221),

.Azg : A34 = —A43 m H2 2V22 1y

wiK3

Ayg = —3(1 + K22,2)Va2,1 + 2V22 2(I — La21),
and we conclude from Lemma 3.3 that

. 2 s 2
(4.21) Ajj = (HHT))” = (Hy(T;)", s €(0,1),

are bounded operators. Here (H;(I‘j))2 denotes the space of vector

functions (w, ) with components from HZ(I';). The two off-diagonal
blocks of A(®) are given by

Az = 2V11 0L12,1 + (I Ki1,0)V12,1,
Az 1§ Arg = —Agz = %ﬂnl) Hi0Vi2,1,
Ay = 2V11 0L12,1 + (I Ki1,0)V12,1,
Az = ——V22 2L21,1 + (I + Ka2,2)Va1,1,

. _ _ ka(k}—k3)
Ag1: 4 Asp = —Ap = *W Ho2Vo1 1,

Ay = V22 2L211 + (I + Ka2,2)Vo1,1,

and obviously

(4.22)
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are bounded. Hence the system (4.19) generates a bounded operator
- 2 s 2 s 2
A (HEH (1) x (BT (T2))" = (HE(T) x (H3(T))",

where s € (0,1) for the curves I'; with corners, and s € R in the case
of smooth I';.

4.4. Transposed system. Similarly, the use of the single layer
ansatz outside, i.e.,

(4.23) ug = Vp, ow1, vo = Vp, 071, uz = Vp, pwa, v = Vp, oo

in Gy, respectively Go, with w;, 7; € H;l/z(Fj), and Green’s formula
representation in G (see (3.10))

Uy = (VF1,1 Oyur — K, 1u1 — Vi, 1 Opur + KFz,lul)a
(4.24)

v =

N = N =

(VF1,1 Oyv1 — Kr, 1v1 — V1 0,v1 + KF2,101)a

lead to a system of integral equations

By Biz Biz By wy

B B B B T
495 BOW — 21 D2 D23 Dag L =pl),
( ) B31 B32 B33 B34 w2
By Bsiy Bss By T2
where the elements of B(® are given by
k2
By = > — (I + K11,1)V110 + — V11 1(I = Li1)0),
1
ko(K2 —
Bis = —Bg = W V11,10-V11 0,
Kok1

k2 ki
B13 = V1271(I + [:2272) ) IC12,1V22,27
K3 k1

k K3
Biy = —By3 = % Vi2,10: V22,2,

1“2
k k
By = 2 (I+ K11,1)Vi1,0 + V11 (I = L11,0),
1
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k2 k3
Boy = -5 V1271(I + £2272) - —5 K12,1V22,2a
K5 k1
2 k3
Bs1 = — Ka1,1 V11,0 + 5 V1,1 = L11,0),
K7 Ko
ko(k2 — K2
Byy = — By = % V21,107 V11,0,
Kok

k3 ki
B33 = K/—g V22’1(I + [:22,2) + H/_]é (I - ’C22,1)V22,27
2 1

Yka (KT — K3)

B3y = —Bys = 2.2 V22,10: Va2 2,
Kik3

k3 k3
By = — Ka1,1Vi1,0 + ) Vo11(I — L11,0),

K1 Ko

e k3
By = s V22,1(I + [:22,2) + 2 (I - ’C22,1)V22,2-

2 1

The right-hand side b(®) ¢ (Ha/*(I'1))?

the components

x (HA'*(T'3))? of (4.25) has

(4.26)
o k.2 . k.? . k 2 _ 2 .
b\ = =4 Kizul — 2 Vi 10,u®) — W Vi2,10-0W,
K1 Ky R1K3
o k2 . k2 X k 2 2 .
by = =2 Ki2,00® — =2 V13 10,00 + w Vi210,ul®,
K1 K3 kika
k3 y k3 y  vka(sT — K3) '
R PR AW O N RPN B L1 G el RPN C)
3 P (Ko2,1 — Iu P Va2,10,u Py Va2 10- 0",
o k2 L k2 . ka (k2 — K2 ;
by = H—% (K21 — Do — n_é Va2,10,01) + % Voo 10-ul®).
1 2 152

Recall that u() = p eilatmz—ify (@) — ¢ eilatm)z—iby an( that the
integral operators are connected with the fundamental solutions Usar

Due to the following observation we call (4.25) a transposed system.
Suppose that the field illuminating the given grating has the wave
vector (—a — m, —[3,7). Then the ansatz (4.23), (4.24) with w;, 7; €

Hﬁl/z(f‘j) leads to the equations (4.25), but the integral operators are

-

associated with the fundamental solutions Yy —a and the right-hand
side is determined by u() = p,e~iatm)z=ify () = ¢ e=ilatm)z—ify



100 G. SCHMIDT

By using (3.6) and Lemma (3.4) it is easy to see that the elements B},
of the corresponding 4 x 4 operator matrix which we denote by B(~®)
are the transpose of the elements Aj; of A(®), Moreover, if we define
for W = (wy, 11, w2, 72), ® = (¢1, %1, @2,%2) the bilinear form

2
(4.27) Z wJ, ‘PJ [ij ¢j]FJ’
j=1

of. (3.33), where W € (H(T))” x (H:(T2))?, @ € (HZ:(Th))”
(H= (Fg))z, then we obtain

Lemma 4.1. For any o the operator B(—%) is the transpose of A(®)
with respect to (4.27), i.e

[A(a)m q)] — [VV, B(—d)q;]

for all W € (Ha'*(T1))? x (HZ'/*(T2))? and ® € (HZY/*(T1))” x
(HZY*(1y))”.

Remark 4.2. Obviously, the structure of the 2 x 2 diagonal blocks
of A(® and B(® is determined only by the chosen representation of
the solutions on both sides of the interface ¥;. So the Green’s formula
representation below and the single layer representation above X; lead
to a 2 x 2 matrix block for the densities w;, 7; which is structured as
A11 or the matrix Boy = (Bik)?’k:?,, whereas in the opposite case the
matrix structure is analog to Ass or By = (sz)z y

Consider, in particular, the conical diffraction on noncoated gratings,
for example the grating depicted in Figure 1 with ky = k1. Then the
single layer potential ansatz u; = Vr, ,1w2, v1 = Vp,,172 in Go N G and

(Vr,,20,u2 — Kr, 2us),

2k2 [u®
Ao <w2> — 2 <u(l)>
T2 I€2 v

(VF2 28 Vo2 — KF272U2) in Gg

U2 =

[\3|D—‘
l\JIr—\

lead to the system
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The representations us = Vr, swa, v1 = Vp, 272 in the upper domain
G4 and the representation formula

1
up = §(KF2,1U1 = Vry100u1),

—_

v = §(K[‘2,11)1 — VF2,16,/’U1) in GO n El n Gl

imply the integral equation system
w2 bga)
622 == (a) .
T2 b,

5. Solvability of the integral equations. Here we show that the
systems (4.19) with the operator matrix A (%) and (4.25) with B(*) are
equivalent to the diffraction problem D(®) if the two conditions

(A) the operators Vl(?,)o and Vz(g,)z are invertible,

(B) the operators Vl(i)l and vé;“’)l are invertible,

are satisfied. Recall the definition of the single layer potentials

VEho(P) = Vo s0(P) = 2/F Uy (P~ Q) p(Q)dog, PeTy.
£

Furthermore, the operators A(®) and B(® are Fredholm with index 0
and satisfy a Garding inequality, if the condition (2.7) is satisfied. This
will be shown in subsection 5.2.

From Remark 4.2 and the proofs given below it follows easily that the
results apply to the integral equation systems which are obtained for
multiple-coated gratings by using the alternate single-layer potential
and Green’s formula representations.

5.1. Equivalence. The conditions which ensure that a solution of
the system (4.19) or (4.25) provides a solution of the diffraction problem
D(® and vice versa are formulated in the following

Proposition 5.1. (i) Under condition (A) any solution of (4.19)
provides a solution of D).
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(ii) Under condition (B) any solution of D(*) provides a solution of
(4.19).

Proposition 5.2. (i) If condition (B) holds, then any solution of
(4.25) provides a solution of D),

(Agii) I;let uj,vj € HE (G;) be a solution of D\® and assume condition
. Then

_ -1 _ -1 _ -1 _ -1
w1 = V11,0u07 ™ = V1170U0, wo = V22’2’U,2, T1 = V22’2U2.

is a solution of (4.25).

For the proof we need some properties of the single layer potentials
in the domain G;.

Lemma 5.1. (i) If Vi, 191 = Viy 92 in G, ¢j € H;1/2(Fj), then
Ve 101 = Vr,,102 = 0.

(ii) Under condition (B) any a-quasiperiodic solution of Au+riu =0
i G1 admits the unique representation

u="Vr, 101+ Ve, 1902, @ € HY2(T).

Proof. (i) The function w which coincides with
w1(P) = Vp, 101(P), P € G1 UX2 U Go,
and
wo(P) = Vp, 192(P), P € GoUX; UG,
is smooth, solves the Helmholtz equation Au + x5u = 0 in R? and

satisfies the outgoing wave condition for |y| — oo. Thus w; = 0 in
G1 UG5 and wy = 0 in Gy UG,

(ii) Since by (3.10)

1
u = 5 (VI‘l,l o,u — Kpl,lu — sz,l 0,u + Kp271u),
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and Vj;1 are invertible, there exist uniquely defined ¢; € Hg 1/2 (L)
such that

Va1 == (V1 0ou — Ky qu)  in G U 2 U G,

V[‘271Lp2 = (sz,lu — VI‘z,l (9,,11,) in Gy UX; UG;. m}

N = N =

Proof of Proposition 5.1. For arbitrary w;,; € Ha_l/Z(Fj), ji=1,2,
the functions

(5.1) up = Vr, 1wy + Vi, 1we, vy = V171 + Vry17o,

are solutions of the Helmholtz equation Au + x#u = 0 in G; with

U1|F2,’U1|[‘2 c Hol/Z(Fz), 6VU1‘F2,6VU1|F2 S H;l/z(rg). Therefore,
(5.2)

2 2 2 2 2
K3 ki vka (K1 — K3) k3
= =W —= 0uy — ————=-0; - <K ,
U2 2k§< F2,2<ﬁ% Ui n%n% U1 n% y,2U1
2 2 2
K3 1 v(K1 — K3) 1
==V — 0, ———= 0, - =K ,
V2 5 ( 2,2 (K/% vy + kgﬁ%ﬁ% Ui ﬁ% T»,201

solve Au + r3u = 0 in Ga, satisfy the outgoing wave condition (4.5)
and have the boundary values

2 2 2 2 2
Ka ki Yka (KT — K3) k3
Us|p, = —% V22,2<—6‘,,u1 —— a0 )+5 (I —Ka2)u),
T ( p o il )
2

K2 1 K2 — K 1
V2|, = ?2 (V22,2 <,:<;_% Oyv1 + 7(1621,{7%52) 3TU1> H—%(I - ]C22,2)Ul)-

Let wj, 7j be a solution of (4.19). Because of

Ovut|ry, = Lorjw1 — (I — Loz1)wa,

Oyvilr, = Lo11m1 — (I — Lo2,1) 72,

Ha o (Vor,1wi + Vag 1wz) = —Vaz 2 Oruq,
Hao (Vo117 + Vao,172) = —Va2 2 001,
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the last two equations of (4.19) imply that

k2 k2 ko (k2 — K2
L Voo 2 Opur + —2 (1 — Kaz2)ug — w Vaa 2 0-v1
K1 K Kik3
23
= H—%(Ul —u®)|r,
1 1 V(KT — K3)
— V2220, — (I —-K ————= V520,
H% 22,2 0,01 + ng( 22.2)U1 + k2/€%l€§ 22,2 07 U1

which gives us +u® = uyi, v + v = vy on T'y. Since by Corollary 3.1
Kr2,2u(i) = VF2,23uU(i), KFZ,QU(i) = Vr2,26uv(i)

in Gy, formulas (5.2) transform to

1 K3 (k3 ko (K3 — K3)
= (v 22 (B gy, TR RY)

— K, ouz — Vi, 2 6uu(i)>7

1 2 1 v(ki — K3)
Vg = 5 (VFZ,Q Ko </<L_% 6,,’01 + W 8—,—’!14

— K, 202 — Vi, 2 8l/v(i)>7

which are valid in G2. Hence Lemma 3.1 implies

k2 ; k2 ko (K3 — K2)
Vi, 2-2(8, d, Y = 1 Aouy — 21 "2 g
2,2 2 ( U2 + Oy u ) 2,2 x2 uy K2R3 v,

1 ; 1 v(k3 — K3)
Vi,2—5 (0, v V) =V, o =0, RS S TR
2,2 P ( v2 + OV ) 2,2 (K% v+ [y ui |,

which shows that wus, ve satisfy the transmission conditions (4.4) if
ker V2272 = {0}
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Analogously one shows that the functions
(5.3)

k2 k3 vk (kg — K1)
= K Vi “La, JR2\fp — K1) o, ,
Uo 2k2 ( r;,0u1 — Vry,0 (n% uy — K% % U1>>
)

kg (1 1 v(K3
=2 5K —Viyo| 5 01 + — 2552 0, :
Vo 2 </-e(2) ;001 r1,0<ﬁ% v1 + k-zn%n% U1>>

which satisfy (4.2) and (4.5), are subjected to the jump conditions (4.3)
if dim ker V1170 =0.

Assertion (ii) is a simple consequence of Lemma 5.1 (ii), since

wy = %(3 ur, — Vi (K — Du),

wy = %(3 urlr, — Vo (a2t + Duy),

= %((’) vilr, = Vi LK — Ivy),

T = %(0 v1lr, = Vas't (Kaz1 + Ivy),
are uniquely determined. o

Proof of Proposition 5.2. (i) Defining the functions
(54) Uug = Vr‘howl, Vg = VF170T1 and Ug = Vr‘272w2, Vg = VF272T2

in Gy, respectively G5, and

(5.5)
k K/ k K/Z _ K/2
up = Vr1,1< 02];2 Oyug — % 37110)
1
- §KF1,IUO
212 9 o
rkik3 ; vko (KT — K3) ;
— Vi1 <2k2 7 Oy (uz + u®) + W@r(vg + v(®)

1 .
+ §KF2,1(U2 + U(l)),

K2 KZ — K2
v1=Vr 1 <—12 Ovvo + ’Y(O—Ql) 67U0>
2K 0

- -K
2yt T1,1%0

2
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2

2 2
_ R1 @)y _ v(Kf — K3) (i)
Vr,a <2/~;% 0y (v2 +v) —2k2/<;§ O, (uz + u')

1 .
t3 ra1(v2 +00),

in (1, it can be shown similarly to the proof of Proposition 5.1 that
the equations (4.25) imply

u1|r, = uolry, vilr, = volr,, wilr, = (u2+u(i))\r2, vilr, = (v2+v(i))|r2-

Comparing then (5.5) with the representations (4.24) we obtain that
in Gl

k2 ko(k2 — k?) k?

0 YrR2(Kg 1 1

Vl—‘l,l 26,;”0 - 2 2 3.,.1)1 - Qauul
Ko Koki K1

k3 iy o Yk2(ki — K3) k2
= Vr‘271 (I{,_% 8,,(u2 + u( )) + W&vl — Fu—%&,ul 5

1 (kg — K1) 1
VF1,1 <?8V'U0 + 725% Oruy — ?6,,1}1

0 karg 1
1 , v(K3 — K3) 1
=W 5 61/ @)y — 1 2 6‘r - o 81/
Ts,1 (K/% (’Uz +v ) kzr{,%ﬁ% (754 FL% v,
which implies by Lemma 5.1 that
k20, ug B k20, u; B k2 (k3 — k%) 0,01
K3 K KKt ’
O, o,v k2 — Kk?) 0ru
Hzo - 521 + il Ok 21)2 L e ker V111,
0 1 2KpR1

k30, (ug + u®) 3 k20, u1 n ko (K3 — K2) 0,1

2 p) 3 2 )
Ky K1 Kika
i 2 2
Oy (va +vD)  du1  y(k} — k) Oruy I
5 — 5 — 5 5 € ker V22’1.
K5 K kokiKS

Assertion (ii) follows immediately from the ansatz (4.23), (4.24). o
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5.2. Strong ellipticity.

Theorem 5.1. Let k3 = k3 — % > 0 and Iﬁ:? = k:J2 -2 #£0
satisfy argn? € [0,7), 7 = 0,1. Then A and B are Fredholm
mappings (H071/2(I‘1))2 X (H,;l/z(f‘g))z — (Hg/z(f‘l))z X (Hé/2(l“2))2
of index 0 for all o, (o + n)? # /-e? and n € Z. In particular,

dim ker A(® = dim ker B(~%).

The assertion of Theorem 5.1 follows from Lemma 4.1 and the
Lemmas 5.2-5.4 given below. Consider the off-diagonal blocks (4.22)
of A, Since for k # j the operators

Vikm : Hy V2 (Ty) — HYA(T;),

Kjkm : HY*(Tr) — HY*(T)),

Lijkm : Hy Y2 (D) — HVA(Ty),
—1/2

and therefore A;; : (Ha (I‘k))2 — (H;/Q(Fj))2 are compact, we
have

Lemma 5.2. The operator A is Fredholm if and only if both
Ajj o (H,)71/2(1"j))2 — (Hé/z(Fj))2, j = 1,2, are Fredholm. Then

ind A® = ind A;; + ind Ays.

Next we consider one of the operator matrices A;; given by (4.20).
As in subsection 3.3 we relate the elements of A;; to boundary integral

operators of the Laplacian on the closed curve I' obtained from I'; by
the transformation ¥ = e**. Then the proof of Lemma 3.3 lets us
conclude that the operators

Vijm(I £ Ljj1) —9*V(I £ K')(9*)"'M; - H'?(T;) — HY*(T;),
(I +Kjjm)Vija— 9" (I £ K)V(9*)"'M; : H;'/*(T;) — HY/*(T),
HjmVija — 0 HV(9*)"'M; : H V(L) — HY?(T;),

are compact (cf. (3.28), (3.30)—(3.31). Here M, denotes the multipli-
cation operator

M;p(P)=e¥p(P), P=(X,Y)eT;.
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Introducing
(5.6) A;
k2 K2, k2 k2, 1 1
(B+a2)ve (B- 52 ) kv ke (& - ) BV
— i i ! , NI TS T
()i (G (5 ) ey
i i i i F
and using the relation KV = VK’ we see from (4.20) that the

differences

(5 DA ).

(H 2 (T)))* — (HY*(1y)?

o

j = 1,2, are compact operators. Consequently, we derive
Lemma 5.3. The 2 x 2 operator matriz Aj; : (H,;l/z(f‘j))2 —
(HY?(T;))? is Fredholm if and only if A; : (H/*(T))* — (HY/2(T))?

is a Fredholm operator and ind A;; = ind A;.

Hence it remains to study /Tj given on a closed piecewise C? curve L.
Since by construction the symmetric operator V : H~/2(T') — H'/*(T)
is positive definite we can define an inner product on H~1/2 (T) by

(5.7) (u,v)y = (Vu,v),

where (-, ) is the duality pairing (3.25) between HY/2(I') and H'/2(T).
The inner product generates an equivalent norm on H!/2(T'), which
is denoted by [[ul|_1/2 = (Vu,u)/%. For U = (u,v) € (H‘l/z(f))z,
D= (p,0) € (Hl/Z(f))2 we define

(@,U) = (o) + (6 v) and VIR, = (Vi) +{Vo,v) = (U, U)y.
Since the kernels of K and H are real-valued we have

(K¢, v) = (¢, K'v), (Hp,v) = (¢, H'v), ¢ € H/*(T), v e H-Y2(T),
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and therefore by Lemma 3.2 (i)

(K'u,v)y = (u, K'v)y, (H'u,v)y = —(u, H'v)y,

(5:8) u,v € H-V2(ID).

Lemma 5.4. Under the assumptions of Theorem 5.1 there exist
6 € C and c > 0 such that the operator matriz A; defined by (5.6)
satisfies

(5.9) Re <9./sz, U> > CHUH%l/Z
for all U = (u,v) € (H_l/z(f))Q.
Proof. Consider first the case v = 0. Then by (5.6)

A= (0 (5

It follows from Lemma 3.

(I+K)+ (I K))V>

J

X ml.m

(i) and (5.8) that

k2 k2
<.AUU>—2||u||21/2 3( ,(I+K')U)V+H2—2l(v,(I—K')v)V
K i

with the selfadjoint operators I + K'. Moreover, it was shown in [4]
(see also [18]) that

(Ua (I+ KI)U)V >0, (Ua (I - KI)U)V 2 ||U||2—1/27 c1 >0,

for all v € H~Y/2(T'). By assumption the factors k3/k3, € = 0,1,2,
lie in an open half-plane containing the positive real axis. Hence there
exists a 6 with Re# > 0 such that Ref/x3 > 0, £ = 0,1, 2, which leads
to

~ 0
<9AjUa U> 2 2R60Hu||2_1/2 + Clk% Re Hg_‘|”||2—1/2-

Let v # 0 and denote
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Noting that

k2 k2, k2 k2,
gt =2t 5=,
ki Rja kj  Kja

we write /Tj in the form

_ -2
A; —A<<270 g 8) +aI+bS> AV

with the matrices
(v O (V0
a=(0m) = (0 9).
I 0 K —-H
(o 7) s=(n &)

It follows from Lemma 3.2 (ii) that S? = Z, which allows us to define
the projection operators

Py = (I:l:S)

DN | =

in (HI/Z(f))2. Moreover, by Lemma 3.2 (i)

()0 v)=(o v) (G &)

implying that the adjoint operators P/ acting in (H‘l/z(f))2 are
selfadjoint with respect to the inner product (+,-)y. Thus we obtain

- —2
A; :Av(<270 8) +(a+b)7>’++(ab)7>’_> A,

and therefore

~ 2 2
(A;U,U) =2(u,u)y + — (PLAU,AU), + 7 (PLAU,AU),,.
J J=
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As before we find 6 satisfying Ref > 0 and Ref/x? > 0, £ = 0,1, 2,
and ¢ > 0 such that

Re (04,0,0) = c([ull® o + [PLAUZ 1y + [PLAUI2, ). &

Since the number € can be chosen not depending on j, in fact Lemma
5.4 implies a stronger result, which, in particular, can be used to justify
the convergence of numerical methods for solving (4.19 and (4.25).

Corollary 5.1. Under the conditions of Theorem 5.1 the oper-

ator A(®) (and consequently B(o‘)) is strongly elliptic in the sense

that there exist ¢ > 0 and a compact operator K : (H,;l/z(l"l))2 X

(Ha'*(I2))" = (Ha* ()" x (Ha!*(2))” such that
(A + KW, 77| > w2,

for all W € (H;1/2(F1))2 X (H,;l/z(f‘g))z. Here W is the vector of
the complexr conjugates of the components of W and the duality form is
defined by (4.27).
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